Skip to main content
Top
Published in: Sports Medicine 6/2017

Open Access 01-06-2017 | Systematic Review

Left Ventricular Speckle Tracking-Derived Cardiac Strain and Cardiac Twist Mechanics in Athletes: A Systematic Review and Meta-Analysis of Controlled Studies

Authors: Alexander Beaumont, Fergal Grace, Joanna Richards, John Hough, David Oxborough, Nicholas Sculthorpe

Published in: Sports Medicine | Issue 6/2017

Login to get access

Abstract

Background

The athlete’s heart is associated with physiological remodeling as a consequence of repetitive cardiac loading. The effect of exercise training on left ventricular (LV) cardiac strain and twist mechanics are equivocal, and no meta-analysis has been conducted to date.

Objective

The objective of this systematic review and meta-analysis was to review the literature pertaining to the effect of different forms of athletic training on cardiac strain and twist mechanics and determine the influence of traditional and contemporary sporting classifications on cardiac strain and twist mechanics.

Methods

We searched PubMed/MEDLINE, Web of Science, and ScienceDirect for controlled studies of aged-matched male participants aged 18–45 years that used two-dimensional (2D) speckle tracking with a defined athlete sporting discipline and a control group not engaged in training programs. Data were extracted independently by two reviewers. Random-effects meta-analyses, subgroup analyses, and meta-regressions were conducted.

Results

Our review included 13 studies with 945 participants (controls n = 355; athletes n = 590). Meta-analyses showed no athlete–control differences in LV strain or twist mechanics. However, moderator analyses showed greater LV twist in high-static low-dynamic athletes (d = –0.76, 95% confidence interval [CI] –1.32 to –0.20; p < 0.01) than in controls. Peak untwisting velocity (PUV) was greater in high-static low-dynamic athletes (d = –0.43, 95% CI –0.84 to –0.03; p < 0.05) but less than controls in high-static high-dynamic athletes (d = 0.79, 95% CI 0.002–1.58; p = 0.05). Elite endurance athletes had significantly less twist and apical rotation than controls (d = 0.68, 95% CI 0.19–1.16, p < 0.01; d = 0.64, 95% CI 0.27–1.00, p = 0.001, respectively) but no differences in basal rotation. Meta-regressions showed LV mass index was positively associated with global longitudinal (b = 0.01, 95% CI 0.002–0.02; p < 0.05), whereas systolic blood pressure was negatively associated with PUV (b = –0.06, 95% CI –0.13 to –0.001; p = 0.05).

