Skip to main content
Top
Published in: BMC Oral Health 1/2022

Open Access 01-12-2022 | Laser | Research

The effects of Twinlight laser treatment on the titanium surface proliferation and osteogenic differentiation of mesenchymal stem cells

Authors: Mengzhen Zhao, Feng Qiu, Jianing Song, Congcong Zhang, Taohong Liu, Mingxuan Wu

Published in: BMC Oral Health | Issue 1/2022

Login to get access

Abstract

Background

The study aimed to observe the effects of a Twinlight laser on the titanium surface proliferation of inflammatory Mesenchymal stem cells (MSCs), inflammatory cytokine expression, and osteogenic differentiation.

Methods

The MSCs were collected from bone tissue of healthy individuals.The cellular inflammatory model was established with 1 μg/mL lipopolysaccharide (LPS).Under the cellular inflammatory model,divided into five groups: the normal control group (C); the inflammatory control group (L); Er:YAG laser group (L + E); Nd:YAG laser group (L + N); Er:YAG laser and Nd:YAG laser group (L + E + N). The treated cells were inoculated onto titanium disks.The normal and inflammatory MSCs on the surface of titanium surface were examined by CCK-8, scanning election microscopy (SEM), quantitative real-time polymerase chain reaction (qRT‑PCR) and other methods for their proliferation, growth pattern, expression of inflammatory factors Interleukin-6 (IL-6), Interleukin-8 (IL-8) and osteogenic genes Runx2 (Runt-related transcription factor 2) and alkaline phosphatase (ALP), providing the theoretical basis and experimental data for the Twinlight laser-assisted treatment of peri-implantitis. Statistical analyses were performed using a Student's t test with SPSS 17.0 software.

Results

Through observation using SEM, the cell densities of the L + E + N, L + E, and L + N groups were similar, but cell bodies in the L + E + N group were fuller and each had more than two pseudopodia. The expression level of IL-6 mRNA in the L, L + N, L + E, and L + E + N groups was higher than in group C (P < 0.05), and the expression level of IL-8 mRNA in the L + E + N group was significantly lower than in group L (P < 0.0001). On day 7, the expression level of ALP mRNA in the L, L + N, L + E, and L + E + N groups was lower than in group C (P < 0.05). On day 14, there was no significant difference in the expression level of ALP mRNA among the L + N, L + E + N, and C groups (P > 0.05). On day 7, the expression level of RUNX2 mRNA in the L + E + N group was higher than in group L (P < 0.001). On day 14, the expression level of RUNX2 mRNA in the L + E + N group was higher than in group L (P < 0.01).

