Skip to main content
Top
Published in: European Spine Journal 9/2020

Open Access 01-09-2020 | Laminotomy | Original Article

Comparable increases in dural sac area after three different posterior decompression techniques for lumbar spinal stenosis: radiological results from a randomized controlled trial in the NORDSTEN study

Authors: Erland Hermansen, Ivar Magne Austevoll, Christian Hellum, Kjersti Storheim, Tor Åge Myklebust, Jørn Aaen, Hasan Banitalebi, Masoud Anvar, Frode Rekeland, Jens Ivar Brox, Eric Franssen, Clemens Weber, Tore Solberg, Knut Jørgen Haug, Oliver Grundnes, Helena Brisby, Kari Indrekvam

Published in: European Spine Journal | Issue 9/2020

Login to get access

Abstract

Purpose

To investigate changes in dural sac area after three different posterior decompression techniques in patients undergoing surgery for lumbar spinal stenosis.

Summary of background data

Decompression of the nerve roots is the main surgical treatment for lumbar spinal stenosis. The aim of this study was to radiologically investigate three commonly used posterior decompression techniques.

Methods

The present study reports data from one of two multicenter randomized trials included in the NORDSTEN study. In the present trial, involving 437 patients undergoing surgery, we report radiological results after three different midline retaining posterior decompression techniques: unilateral laminotomy with crossover (UL) (n = 146), bilateral laminotomy (BL) (n = 142) and spinous process osteotomy (SPO) (n = 149). MRI was performed before and three months after surgery. The increase in dural sac area and Schizas grade at the most stenotic level was evaluated. Three different predefined surgical indicators of substantial decompression were used: (1) postoperative dural sac area of > 100 mm2, (2) increase in the dural sac area of at least 50% and (3) postoperative Schizas grade A or B.

Results

No differences between the three surgical groups were found in the mean increase in dural sac area. Mean values were 66.0 (SD 41.5) mm2 in the UL-group, 71.9 (SD 37.1) mm2 in the BL-group and 68.1 (SD 41.0) mm2 in the SPO-group (p = 0.49). No differences in the three predefined surgical outcomes between the three groups were found.

Conclusion

For patients with lumbar spinal stenosis, the three different surgical techniques provided the same increase in dural sac area.