Conclusion

Echocardiographic 2D speckle tracking can identify subtle physiological differences in adaptations to cardiac strain and twist mechanics between athletes and healthy controls. Differences in speckle tracking echocardiography-derived parameters can be identified using suitable sporting categorizations.
Literature
1.
go back to reference Baggish AL, Wood MJ. Athlete’s heart and cardiovascular care of the athlete scientific and clinical update. Circulation. 2011;123(23):2723–35.CrossRefPubMed Baggish AL, Wood MJ. Athlete’s heart and cardiovascular care of the athlete scientific and clinical update. Circulation. 2011;123(23):2723–35.CrossRefPubMed
2.
go back to reference Henschen S. Skilanglauf und Skiwettlauf. Eine medizinische Sportstudie Mitt med Klin Upsala (Jena). 1899;2:15–8. Henschen S. Skilanglauf und Skiwettlauf. Eine medizinische Sportstudie Mitt med Klin Upsala (Jena). 1899;2:15–8.
4.
go back to reference Paterick TE, Gordon T, Spiegel D. Echocardiography: profiling of the athlete’s heart. J Am Soc Echocardiogr. 2014;27(9):940–8.CrossRefPubMed Paterick TE, Gordon T, Spiegel D. Echocardiography: profiling of the athlete’s heart. J Am Soc Echocardiogr. 2014;27(9):940–8.CrossRefPubMed
6.
7.
go back to reference Morganroth J, Maron BJ, Henry WL, et al. Comparative left ventricular dimensions in trained athletes. Ann Intern Med. 1975;82(4):521–4.CrossRefPubMed Morganroth J, Maron BJ, Henry WL, et al. Comparative left ventricular dimensions in trained athletes. Ann Intern Med. 1975;82(4):521–4.CrossRefPubMed
8.
go back to reference Roeske WR, O’rourke R, Klein A, et al. Noninvasive evaluation of ventricular hypertrophy in professional athletes. Circulation. 1976;53(2):286–91.CrossRefPubMed Roeske WR, O’rourke R, Klein A, et al. Noninvasive evaluation of ventricular hypertrophy in professional athletes. Circulation. 1976;53(2):286–91.CrossRefPubMed
9.
go back to reference Maron BJ, Pelliccia A. The heart of trained athletes cardiac remodeling and the risks of sports, including sudden death. Circulation. 2006;114(15):1633–44.CrossRefPubMed Maron BJ, Pelliccia A. The heart of trained athletes cardiac remodeling and the risks of sports, including sudden death. Circulation. 2006;114(15):1633–44.CrossRefPubMed
10.
11.
go back to reference Perk G, Tunick PA, Kronzon I. Non-Doppler two-dimensional strain imaging by echocardiography–from technical considerations to clinical applications. J Am Soc Echocardiogr. 2007;20(3):234–43.CrossRefPubMed Perk G, Tunick PA, Kronzon I. Non-Doppler two-dimensional strain imaging by echocardiography–from technical considerations to clinical applications. J Am Soc Echocardiogr. 2007;20(3):234–43.CrossRefPubMed
13.
go back to reference Mor-Avi V, Lang RM, Badano LP, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr. 2011;24(3):277–313. doi:10.1016/j.echo.2011.01.015.CrossRefPubMed Mor-Avi V, Lang RM, Badano LP, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr. 2011;24(3):277–313. doi:10.​1016/​j.​echo.​2011.​01.​015.CrossRefPubMed
20.
21.
go back to reference Utomi V, Oxborough D, Whyte GP, et al. Systematic review and meta-analysis of training mode, imaging modality and body size influences on the morphology and function of the male athlete’s heart. Heart. 2013;99(23):1727–33. doi:10.1136/heartjnl-2012-303465.CrossRefPubMed Utomi V, Oxborough D, Whyte GP, et al. Systematic review and meta-analysis of training mode, imaging modality and body size influences on the morphology and function of the male athlete’s heart. Heart. 2013;99(23):1727–33. doi:10.​1136/​heartjnl-2012-303465.CrossRefPubMed
22.
go back to reference Pluim BM, Zwinderman AH, van der Laarse A, et al. The athlete’s heart. A meta-analysis of cardiac structure and function. Circulation. 2000;101(3):336–44.CrossRefPubMed Pluim BM, Zwinderman AH, van der Laarse A, et al. The athlete’s heart. A meta-analysis of cardiac structure and function. Circulation. 2000;101(3):336–44.CrossRefPubMed
25.