Conclusion

Twinlight laser treatment promoted cell proliferation, inhibited the expression of inflammatory cytokines, and effectively enhanced the osteogenic differentiation of cells on a titanium surface.
Literature
1.
go back to reference Aoki A, Mizutani K, Schwarz F, et al. (2015) Periodontal and peri-implant wound healing following laser therapy. Periodontal. 2000;68(1):217–69.CrossRef Aoki A, Mizutani K, Schwarz F, et al. (2015) Periodontal and peri-implant wound healing following laser therapy. Periodontal. 2000;68(1):217–69.CrossRef
2.
go back to reference Canullo L, Peñarrochaoltra D, Covani U, et al. Clinical and microbi- ological findings in patients with peri-implantitis: a cross-sectional study. Clin Oral Implant Res. 2016;27:376–82.CrossRef Canullo L, Peñarrochaoltra D, Covani U, et al. Clinical and microbi- ological findings in patients with peri-implantitis: a cross-sectional study. Clin Oral Implant Res. 2016;27:376–82.CrossRef
3.
go back to reference AlMoharib HS, Steffensen B, Zoukhri D, Finkelman M, Gyurko R. Efficacy of an Er:YAG laser in the decontamination of dental implant surfaces: an in vitro study. J Periodontol. 2021;92(11):1613–21.CrossRefPubMed AlMoharib HS, Steffensen B, Zoukhri D, Finkelman M, Gyurko R. Efficacy of an Er:YAG laser in the decontamination of dental implant surfaces: an in vitro study. J Periodontol. 2021;92(11):1613–21.CrossRefPubMed
4.
go back to reference Vescovi P, Corcione L, Meleti M, et al. Nd∶YAG laser versus traditional scalpel. A preliminary histological analysis of specimens from the human oral mucosa. Lasers Med Sci. 2010;25(5):685–91.CrossRef Vescovi P, Corcione L, Meleti M, et al. Nd∶YAG laser versus traditional scalpel. A preliminary histological analysis of specimens from the human oral mucosa. Lasers Med Sci. 2010;25(5):685–91.CrossRef
5.
go back to reference Kotsakis GA, Konstantinidis I, Karoussis IK, et al. Systematic review and meta-analysis of the effect of various laser wavelengths in the treatment of peri-implantitis. J Periodontol. 2014;85(9):1203–13.CrossRef Kotsakis GA, Konstantinidis I, Karoussis IK, et al. Systematic review and meta-analysis of the effect of various laser wavelengths in the treatment of peri-implantitis. J Periodontol. 2014;85(9):1203–13.CrossRef
6.
go back to reference Saneja R, Bhattacharjee B, Bhatnagar A, et al. Efficacy of different lasers of various wavelengths in treatment of peri-implantitis and peri-implant mucositis: a systematic review and meta-analysis. J Indian Prosthodont Soc. 2020;20(4):353–62.CrossRef Saneja R, Bhattacharjee B, Bhatnagar A, et al. Efficacy of different lasers of various wavelengths in treatment of peri-implantitis and peri-implant mucositis: a systematic review and meta-analysis. J Indian Prosthodont Soc. 2020;20(4):353–62.CrossRef
7.
go back to reference Taylor SE, Shah M, Orriss IR. Generation of rodent and human osteoblasts. Bonekey Rep. 2014;3:585.CrossRef Taylor SE, Shah M, Orriss IR. Generation of rodent and human osteoblasts. Bonekey Rep. 2014;3:585.CrossRef
8.
go back to reference Petri AD, Teixeira LN, Crippa GE, et al. Effects of low-level laser therapy on human osteoblastic cells grown on titanium. Braz Dent J. 2010;21(6):491–8.CrossRef Petri AD, Teixeira LN, Crippa GE, et al. Effects of low-level laser therapy on human osteoblastic cells grown on titanium. Braz Dent J. 2010;21(6):491–8.CrossRef
9.
go back to reference Wang S. Study on the effect of low power laser therapy on the osseointegration of titanium implant. Jinan: Shandong University; 2019. Wang S. Study on the effect of low power laser therapy on the osseointegration of titanium implant. Jinan: Shandong University; 2019.
10.
go back to reference Sousa-Neto MD, Silva CF, Marchesan MA, et al. Ex vivo study of the adhesion of an epoxy-based sealer to human dentine submitted to irradiation with Er: YAG and Nd: YAG lasers. Int Endod J. 2005;38(12):866–70.CrossRef Sousa-Neto MD, Silva CF, Marchesan MA, et al. Ex vivo study of the adhesion of an epoxy-based sealer to human dentine submitted to irradiation with Er: YAG and Nd: YAG lasers. Int Endod J. 2005;38(12):866–70.CrossRef
11.
go back to reference Arisu HD, Turkoz E, Bala O. Effects of Nd: Yag laser irradiation on osteoblast cell cultures. Lasers Med Sci. 2006;21(3):175–80.CrossRef Arisu HD, Turkoz E, Bala O. Effects of Nd: Yag laser irradiation on osteoblast cell cultures. Lasers Med Sci. 2006;21(3):175–80.CrossRef
12.
go back to reference Song Y, Zhang S. Prevention of peri-implant inflammation. J West China J Stomatol. 2020;38(05):479–83. Song Y, Zhang S. Prevention of peri-implant inflammation. J West China J Stomatol. 2020;38(05):479–83.
13.
