Skip to main content
Top
Published in: Clinical Oral Investigations 11/2023

Open Access 17-10-2023 | Laser | Research

Nano-topographical surface engineering for enhancing bioactivity of PEEK implants (in vitro—histomorphometric study)

Authors: Dawlat Mostafa, Youssef M. Kassem, Samia Soliman Omar, Yousreya Shalaby

Published in: Clinical Oral Investigations | Issue 11/2023

Login to get access

Abstract

Objectives

Dental implants are currently becoming a routine treatment decision in dentistry. Synthetic polyetheretherketone (PEEK) polymer is a prevalent component of dental implantology field. The current study aimed to assess the influence of Nd:YAG laser nano-topographical surface engineering combined with ultraviolet light or platelet rich fibrin on the bioactivity and osseointegration of PEEK implants in laboratory and animal testing model.

Materials and methods

Computer Aided Design-Computer Aided Manufacturing (CAD CAM) discs of PEEK were used to fabricate PEEK discs (8 mm × 3 mm) N = 36 and implant cylinders (3 mm × 6 mm) N = 72. Specimens were exposed to Nd:YAG laser at wavelength 1064 nm, and surface roughness topography/Ra parameter was recorded in nanometer using atomic force microscopy. Laser modified specimens were divided into three groups: Nd:YAG laser engineered surfaces (control), Nd:YAG laser/UV engineered surfaces and Nd:YAG laser/PRF engineered surfaces (N = 12 discs–N = 24 implants). In vitro bioactivity test was performed, and precipitated apatite minerals were assessed with X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). In vivo histomorphometric analysis was performed in rabbits with BIC% calculation.

Results

Ra mean value of PEEK laser engineered surfaces was 125.179 nm. For the studied groups, XRD patterns revealed distinctive peaks of different apatite minerals that were demonstrated by SEM as dispersed surface aggregations. There was a significant increase in the BIC% from control group 56.43 (0.97) to laser/UV surfaces 77.30 (0.78) to laser/PRF 84.80 (1.29) (< 0.0001).