go back to reference Cappelli F, Toncelli L, Cappelli B, et al. Adaptative or maladaptative hypertrophy, different spatial distribution of myocardial contraction. Clin Physiol Funct Imaging. 2010;30(1):6–12.CrossRefPubMed Cappelli F, Toncelli L, Cappelli B, et al. Adaptative or maladaptative hypertrophy, different spatial distribution of myocardial contraction. Clin Physiol Funct Imaging. 2010;30(1):6–12.CrossRefPubMed
27.
go back to reference De Luca A, Stefani L, Pedrizzetti G, et al. The effect of exercise training on left ventricular function in young elite athletes. Cardiovasc Ultrasound. 2011;9:27. doi:10.1186/1476-7120-9-27. De Luca A, Stefani L, Pedrizzetti G, et al. The effect of exercise training on left ventricular function in young elite athletes. Cardiovasc Ultrasound. 2011;9:27. doi:10.​1186/​1476-7120-9-27.
28.
go back to reference Galderisi M, Lomoriello VS, Santoro A, et al. Differences of myocardial systolic deformation and correlates of diastolic function in competitive rowers and young hypertensives: a speckle-tracking echocardiography study. J Am Soc Echocardiogr. 2010;23(11):1190–8. doi:10.1016/j.echo.2010.07.010.CrossRefPubMed Galderisi M, Lomoriello VS, Santoro A, et al. Differences of myocardial systolic deformation and correlates of diastolic function in competitive rowers and young hypertensives: a speckle-tracking echocardiography study. J Am Soc Echocardiogr. 2010;23(11):1190–8. doi:10.​1016/​j.​echo.​2010.​07.​010.CrossRefPubMed
29.
go back to reference Lee LS, Mariani JA, Sasson Z, et al. Exercise with a twist: left ventricular twist and recoil in healthy young and middle-aged men, and middle-aged endurance-trained men. J Am Soc Echocardiogr. 2012;25(9):986–93.CrossRefPubMed Lee LS, Mariani JA, Sasson Z, et al. Exercise with a twist: left ventricular twist and recoil in healthy young and middle-aged men, and middle-aged endurance-trained men. J Am Soc Echocardiogr. 2012;25(9):986–93.CrossRefPubMed
34.
go back to reference Santoro A, Alvino F, Antonelli G, et al. Left ventricular twisting modifications in patients with left ventricular concentric hypertrophy at increasing after-load conditions. Echocardiography. 2014;31(10):1265–73. doi:10.1111/echo.12555.CrossRefPubMed Santoro A, Alvino F, Antonelli G, et al. Left ventricular twisting modifications in patients with left ventricular concentric hypertrophy at increasing after-load conditions. Echocardiography. 2014;31(10):1265–73. doi:10.​1111/​echo.​12555.CrossRefPubMed
35.
go back to reference Simsek Z, Hakan Tas M, Degirmenci H, et al. Speckle tracking echocardiographic analysis of left ventricular systolic and diastolic functions of young elite athletes with eccentric and concentric type of cardiac remodeling. Echocardiography. 2013;30(10):1202–8. doi:10.1111/echo.12263.CrossRefPubMed Simsek Z, Hakan Tas M, Degirmenci H, et al. Speckle tracking echocardiographic analysis of left ventricular systolic and diastolic functions of young elite athletes with eccentric and concentric type of cardiac remodeling. Echocardiography. 2013;30(10):1202–8. doi:10.​1111/​echo.​12263.CrossRefPubMed
37.
go back to reference Vitarelli A, Capotosto L, Placanica G, et al. Comprehensive assessment of biventricular function and aortic stiffness in athletes with different forms of training by three-dimensional echocardiography and strain imaging. Eur Heart J Cardiovasc Imaging. 2013;14(10):1010–20. doi:10.1093/ehjci/jes298.CrossRefPubMed Vitarelli A, Capotosto L, Placanica G, et al. Comprehensive assessment of biventricular function and aortic stiffness in athletes with different forms of training by three-dimensional echocardiography and strain imaging. Eur Heart J Cardiovasc Imaging. 2013;14(10):1010–20. doi:10.​1093/​ehjci/​jes298.CrossRefPubMed
38.
go back to reference Zocalo Y, Guevara E, Bia D, et al. A reduction in the magnitude and velocity of left ventricular torsion may be associated with increased left ventricular efficiency: evaluation by speckle-tracking echocardiography. Rev Esp Cardiol. 2008;61(7):705–13.CrossRefPubMed Zocalo Y, Guevara E, Bia D, et al. A reduction in the magnitude and velocity of left ventricular torsion may be associated with increased left ventricular efficiency: evaluation by speckle-tracking echocardiography. Rev Esp Cardiol. 2008;61(7):705–13.CrossRefPubMed