go back to reference Liu Y, Zhao J, Kong Y. Application of Nd:YAG laser and Nd:YAP laser in stomatology. Chin J Laser Med. 2016;25(03):153–9. Liu Y, Zhao J, Kong Y. Application of Nd:YAG laser and Nd:YAP laser in stomatology. Chin J Laser Med. 2016;25(03):153–9.
14.
go back to reference Natto ZS, Aladmawy M, Levi PA, et al. Com-parison of the efficacy of different types of lasers for the treatment of peri-implantitis: a systematic review. Int J Oral Maxilofac Implants. 2015;30(2):338–45.CrossRef Natto ZS, Aladmawy M, Levi PA, et al. Com-parison of the efficacy of different types of lasers for the treatment of peri-implantitis: a systematic review. Int J Oral Maxilofac Implants. 2015;30(2):338–45.CrossRef
15.
go back to reference Zhang W, Dong Z, et al. Cathepsin K deficiency promotes alveolar bone regeneration by promoting jaw bone marrow mesenchymal stem cells proliferation and differentiation via glycolysis pathway. Cell Prolif. 2021;54(7): e13058.PubMedPubMedCentral Zhang W, Dong Z, et al. Cathepsin K deficiency promotes alveolar bone regeneration by promoting jaw bone marrow mesenchymal stem cells proliferation and differentiation via glycolysis pathway. Cell Prolif. 2021;54(7): e13058.PubMedPubMedCentral
16.
go back to reference Rodriguez-Fuentesi DE, Fernandez-Garza LE, et al. Mesenc- hymal stem cells current clinical applications: a systematic review. Arch Med Res. 2021;52(1):93–101.CrossRef Rodriguez-Fuentesi DE, Fernandez-Garza LE, et al. Mesenc- hymal stem cells current clinical applications: a systematic review. Arch Med Res. 2021;52(1):93–101.CrossRef
17.
go back to reference Fu X, Huo R, Deng S, et al. Lipopolysaccharide-stimulated exosomes derived from bone marrow mesenchymal stem cells improve inflammation and fibrosis after myocardial infarction in mice. Chin J Clin Pharmacol Ther. 2019;24(08):841–51. Fu X, Huo R, Deng S, et al. Lipopolysaccharide-stimulated exosomes derived from bone marrow mesenchymal stem cells improve inflammation and fibrosis after myocardial infarction in mice. Chin J Clin Pharmacol Ther. 2019;24(08):841–51.
18.
go back to reference Zhao Z, Li X, Zou D, et al. Effects of Silver nanoparticles on proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells under lipopolysaccharide. China Med Device Inf. 2021;27(12):1–3. Zhao Z, Li X, Zou D, et al. Effects of Silver nanoparticles on proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells under lipopolysaccharide. China Med Device Inf. 2021;27(12):1–3.
19.
go back to reference Wu X, Qiao S, Wang W, et al. Melatonin prevents periimplantitis via suppression of TLR4/NF-kappaB. Acta Biomater. 2021;134:325–36.CrossRef Wu X, Qiao S, Wang W, et al. Melatonin prevents periimplantitis via suppression of TLR4/NF-kappaB. Acta Biomater. 2021;134:325–36.CrossRef
20.
go back to reference Sisti KE, de Andres MC, Johnston D, et al. Skeletal stem cell and bone implant interactions are enhanced by LASER titanium modification. Biochem Biophys Res Commun. 2016;473(3):719–25.CrossRef Sisti KE, de Andres MC, Johnston D, et al. Skeletal stem cell and bone implant interactions are enhanced by LASER titanium modification. Biochem Biophys Res Commun. 2016;473(3):719–25.CrossRef
21.
go back to reference Hauser-Gerspach I, Mauth C, Waltimo T, et al. Effects of Er:YAG laser on bacteria associated with titanium surfaces and cellular response in vitro. Lasers Med Sci. 2014;29(4):1329–37.CrossRef Hauser-Gerspach I, Mauth C, Waltimo T, et al. Effects of Er:YAG laser on bacteria associated with titanium surfaces and cellular response in vitro. Lasers Med Sci. 2014;29(4):1329–37.CrossRef
22.
go back to reference Almoharib HS, Steffensen B, Zoukhri D, et al. Efficacy of an Er:YAG laser in the decontamination of dental implant surfaces: an in vitro study. J Periodontol. 2021;92(11):1613–21.CrossRef Almoharib HS, Steffensen B, Zoukhri D, et al. Efficacy of an Er:YAG laser in the decontamination of dental implant surfaces: an in vitro study. J Periodontol. 2021;92(11):1613–21.CrossRef
23.
go back to reference Guo Z, Ning Y, Xu S, et al. Effect of laser etching on the early proliferation of MG63 cells. J Prev Treat Stomatol Dis. 2019;27(07):435–40. Guo Z, Ning Y, Xu S, et al. Effect of laser etching on the early proliferation of MG63 cells. J Prev Treat Stomatol Dis. 2019;27(07):435–40.
24.
go back to reference Hou JF, Zhang H, Yuan X, et al. In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med. 2008;40(10):726–33.CrossRef Hou JF, Zhang H, Yuan X, et al. In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med. 2008;40(10):726–33.CrossRef
25.