Conclusions

Successful engineered nano-topographical biomimetic PEEK implant could be achieved by Nd:YAG laser technique associated with improving bioactivity. The combination with UV or PRF could be simple and economic methods to gain more significant improvement of PEEK implant surface bioactivity with superior osteointegration.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemat A, Ghazali MJ, Razali M, Otsuka Y (2015) Surface modifications and their effects on titanium dental implants. Biomed Res Int 2015:11 Jemat A, Ghazali MJ, Razali M, Otsuka Y (2015) Surface modifications and their effects on titanium dental implants. Biomed Res Int 2015:11
2.
go back to reference Velasco-Ortega E, Jos A, Cameán AM, Pato-Mourelo J, Segura-Egea JJ (2010) In vitro evaluation of cytotoxicity and genotoxicity of a commercial titanium alloy for dental implantology. Mutat Res - Genet Toxicol Environ Mutagen 702(1):17–23 Velasco-Ortega E, Jos A, Cameán AM, Pato-Mourelo J, Segura-Egea JJ (2010) In vitro evaluation of cytotoxicity and genotoxicity of a commercial titanium alloy for dental implantology. Mutat Res - Genet Toxicol Environ Mutagen 702(1):17–23
3.
go back to reference Javed F, Al-Hezaimi K, Almas K, Romanos GE (2013) Is Titanium sensitivity associated with allergic reactions in patients with dental implants? A systematic review. Clin Implant Dent Relat Res 15(1):47–52PubMed Javed F, Al-Hezaimi K, Almas K, Romanos GE (2013) Is Titanium sensitivity associated with allergic reactions in patients with dental implants? A systematic review. Clin Implant Dent Relat Res 15(1):47–52PubMed
4.
go back to reference Ikman M, Daud R, Fazliah SN, Khor CY, Roslan H (2022) Assessment of stress shielding around a dental implant for variation of implant stiffness and parafunctional loading using finite element analysis. Acta Bioeng Biomech 24(3):147–159 Ikman M, Daud R, Fazliah SN, Khor CY, Roslan H (2022) Assessment of stress shielding around a dental implant for variation of implant stiffness and parafunctional loading using finite element analysis. Acta Bioeng Biomech 24(3):147–159
5.
go back to reference Aydin C, Yilmaz H, Bankoǧlu M (2013) A single-tooth, two-piece zirconia implant located in the anterior maxilla: a clinical report. J Prosthet Dent 109(2):70–74PubMed Aydin C, Yilmaz H, Bankoǧlu M (2013) A single-tooth, two-piece zirconia implant located in the anterior maxilla: a clinical report. J Prosthet Dent 109(2):70–74PubMed
6.
go back to reference Andreiotelli M, Wenz HJ, Kohal RJ (2009) Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clin Oral Implants Res 20(SUPPL. 4):32–47PubMed Andreiotelli M, Wenz HJ, Kohal RJ (2009) Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clin Oral Implants Res 20(SUPPL. 4):32–47PubMed
7.
go back to reference Li Q, Zhang Y, Wang D, Wang H, He G (2017) Porous polyether ether ketone: a candidate for hard tissue implant materials. Mater Des 116:171–175 Li Q, Zhang Y, Wang D, Wang H, He G (2017) Porous polyether ether ketone: a candidate for hard tissue implant materials. Mater Des 116:171–175
8.
go back to reference Panayotov IV, Orti V, Cuisinier F, Yachouh J (2016) Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med 27(7):1–11 Panayotov IV, Orti V, Cuisinier F, Yachouh J (2016) Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med 27(7):1–11
9.
10.
go back to reference Moon SM, Ingalhalikar A, Highsmith JM, Vaccaro AR (2009) Biomechanical rigidity of an all-polyetheretherketone anterior thoracolumbar spinal reconstruction construct: an in vitro corpectomy model. Spine J 9(4):330–335PubMed Moon SM, Ingalhalikar A, Highsmith JM, Vaccaro AR (2009) Biomechanical rigidity of an all-polyetheretherketone anterior thoracolumbar spinal reconstruction construct: an in vitro corpectomy model. Spine J 9(4):330–335PubMed