39.
go back to reference D’Ascenzi F, Caselli S, Solari M, et al. Novel echocardiographic techniques for the evaluation of athletes’ heart: a focus on speckle-tracking echocardiography. Eur J Prev Cardiol. 2015. doi:10.1177/2047487315586095. D’Ascenzi F, Caselli S, Solari M, et al. Novel echocardiographic techniques for the evaluation of athletes’ heart: a focus on speckle-tracking echocardiography. Eur J Prev Cardiol. 2015. doi:10.​1177/​2047487315586095​.
40.
go back to reference Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9.CrossRefPubMed Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9.CrossRefPubMed
41.
go back to reference Hurlburt HM, Aurigemma GP, Hill JC, et al. Direct ultrasound measurement of longitudinal, circumferential, and radial strain using 2-dimensional strain imaging in normal adults. Echocardiography. 2007;24(7):723–31.CrossRefPubMed Hurlburt HM, Aurigemma GP, Hill JC, et al. Direct ultrasound measurement of longitudinal, circumferential, and radial strain using 2-dimensional strain imaging in normal adults. Echocardiography. 2007;24(7):723–31.CrossRefPubMed
42.
go back to reference Kocabay G, Muraru D, Peluso D, et al. Normal left ventricular mechanics by two-dimensional speckle-tracking echocardiography. Reference values in healthy adults. Revista Española de Cardiología (English Edition). 2014;67(8):651–8. Kocabay G, Muraru D, Peluso D, et al. Normal left ventricular mechanics by two-dimensional speckle-tracking echocardiography. Reference values in healthy adults. Revista Española de Cardiología (English Edition). 2014;67(8):651–8.
45.
go back to reference Takeuchi M, Nakai H, Kokumai M, et al. Age-related changes in left ventricular twist assessed by two-dimensional speckle-tracking imaging. J Am Soc Echocardiogr. 2006;19(9):1077–84.CrossRefPubMed Takeuchi M, Nakai H, Kokumai M, et al. Age-related changes in left ventricular twist assessed by two-dimensional speckle-tracking imaging. J Am Soc Echocardiogr. 2006;19(9):1077–84.CrossRefPubMed
46.
go back to reference Zhang Y, Zhou QC, Pu DR, et al. Differences in left ventricular twist related to age: speckle tracking echocardiographic data for healthy volunteers from neonate to age 70 years. Echocardiography. 2010;27(10):1205–10.CrossRefPubMed Zhang Y, Zhou QC, Pu DR, et al. Differences in left ventricular twist related to age: speckle tracking echocardiographic data for healthy volunteers from neonate to age 70 years. Echocardiography. 2010;27(10):1205–10.CrossRefPubMed
47.
go back to reference Wang J, Khoury DS, Yue Y, et al. Left ventricular untwisting rate by speckle tracking echocardiography. Circulation. 2007;116(22):2580–6.CrossRefPubMed Wang J, Khoury DS, Yue Y, et al. Left ventricular untwisting rate by speckle tracking echocardiography. Circulation. 2007;116(22):2580–6.CrossRefPubMed
53.
go back to reference Cote AT, Bredin SS, Phillips AA, et al. Left ventricular mechanics and arterial-ventricular coupling following high-intensity interval exercise. J Appl Physiol (1985). 2013;115(11):1705–13. doi:10.1152/japplphysiol.00576.2013. Cote AT, Bredin SS, Phillips AA, et al. Left ventricular mechanics and arterial-ventricular coupling following high-intensity interval exercise. J Appl Physiol (1985). 2013;115(11):1705–13. doi:10.​1152/​japplphysiol.​00576.​2013.
55.
go back to reference Doucende G, Schuster I, Rupp T, et al. Kinetics of left ventricular strains and torsion during incremental exercise in healthy subjects: the key role of torsional mechanics for systolic-diastolic coupling. Circ Cardiovasc Imaging. 2010;3(5):586–94. doi:10.1161/circimaging.110.943522.CrossRefPubMed Doucende G, Schuster I, Rupp T, et al. Kinetics of left ventricular strains and torsion during incremental exercise in healthy subjects: the key role of torsional mechanics for systolic-diastolic coupling. Circ Cardiovasc Imaging. 2010;3(5):586–94. doi:10.​1161/​circimaging.​110.​943522.CrossRefPubMed
56.