Clinical trial registration

The study is registered at ClinicalTrials.gov reference on November 22th 2013 under the identifier NCT02007083.
Literature
1.
go back to reference Watters WC III, Baisden J, Gilbert TJ, Kreiner S, Resnick DK, Bono CM, Ghiselli G, Heggeness MH, Mazanec DJ, O'Neill C, Reitman CA, Shaffer WO, Summers JT, Toton JF (2008) Degenerative lumbar spinal stenosis: an evidence-based clinical guideline for the diagnosis and treatment of degenerative lumbar spinal stenosis. Spine J 8:305–310. https://doi.org/10.1016/j.spinee.2007.10.033CrossRefPubMed Watters WC III, Baisden J, Gilbert TJ, Kreiner S, Resnick DK, Bono CM, Ghiselli G, Heggeness MH, Mazanec DJ, O'Neill C, Reitman CA, Shaffer WO, Summers JT, Toton JF (2008) Degenerative lumbar spinal stenosis: an evidence-based clinical guideline for the diagnosis and treatment of degenerative lumbar spinal stenosis. Spine J 8:305–310. https://​doi.​org/​10.​1016/​j.​spinee.​2007.​10.​033CrossRefPubMed
3.
go back to reference Turner JA, Ersek M, Herron L, Deyo R (1992) Surgery for lumbar spinal stenosis attempted meta-analysis of the literature. Spine (Phila Pa 1976) 17:1–8CrossRef Turner JA, Ersek M, Herron L, Deyo R (1992) Surgery for lumbar spinal stenosis attempted meta-analysis of the literature. Spine (Phila Pa 1976) 17:1–8CrossRef
4.
go back to reference Celik SE, Celik S, Goksu K, Kara A, Ince I (2010) Microdecompressive laminatomy with a 5-year follow-up period for severe lumbar spinal stenosis. J Spinal Disord Tech 23:229–235CrossRef Celik SE, Celik S, Goksu K, Kara A, Ince I (2010) Microdecompressive laminatomy with a 5-year follow-up period for severe lumbar spinal stenosis. J Spinal Disord Tech 23:229–235CrossRef
6.
go back to reference Hong SW, Choi KY, Ahn Y, Baek OK, Wang JC, Lee SH, Lee HY (2011) A comparison of unilateral and bilateral laminotomies for decompression of L4–L5 spinal stenosis. Spine (Phila Pa 1976) 36:E172–E178CrossRef Hong SW, Choi KY, Ahn Y, Baek OK, Wang JC, Lee SH, Lee HY (2011) A comparison of unilateral and bilateral laminotomies for decompression of L4–L5 spinal stenosis. Spine (Phila Pa 1976) 36:E172–E178CrossRef
7.
go back to reference Steurer J, Roner S, Gnannt R, Hodler J (2011) Quantitative radiologic criteria for the diagnosis of lumbar spinal stenosis: a systematic literature review. BMC Musculoskelet Disord 12:175CrossRef Steurer J, Roner S, Gnannt R, Hodler J (2011) Quantitative radiologic criteria for the diagnosis of lumbar spinal stenosis: a systematic literature review. BMC Musculoskelet Disord 12:175CrossRef
8.
go back to reference Hermansen E, Austevoll IM, Romild UK, Rekeland F, Solberg T, Storheim K, Grundnes O, Aaen J, Brox JI, Hellum C, Indrekvam K (2017) Study-protocol for a randomized controlled trial comparing clinical and radiological results after three different posterior decompression techniques for lumbar spinal stenosis: the spinal stenosis trial (SST) (part of the NORDSTEN study). BMC Musculoskelet Disord 18:121. https://doi.org/10.1186/s12891-017-1491-7CrossRefPubMedPubMedCentral Hermansen E, Austevoll IM, Romild UK, Rekeland F, Solberg T, Storheim K, Grundnes O, Aaen J, Brox JI, Hellum C, Indrekvam K (2017) Study-protocol for a randomized controlled trial comparing clinical and radiological results after three different posterior decompression techniques for lumbar spinal stenosis: the spinal stenosis trial (SST) (part of the NORDSTEN study). BMC Musculoskelet Disord 18:121. https://​doi.​org/​10.​1186/​s12891-017-1491-7CrossRefPubMedPubMedCentral
9.
go back to reference Schizas C, Theumann N, Burn A, Tansey R, Wardlaw D, Smith FW, Kulik G (2010) Qualitative grading of severity of lumbar spinal stenosis based on the morphology of the dural sac on magnetic resonance images. Spine (Phila Pa 1976) 35(21):1919–1924CrossRef Schizas C, Theumann N, Burn A, Tansey R, Wardlaw D, Smith FW, Kulik G (2010) Qualitative grading of severity of lumbar spinal stenosis based on the morphology of the dural sac on magnetic resonance images. Spine (Phila Pa 1976) 35(21):1919–1924CrossRef
10.
go back to reference Bolender NF, Schonstrom NS, Spengler DM (1985) Role of computed tomography and myelography in the diagnosis of central spinal stenosis. J Bone Joint Surg Am 67:240–246CrossRef Bolender NF, Schonstrom NS, Spengler DM (1985) Role of computed tomography and myelography in the diagnosis of central spinal stenosis. J Bone Joint Surg Am 67:240–246CrossRef
11.
go back to reference Mariconda M, Fava R, Gatto A, Longo C, Milano C (2002) Unilateral laminectomy for bilateral decompression of lumbar spinal stenosis: a prospective comparative study with conservatively treated patients. J Spinal Disord Tech 15:39–46CrossRef Mariconda M, Fava R, Gatto A, Longo C, Milano C (2002) Unilateral laminectomy for bilateral decompression of lumbar spinal stenosis: a prospective comparative study with conservatively treated patients. J Spinal Disord Tech 15:39–46CrossRef
13.
go back to reference Schonstrom NS, Bolender NF, Spengler DM (1985) The pathomorphology of spinal stenosis as seen on CT scans of the lumbar spine. Spine (Phila Pa 1976) 10:806–811CrossRef Schonstrom NS, Bolender NF, Spengler DM (1985) The pathomorphology of spinal stenosis as seen on CT scans of the lumbar spine. Spine (Phila Pa 1976) 10:806–811CrossRef
16.
go back to reference Dalgic A, Uckun O, Ergungor MF, Okay O, Daglioglu E, Hatipoglu G, Pasaoglu L, Caglar YS (2010) Comparison of unilateral hemilaminotomy and bilateral hemilaminotomy according to dural sac area in lumbar spinal stenosis. Minim Invasive Neurosurg 53:60–64CrossRef Dalgic A, Uckun O, Ergungor MF, Okay O, Daglioglu E, Hatipoglu G, Pasaoglu L, Caglar YS (2010) Comparison of unilateral hemilaminotomy and bilateral hemilaminotomy according to dural sac area in lumbar spinal stenosis. Minim Invasive Neurosurg 53:60–64CrossRef
17.
go back to reference Schonstrom N, Bolender NF, Spengler DM, Hansson TH (1984) Pressure changes within the cauda equina following constriction of the dural sac An in vitro experimental study. Spine (Phila Pa 1976) 9:604–607CrossRef Schonstrom N, Bolender NF, Spengler DM, Hansson TH (1984) Pressure changes within the cauda equina following constriction of the dural sac An in vitro experimental study. Spine (Phila Pa 1976) 9:604–607CrossRef
18.
go back to reference Hamanishi C, Matukura N, Fujita M, Tomihara M, Tanaka S (1994) Cross-sectional area of the stenotic lumbar dural tube measured from the transverse views of magnetic resonance imaging. J Spinal Disord 7:388–393CrossRef Hamanishi C, Matukura N, Fujita M, Tomihara M, Tanaka S (1994) Cross-sectional area of the stenotic lumbar dural tube measured from the transverse views of magnetic resonance imaging. J Spinal Disord 7:388–393CrossRef
Metadata
Title
Comparable increases in dural sac area after three different posterior decompression techniques for lumbar spinal stenosis: radiological results from a randomized controlled trial in the NORDSTEN study
Authors
Erland Hermansen
Ivar Magne Austevoll
Christian Hellum
Kjersti Storheim
Tor Åge Myklebust
Jørn Aaen
Hasan Banitalebi
Masoud Anvar
Frode Rekeland
Jens Ivar Brox
Eric Franssen
Clemens Weber
Tore Solberg
Knut Jørgen Haug
Oliver Grundnes
Helena Brisby
Kari Indrekvam
Publication date
01-09-2020
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue 9/2020
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-020-06499-0

Other articles of this Issue 9/2020

European Spine Journal 9/2020 Go to the issue