11.
go back to reference Barkarmo S, Wennerberg A, Hoffman M, Kjellin P, Breding K, Handa P et al (2013) Nano-hydroxyapatite-coated PEEK implants: a pilot study in rabbit bone. J Biomed Mater Res - Part A 101 A(2):465–71 Barkarmo S, Wennerberg A, Hoffman M, Kjellin P, Breding K, Handa P et al (2013) Nano-hydroxyapatite-coated PEEK implants: a pilot study in rabbit bone. J Biomed Mater Res - Part A 101 A(2):465–71
12.
go back to reference Dworak M, Rudawski A, Markowski J, Blazewicz S (2017) Dynamic mechanical properties of carbon fibre-reinforced PEEK composites in simulated body-fluid. Compos Struct 161:428–434 Dworak M, Rudawski A, Markowski J, Blazewicz S (2017) Dynamic mechanical properties of carbon fibre-reinforced PEEK composites in simulated body-fluid. Compos Struct 161:428–434
13.
go back to reference Yuan B, Cheng Q, Zhao R, Zhu X, Yang X, Yang X et al (2018) Comparison of osteointegration property between PEKK and PEEK: effects of surface structure and chemistry. Biomaterials 170:116–126PubMed Yuan B, Cheng Q, Zhao R, Zhu X, Yang X, Yang X et al (2018) Comparison of osteointegration property between PEKK and PEEK: effects of surface structure and chemistry. Biomaterials 170:116–126PubMed
14.
go back to reference Rupp F, Liang L, Geis-Gerstorfer J, Scheideler L, Hüttig F (2018) Surface characteristics of dental implants: a review. Dent Mater 34(1):40–57PubMed Rupp F, Liang L, Geis-Gerstorfer J, Scheideler L, Hüttig F (2018) Surface characteristics of dental implants: a review. Dent Mater 34(1):40–57PubMed
15.
go back to reference Bral A, Mommaerts MY (2016) In vivo biofunctionalization of titanium patient-specific implants with nano hydroxyapatite and other nano calcium phosphate coatings: a systematic review. J Cranio-Maxillofacial Surg 44(4):400–412 Bral A, Mommaerts MY (2016) In vivo biofunctionalization of titanium patient-specific implants with nano hydroxyapatite and other nano calcium phosphate coatings: a systematic review. J Cranio-Maxillofacial Surg 44(4):400–412
16.
go back to reference Abdulkareem EH, Memarzadeh K, Allaker RP, Huang J, Pratten J, Spratt D (2015) Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials. J Dent. 43(12):1462–9PubMed Abdulkareem EH, Memarzadeh K, Allaker RP, Huang J, Pratten J, Spratt D (2015) Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials. J Dent. 43(12):1462–9PubMed
17.
go back to reference Rydén L, Omar O, Johansson A, Jimbo R, Palmquist A, Thomsen P (2017) Inflammatory cell response to ultra-thin amorphous and crystalline hydroxyapatite surfaces. J Mater Sci Mater Med. 28(1):9PubMed Rydén L, Omar O, Johansson A, Jimbo R, Palmquist A, Thomsen P (2017) Inflammatory cell response to ultra-thin amorphous and crystalline hydroxyapatite surfaces. J Mater Sci Mater Med. 28(1):9PubMed
18.
go back to reference Dufils J, Faverjon F, Héau C, Donnet C, Benayoun S, Valette S (2017) Combination of laser surface texturing and DLC coating on PEEK for enhanced tribological properties. Surf Coatings Technol 329:29–41 Dufils J, Faverjon F, Héau C, Donnet C, Benayoun S, Valette S (2017) Combination of laser surface texturing and DLC coating on PEEK for enhanced tribological properties. Surf Coatings Technol 329:29–41
19.
go back to reference Carvalho A, Grenho L, Fernandes MH, Daskalova A, Trifonov A, Buchvarov I et al (2020) Femtosecond laser microstructuring of alumina toughened zirconia for surface functionalization of dental implants. Ceram Int 46(2):1383–1389 Carvalho A, Grenho L, Fernandes MH, Daskalova A, Trifonov A, Buchvarov I et al (2020) Femtosecond laser microstructuring of alumina toughened zirconia for surface functionalization of dental implants. Ceram Int 46(2):1383–1389
20.