go back to reference Balmain B, Stewart GM, Yamada A, et al. The impact of an experimentally induced increase in arterial blood pressure on left ventricular twist mechanics. Exp Physiol. 2016;101(1):124–34. doi:10.1113/ep085423.CrossRefPubMed Balmain B, Stewart GM, Yamada A, et al. The impact of an experimentally induced increase in arterial blood pressure on left ventricular twist mechanics. Exp Physiol. 2016;101(1):124–34. doi:10.​1113/​ep085423.CrossRefPubMed
57.
go back to reference Aksakal E, Kurt M, Öztürk ME, et al. The effect of incremental endurance exercise training on left ventricular mechanics: a prospective observational deformation imaging study. Anadolu Kardiyol Derg. 2013;13(5):432–8.PubMed Aksakal E, Kurt M, Öztürk ME, et al. The effect of incremental endurance exercise training on left ventricular mechanics: a prospective observational deformation imaging study. Anadolu Kardiyol Derg. 2013;13(5):432–8.PubMed
60.
go back to reference Weiner RB, DeLuca JR, Wang F, et al. Exercise-induced left ventricular remodeling among competitive athletes a phasic phenomenon. Circ Cardiovasc Imaging. 2015;8(12):e003651.CrossRefPubMed Weiner RB, DeLuca JR, Wang F, et al. Exercise-induced left ventricular remodeling among competitive athletes a phasic phenomenon. Circ Cardiovasc Imaging. 2015;8(12):e003651.CrossRefPubMed
62.
go back to reference Yingchoncharoen T, Agarwal S, Popović ZB, et al. Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr. 2013;26(2):185–91.CrossRefPubMed Yingchoncharoen T, Agarwal S, Popović ZB, et al. Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr. 2013;26(2):185–91.CrossRefPubMed
63.
go back to reference Butz T, van Buuren F, Mellwig KP, et al. Two-dimensional strain analysis of the global and regional myocardial function for the differentiation of pathologic and physiologic left ventricular hypertrophy: a study in athletes and in patients with hypertrophic cardiomyopathy. Int J Cardiovasc Imaging. 2011;27(1):91–100. doi:10.1007/s10554-010-9665-5.CrossRefPubMed Butz T, van Buuren F, Mellwig KP, et al. Two-dimensional strain analysis of the global and regional myocardial function for the differentiation of pathologic and physiologic left ventricular hypertrophy: a study in athletes and in patients with hypertrophic cardiomyopathy. Int J Cardiovasc Imaging. 2011;27(1):91–100. doi:10.​1007/​s10554-010-9665-5.CrossRefPubMed
64.
go back to reference Richand V, Lafitte S, Reant P, et al. An ultrasound speckle tracking (two-dimensional strain) analysis of myocardial deformation in professional soccer players compared with healthy subjects and hypertrophic cardiomyopathy. Am J Cardiol. 2007;100(1):128–32. doi:10.1016/j.amjcard.2007.02.063.CrossRefPubMed Richand V, Lafitte S, Reant P, et al. An ultrasound speckle tracking (two-dimensional strain) analysis of myocardial deformation in professional soccer players compared with healthy subjects and hypertrophic cardiomyopathy. Am J Cardiol. 2007;100(1):128–32. doi:10.​1016/​j.​amjcard.​2007.​02.​063.CrossRefPubMed
66.
go back to reference Saito M, Okayama H, Yoshii T, et al. Clinical significance of global two-dimensional strain as a surrogate parameter of myocardial fibrosis and cardiac events in patients with hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2012;13(7):617–23. doi:10.1093/ejechocard/jer318.CrossRefPubMed Saito M, Okayama H, Yoshii T, et al. Clinical significance of global two-dimensional strain as a surrogate parameter of myocardial fibrosis and cardiac events in patients with hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2012;13(7):617–23. doi:10.​1093/​ejechocard/​jer318.CrossRefPubMed
67.
go back to reference Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39 e14. doi:10.1016/j.echo.2014.10.003. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39 e14. doi:10.​1016/​j.​echo.​2014.​10.​003.
69.
go back to reference Angell PJ, Chester N, Green DJ, et al. Anabolic steroid use and longitudinal, radial and circumferential cardiac motion. Med Sci Sports Exerc. 2012;44(4):583–90.CrossRefPubMed Angell PJ, Chester N, Green DJ, et al. Anabolic steroid use and longitudinal, radial and circumferential cardiac motion. Med Sci Sports Exerc. 2012;44(4):583–90.CrossRefPubMed