go back to reference Severino VO, et al. Expression of IL-6, IL-10, IL-17 and IL-8 in the peri-implant crevicular fluid of patients with peri-implantitis. Arch Oral Biol. 2011;56(8):823–8.CrossRef Severino VO, et al. Expression of IL-6, IL-10, IL-17 and IL-8 in the peri-implant crevicular fluid of patients with peri-implantitis. Arch Oral Biol. 2011;56(8):823–8.CrossRef
26.
go back to reference Chu T, Jiang D. Effect of self-prepared anti-inflammatory decoction on periimplantitis of oral cavity. Liaoning J Tradit Chin Med. 2021;49(04):96-99. Chu T, Jiang D. Effect of self-prepared anti-inflammatory decoction on periimplantitis of oral cavity. Liaoning J Tradit Chin Med. 2021;49(04):96-99.
27.
go back to reference Jin X, Sun C, Zhang Y, et al. Protective effect of low energy laser irradiation on inflammatory injury of human periodontal membrane fibroblasts induced by lipopolysaccharide. Chin J Laser Med. 2021;30(01):17. Jin X, Sun C, Zhang Y, et al. Protective effect of low energy laser irradiation on inflammatory injury of human periodontal membrane fibroblasts induced by lipopolysaccharide. Chin J Laser Med. 2021;30(01):17.
28.
go back to reference Huang TH, Lu YC, Kao CT. Low-level diode laser therapy reduces lipopolysaccharide (LPS)-induced bone cell inflammation. Lasers Med Sci. 2012;27(3):621–7.CrossRef Huang TH, Lu YC, Kao CT. Low-level diode laser therapy reduces lipopolysaccharide (LPS)-induced bone cell inflammation. Lasers Med Sci. 2012;27(3):621–7.CrossRef
29.
go back to reference Fang YX. Effects of nELL-1 and BMP-2 on osteoblast differentiation in titanium plates under normal and inflammatory microenvironment. Jinan: Shandong University; 2020. Fang YX. Effects of nELL-1 and BMP-2 on osteoblast differentiation in titanium plates under normal and inflammatory microenvironment. Jinan: Shandong University; 2020.
30.
go back to reference Sun Z, Yan K, Liu S, et al. Semaphorin 3A promotes the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells in inflammatory environments by suppressing the Wnt/beta-catenin signaling pathway. J Mol Histol. 2021;52(6):1245–55.CrossRef Sun Z, Yan K, Liu S, et al. Semaphorin 3A promotes the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells in inflammatory environments by suppressing the Wnt/beta-catenin signaling pathway. J Mol Histol. 2021;52(6):1245–55.CrossRef
31.
go back to reference Liu D, Zhou W, Xiao R, et al. Effects of lipopolysaccharide on bone marrow mesenchymal stem cells in OB/OB mice. Chin J Tissue Eng Res. 2019;23(05):703–9. Liu D, Zhou W, Xiao R, et al. Effects of lipopolysaccharide on bone marrow mesenchymal stem cells in OB/OB mice. Chin J Tissue Eng Res. 2019;23(05):703–9.
32.
go back to reference Ding C. Effects of lipopolysaccharide on the proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells and its related mechanisms. Shanghai: Second Military Medical University; 2017. Ding C. Effects of lipopolysaccharide on the proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells and its related mechanisms. Shanghai: Second Military Medical University; 2017.
33.
go back to reference Luo B, Chen C, Yan F. Effects of porphyromonas gingivalis lipopolysaccharide on biological behavior of rat bone marrow mesenchymal stem cells. Chin J Pract Stomatol. 2021;14(02):177–82. Luo B, Chen C, Yan F. Effects of porphyromonas gingivalis lipopolysaccharide on biological behavior of rat bone marrow mesenchymal stem cells. Chin J Pract Stomatol. 2021;14(02):177–82.
34.
go back to reference Wang L, Wu F, Liu C, et al. Low-level laser irradiation modulates the proliferation and the osteogenic differentiation of bone marrow mesenchymal stem cells under healthy and inflammatory condition. Lasers Med Sci. 2019;34(1):169–78.CrossRef Wang L, Wu F, Liu C, et al. Low-level laser irradiation modulates the proliferation and the osteogenic differentiation of bone marrow mesenchymal stem cells under healthy and inflammatory condition. Lasers Med Sci. 2019;34(1):169–78.CrossRef
35.
go back to reference Bai J, Li L, Kou N, et al. Low level laser therapy promotes bone regeneration by coupling angiogenesis and osteogenesis. Stem Cell Res Ther. 2021;12(1):432.CrossRef Bai J, Li L, Kou N, et al. Low level laser therapy promotes bone regeneration by coupling angiogenesis and osteogenesis. Stem Cell Res Ther. 2021;12(1):432.CrossRef
Metadata
Title
The effects of Twinlight laser treatment on the titanium surface proliferation and osteogenic differentiation of mesenchymal stem cells
Authors
Mengzhen Zhao
Feng Qiu
Jianing Song
Congcong Zhang
Taohong Liu
Mingxuan Wu
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
Laser
Published in
BMC Oral Health / Issue 1/2022
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-022-02448-z

Other articles of this Issue 1/2022

BMC Oral Health 1/2022 Go to the issue