go back to reference Ji M, Xu J, Chen M, El Mansori M (2020) Enhanced hydrophilicity and tribological behavior of dental zirconia ceramics based on picosecond laser surface texturing. Ceram Int 46(6):7161–7169 Ji M, Xu J, Chen M, El Mansori M (2020) Enhanced hydrophilicity and tribological behavior of dental zirconia ceramics based on picosecond laser surface texturing. Ceram Int 46(6):7161–7169
21.
go back to reference Yeo I-SL (2020) Modifications of dental implant surfaces at the micro-and nano-level for enhanced osseointegration. Materials (Basel) 13(1):89 Yeo I-SL (2020) Modifications of dental implant surfaces at the micro-and nano-level for enhanced osseointegration. Materials (Basel) 13(1):89
22.
go back to reference Dini C, Nagay BE, Cordeiro JM, da Cruz NC, Rangel EC, Ricomini-Filho AP et al (2020) UV-photofunctionalization of a biomimetic coating for dental implants application. Mater Sci Eng C 110:110657 Dini C, Nagay BE, Cordeiro JM, da Cruz NC, Rangel EC, Ricomini-Filho AP et al (2020) UV-photofunctionalization of a biomimetic coating for dental implants application. Mater Sci Eng C 110:110657
23.
go back to reference Funato A, Yamada M, Ogawa T (2013) Success rate, healing time, and implant stability of photofunctionalized dental implants. Int J Oral Maxillofac Implants 28(5):1261–1271PubMed Funato A, Yamada M, Ogawa T (2013) Success rate, healing time, and implant stability of photofunctionalized dental implants. Int J Oral Maxillofac Implants 28(5):1261–1271PubMed
24.
go back to reference Lee C, Jeong S-M, Yang H-W, Choi B-H (2020) Effect of ultraviolet irradiation on osseointegration of dental implants: a comparative histomorphometric study in canine models. Appl Sci 10(12):4216 Lee C, Jeong S-M, Yang H-W, Choi B-H (2020) Effect of ultraviolet irradiation on osseointegration of dental implants: a comparative histomorphometric study in canine models. Appl Sci 10(12):4216
25.
go back to reference Taniyama T, Saruta J, Rezaei NM, Nakhaei K, Ghassemi A, Hirota M et al (2020) UV-Photofunctionalization of titanium promotes mechanical anchorage in a rat osteoporosis model. Int J Mol Sci 21:1235PubMedPubMedCentral Taniyama T, Saruta J, Rezaei NM, Nakhaei K, Ghassemi A, Hirota M et al (2020) UV-Photofunctionalization of titanium promotes mechanical anchorage in a rat osteoporosis model. Int J Mol Sci 21:1235PubMedPubMedCentral
26.
go back to reference Borie E, Oliví DG, Orsi IA, Garlet K, Weber B, Beltrán V et al (2015) Platelet-rich fibrin application in dentistry: a literature review. Int J Clin Exp Med 8(5):7922–7929PubMedPubMedCentral Borie E, Oliví DG, Orsi IA, Garlet K, Weber B, Beltrán V et al (2015) Platelet-rich fibrin application in dentistry: a literature review. Int J Clin Exp Med 8(5):7922–7929PubMedPubMedCentral
27.
go back to reference Öncü E, Bayram B, Kantarcı A, Gülsever S, Alaaddinoğlu EE (2016) Positive effect of platelet rich fibrin on osseointegration. Med Oral Patol Oral Cir Bucal 21(5):e601–e607PubMedPubMedCentral Öncü E, Bayram B, Kantarcı A, Gülsever S, Alaaddinoğlu EE (2016) Positive effect of platelet rich fibrin on osseointegration. Med Oral Patol Oral Cir Bucal 21(5):e601–e607PubMedPubMedCentral
28.
go back to reference Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915PubMed Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915PubMed
29.
go back to reference Ahmed DM, Omar SS (2018) Cementing line configuration of bioactive engineered zirconia implants (in vivo histological study). Key Engineering Materials. 786:236–47 Ahmed DM, Omar SS (2018) Cementing line configuration of bioactive engineered zirconia implants (in vivo histological study). Key Engineering Materials. 786:236–47
30.