70.
go back to reference Oxborough D, George K, Birch KM. Intraobserver reliability of two-dimensional ultrasound derived strain imaging in the assessment of the left ventricle, right ventricle, and left atrium of healthy human hearts. Echocardiography. 2012;29(7):793–802.CrossRefPubMed Oxborough D, George K, Birch KM. Intraobserver reliability of two-dimensional ultrasound derived strain imaging in the assessment of the left ventricle, right ventricle, and left atrium of healthy human hearts. Echocardiography. 2012;29(7):793–802.CrossRefPubMed
71.
go back to reference Leischik R, Dworrak B, Hensel K. Intraobserver and interobserver reproducibility for radial, circumferential and longitudinal strain echocardiography. Open Cardiovasc Med J. 2014;8:102–9.CrossRefPubMedPubMedCentral Leischik R, Dworrak B, Hensel K. Intraobserver and interobserver reproducibility for radial, circumferential and longitudinal strain echocardiography. Open Cardiovasc Med J. 2014;8:102–9.CrossRefPubMedPubMedCentral
72.
go back to reference Venckunas T, Lionikas A, Marcinkeviciene JE, et al. Echocardiographic parameters in athletes of different sports. J Sports Sci Med. 2008;7(1):151–6.PubMedPubMedCentral Venckunas T, Lionikas A, Marcinkeviciene JE, et al. Echocardiographic parameters in athletes of different sports. J Sports Sci Med. 2008;7(1):151–6.PubMedPubMedCentral
73.
go back to reference Vinereanu D, Florescu N, Sculthorpe N, et al. Left ventricular long-axis diastolic function is augmented in the hearts of endurance-trained compared with strength-trained athletes. Clin Sci (Lond). 2002;103(3):249–57. doi:10.1042/cs1030249.CrossRefPubMed Vinereanu D, Florescu N, Sculthorpe N, et al. Left ventricular long-axis diastolic function is augmented in the hearts of endurance-trained compared with strength-trained athletes. Clin Sci (Lond). 2002;103(3):249–57. doi:10.​1042/​cs1030249.CrossRefPubMed
75.
go back to reference van Dalen BM, Kauer F, Vletter WB, et al. Influence of cardiac shape on left ventricular twist. J Appl Physiol. 2010;108(1):146–51.CrossRefPubMed van Dalen BM, Kauer F, Vletter WB, et al. Influence of cardiac shape on left ventricular twist. J Appl Physiol. 2010;108(1):146–51.CrossRefPubMed
76.
go back to reference Wilcock IM, Cronin JB, Hing WA. Physiological response to water immersion: a method for sport recovery? Sports Med. 2006;36(9):747–65.CrossRefPubMed Wilcock IM, Cronin JB, Hing WA. Physiological response to water immersion: a method for sport recovery? Sports Med. 2006;36(9):747–65.CrossRefPubMed
77.
go back to reference Ehsani AA, Hagberg JM, Hickson RC. Rapid changes in left ventricular dimensions and mass in response to physical conditioning and deconditioning. Am J Cardiol. 1978;42(1):52–6.CrossRefPubMed Ehsani AA, Hagberg JM, Hickson RC. Rapid changes in left ventricular dimensions and mass in response to physical conditioning and deconditioning. Am J Cardiol. 1978;42(1):52–6.CrossRefPubMed
78.
go back to reference Dong SJ, Hees PS, Huang WM, et al. Independent effects of preload, afterload, and contractility on left ventricular torsion. Am J Physiol. 1999;277(3 Pt 2):H1053–60.PubMed Dong SJ, Hees PS, Huang WM, et al. Independent effects of preload, afterload, and contractility on left ventricular torsion. Am J Physiol. 1999;277(3 Pt 2):H1053–60.PubMed
81.
go back to reference Stöhr EJ, Stembridge M, Esformes JI. In vivo human cardiac shortening and lengthening velocity is region dependent and not coupled with heart rate: ‘longitudinal’ strain rate markedly underestimates apical contribution. Exp Physiol. 2015;100(5):507–18.CrossRefPubMed Stöhr EJ, Stembridge M, Esformes JI. In vivo human cardiac shortening and lengthening velocity is region dependent and not coupled with heart rate: ‘longitudinal’ strain rate markedly underestimates apical contribution. Exp Physiol. 2015;100(5):507–18.CrossRefPubMed
83.
go back to reference Mori H, Ishikawa S, Kojima S, et al. Increased responsiveness of left ventricular apical myocardium to adrenergic stimuli. Cardiovasc Res. 1993;27(2):192–8.CrossRefPubMed Mori H, Ishikawa S, Kojima S, et al. Increased responsiveness of left ventricular apical myocardium to adrenergic stimuli. Cardiovasc Res. 1993;27(2):192–8.CrossRefPubMed
84.
go back to reference Warburton DE, Haykowsky MJ, Quinney HA, et al. Myocardial response to incremental exercise in endurance-trained athletes: influence of heart rate, contractility and the Frank-Starling effect. Exp Physiol. 2002;87(5):613–22.CrossRefPubMed Warburton DE, Haykowsky MJ, Quinney HA, et al. Myocardial response to incremental exercise in endurance-trained athletes: influence of heart rate, contractility and the Frank-Starling effect. Exp Physiol. 2002;87(5):613–22.CrossRefPubMed
89.
go back to reference Stewart GM, Yamada A, Haseler LJ, et al. Altered ventricular mechanics after 60 min of high-intensity endurance exercise: insights from exercise speckle-tracking echocardiography. Am J Physiol Heart Circ Physiol. 2015;308(8):H875–83. doi:10.1152/ajpheart.00917.2014.CrossRefPubMed Stewart GM, Yamada A, Haseler LJ, et al. Altered ventricular mechanics after 60 min of high-intensity endurance exercise: insights from exercise speckle-tracking echocardiography. Am J Physiol Heart Circ Physiol. 2015;308(8):H875–83. doi:10.​1152/​ajpheart.​00917.​2014.CrossRefPubMed
91.
92.
go back to reference Linke WA, Hamdani N. Gigantic business: titin properties and function through thick and thin. Circ Res. 2014;114(6):1052–68.CrossRefPubMed Linke WA, Hamdani N. Gigantic business: titin properties and function through thick and thin. Circ Res. 2014;114(6):1052–68.CrossRefPubMed
94.
go back to reference Borenstein M, Hedges LV, Higgins JPT, et al. Introduction to meta-analysis. Chichester: Wiley; 2009.CrossRef Borenstein M, Hedges LV, Higgins JPT, et al. Introduction to meta-analysis. Chichester: Wiley; 2009.CrossRef
95.
97.
go back to reference van Dalen BM, Vletter WB, Soliman OI, et al. Importance of transducer position in the assessment of apical rotation by speckle tracking echocardiography. J Am Soc Echocardiogr. 2008;21(8):895–8.CrossRefPubMed van Dalen BM, Vletter WB, Soliman OI, et al. Importance of transducer position in the assessment of apical rotation by speckle tracking echocardiography. J Am Soc Echocardiogr. 2008;21(8):895–8.CrossRefPubMed
98.
100.
go back to reference Esposito R, Galderisi M, Schiano-Lomoriello V, et al. Nonsymmetric myocardial contribution to supranormal right ventricular function in the athlete’s heart: combined assessment by speckle tracking and real time three-dimensional echocardiography. Echocardiography. 2014;31(8):996–1004. doi:10.1111/echo.12499.CrossRefPubMed Esposito R, Galderisi M, Schiano-Lomoriello V, et al. Nonsymmetric myocardial contribution to supranormal right ventricular function in the athlete’s heart: combined assessment by speckle tracking and real time three-dimensional echocardiography. Echocardiography. 2014;31(8):996–1004. doi:10.​1111/​echo.​12499.CrossRefPubMed
103.
go back to reference Stefani L, Toncelli L, Gianassi M, et al. Two-dimensional tracking and TDI are consistent methods for evaluating myocardial longitudinal peak strain in left and right ventricle basal segments in athletes. Cardiovasc Ultrasound. 2007;5:7. doi:10.1186/1476-7120-5-7. Stefani L, Toncelli L, Gianassi M, et al. Two-dimensional tracking and TDI are consistent methods for evaluating myocardial longitudinal peak strain in left and right ventricle basal segments in athletes. Cardiovasc Ultrasound. 2007;5:7. doi:10.​1186/​1476-7120-5-7.
Metadata
Title
Left Ventricular Speckle Tracking-Derived Cardiac Strain and Cardiac Twist Mechanics in Athletes: A Systematic Review and Meta-Analysis of Controlled Studies
Authors
Alexander Beaumont
Fergal Grace
Joanna Richards
John Hough
David Oxborough
Nicholas Sculthorpe
Publication date
01-06-2017
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 6/2017
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-016-0644-4

Other articles of this Issue 6/2017

Sports Medicine 6/2017 Go to the issue