go back to reference Smith MM (1993) Orban oral histology and embryology: 11th edn. Pp. 478. 1991. SN Baskhar. London, Wolfe Publishing. Hardback,£ 29.95. Elsevier Smith MM (1993) Orban oral histology and embryology: 11th edn. Pp. 478. 1991. SN Baskhar. London, Wolfe Publishing. Hardback,£ 29.95. Elsevier
31.
go back to reference Mostafa D, Aboushelib M (2018) Bioactive–hybrid–zirconia implant surface for enhancing osseointegration: an in vivo study. Int J Implant Dent 4(1):1–7 Mostafa D, Aboushelib M (2018) Bioactive–hybrid–zirconia implant surface for enhancing osseointegration: an in vivo study. Int J Implant Dent 4(1):1–7
32.
go back to reference Durham JW III, Rabiei A (2016) Deposition, heat treatment and characterization of two layer bioactive coatings on cylindrical PEEK. Surf coatings Technol 301:106–113 Durham JW III, Rabiei A (2016) Deposition, heat treatment and characterization of two layer bioactive coatings on cylindrical PEEK. Surf coatings Technol 301:106–113
34.
go back to reference Zhao Y, Wong HM, Wang W, Li P, Xu Z, Chong EYW et al (2013) Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone. Biomaterials 34(37):9264–9277PubMed Zhao Y, Wong HM, Wang W, Li P, Xu Z, Chong EYW et al (2013) Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone. Biomaterials 34(37):9264–9277PubMed
35.
go back to reference Khoury J, Kirkpatrick SR, Maxwell M, Cherian RE, Kirkpatrick A, Svrluga RC (2013) Neutral atom beam technique enhances bioactivity of PEEK. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 307:630–634 Khoury J, Kirkpatrick SR, Maxwell M, Cherian RE, Kirkpatrick A, Svrluga RC (2013) Neutral atom beam technique enhances bioactivity of PEEK. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 307:630–634
36.
go back to reference Kohal RJ, Wolkewitz M, Hinze M, Han J, Bächle M, Butz F (2009) Biomechanical and histological behavior of zirconia implants: an experiment in the rat. Clin Oral Implants Res 20(4):333–339PubMed Kohal RJ, Wolkewitz M, Hinze M, Han J, Bächle M, Butz F (2009) Biomechanical and histological behavior of zirconia implants: an experiment in the rat. Clin Oral Implants Res 20(4):333–339PubMed
37.
go back to reference Advincula MC, Rahemtulla FG, Advincula RC, Ada ET, Lemons JE, Bellis SL (2006) Osteoblast adhesion and matrix mineralization on sol–gel-derived titanium oxide. Biomaterials 27(10):2201–2212PubMed Advincula MC, Rahemtulla FG, Advincula RC, Ada ET, Lemons JE, Bellis SL (2006) Osteoblast adhesion and matrix mineralization on sol–gel-derived titanium oxide. Biomaterials 27(10):2201–2212PubMed
38.
go back to reference Soon G, Pingguan-Murphy B, Lai KW, Akbar SA (2016) Review of zirconia-based bioceramic: surface modification and cellular response. Ceram Int 42(11):12543–12555 Soon G, Pingguan-Murphy B, Lai KW, Akbar SA (2016) Review of zirconia-based bioceramic: surface modification and cellular response. Ceram Int 42(11):12543–12555
39.
go back to reference Zheng Y, Xiong C, Wang Z, Li X, Zhang L (2015) A combination of CO2 laser and plasma surface modification of poly (etheretherketone) to enhance osteoblast response. Appl Surf Sci 344:79–88 Zheng Y, Xiong C, Wang Z, Li X, Zhang L (2015) A combination of CO2 laser and plasma surface modification of poly (etheretherketone) to enhance osteoblast response. Appl Surf Sci 344:79–88
40.
go back to reference Kiran NK, Mukunda KS, Tilak Raj TN (2011) Platelet concentrates: a promising innovation in dentistry. J Dent Sci Res 2(1):50–61 Kiran NK, Mukunda KS, Tilak Raj TN (2011) Platelet concentrates: a promising innovation in dentistry. J Dent Sci Res 2(1):50–61
41.
go back to reference Al-Maawi S, Becker K, Schwarz F, Sader R, Ghanaati S (2021) Efficacy of platelet-rich fibrin in promoting the healing of extraction sockets: a systematic review. Int J Implant Dent 7:117PubMedPubMedCentral Al-Maawi S, Becker K, Schwarz F, Sader R, Ghanaati S (2021) Efficacy of platelet-rich fibrin in promoting the healing of extraction sockets: a systematic review. Int J Implant Dent 7:117PubMedPubMedCentral
42.
go back to reference Riveiro A, Soto R, Comesana R, Boutinguiza M d, Del Val J, Quintero F, et al. Laser surface modification of PEEK. Appl Surf Sci. 2012;258(23):9437–42. Riveiro A, Soto R, Comesana R, Boutinguiza M d, Del Val J, Quintero F, et al. Laser surface modification of PEEK. Appl Surf Sci. 2012;258(23):9437–42.
43.
go back to reference Bereznai M, Pelsöczi I, Tóth Z, Turzo K, Radnai M, Bor Z et al (2003) Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material. Biomaterials 24(23):4197–4203PubMed Bereznai M, Pelsöczi I, Tóth Z, Turzo K, Radnai M, Bor Z et al (2003) Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material. Biomaterials 24(23):4197–4203PubMed
44.
go back to reference Gaggl A, Schultes G, Müller WD, Kärcher H (2000) Scanning electron microscopical analysis of laser-treated titanium implant surfaces—a comparative study. Biomaterials 21(10):1067–1073PubMed Gaggl A, Schultes G, Müller WD, Kärcher H (2000) Scanning electron microscopical analysis of laser-treated titanium implant surfaces—a comparative study. Biomaterials 21(10):1067–1073PubMed
45.
go back to reference Ranella A, Barberoglou M, Bakogianni S, Fotakis C, Stratakis E (2010) Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomater 6(7):2711–2720PubMed Ranella A, Barberoglou M, Bakogianni S, Fotakis C, Stratakis E (2010) Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomater 6(7):2711–2720PubMed
46.
go back to reference Martin A, Azhagarasan NS, Ravichandran M, Ramakrishnan H, Krishnakumar SJ, Mahadevan V (2020) Evaluation of the bioactivity of surface modified polyetheretherketone (PEEK) as an implant material: an in vitro study. Contemp Clin Dent 11(4):356PubMedPubMedCentral Martin A, Azhagarasan NS, Ravichandran M, Ramakrishnan H, Krishnakumar SJ, Mahadevan V (2020) Evaluation of the bioactivity of surface modified polyetheretherketone (PEEK) as an implant material: an in vitro study. Contemp Clin Dent 11(4):356PubMedPubMedCentral
47.
go back to reference Guo J, Liu L, Liu H, Gan K, Liu X, Song X et al (2017) Influence of femtosecond laser on the osteogenetic efficiency of polyetheretherketone and its composite. High Perform Polym 29(9):997–1005 Guo J, Liu L, Liu H, Gan K, Liu X, Song X et al (2017) Influence of femtosecond laser on the osteogenetic efficiency of polyetheretherketone and its composite. High Perform Polym 29(9):997–1005
48.
go back to reference Briski DC, Zavatsky JM, Cook BW, Ganey T (2015) Laser modified PEEK implants as an adjunct to interbody fusion: a sheep model. Glob Spine J 5(suppl):s-0035-1554347-s−0035-1554347 Briski DC, Zavatsky JM, Cook BW, Ganey T (2015) Laser modified PEEK implants as an adjunct to interbody fusion: a sheep model. Glob Spine J 5(suppl):s-0035-1554347-s−0035-1554347
49.
go back to reference Najeeb S, Zafar MS, Khurshid Z, Siddiqui F (2016) Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res 60(1):12–19PubMed Najeeb S, Zafar MS, Khurshid Z, Siddiqui F (2016) Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res 60(1):12–19PubMed
Metadata
Title
Nano-topographical surface engineering for enhancing bioactivity of PEEK implants (in vitro—histomorphometric study)
Authors
Dawlat Mostafa
Youssef M. Kassem
Samia Soliman Omar
Yousreya Shalaby
Publication date
17-10-2023
Publisher
Springer Berlin Heidelberg
Keyword
Laser
Published in
Clinical Oral Investigations / Issue 11/2023
Print ISSN: 1432-6981
Electronic ISSN: 1436-3771
DOI
https://doi.org/10.1007/s00784-023-05291-w

Other articles of this Issue 11/2023

Clinical Oral Investigations 11/2023 Go to the issue