Skip to main content
Top
Published in: Arthritis Research & Therapy 1/2015

Open Access 01-12-2015 | Research article

Laminin-rich blood vessels display activated growth factor signaling and act as the proliferation centers in Dupuytren’s contracture

Authors: Janeli Viil, Katre Maasalu, Kristina Mäemets-Allas, Liis Tamming, Kadi Lõhmussaar, Mikk Tooming, Sulev Ingerpuu, Aare Märtson, Viljar Jaks

Published in: Arthritis Research & Therapy | Issue 1/2015

Login to get access

Abstract

Introduction

Dupuytren’s contracture (DC) is a chronic fibroproliferative disease of the hand, which is characterized by uncontrolled proliferation of atypical myofibroblasts at the cellular level. We hypothesized that specific areas of the DC tissue are sustaining the cell proliferation and studied the potential molecular determinants that might contribute to the formation of such niches.

Methods

We studied the expression pattern of cell proliferation marker Ki67, phosphorylated AKT (Ak mouse strain thymoma) kinase, DC-associated growth factors (connective tissue growth factor (CTGF), basic fibroblast growth factor (bFGF), insulin-like growth factor 2 (IGF-2)) and extracellular matrix components (laminins, fibronectin, collagen IV) in DC tissue and normal palmar fascia using immunofluorescence microscopy and quantitative real-time polymerase chain reaction (qPCR).

Results

We found that proliferative cells in the DC nodules were concentrated in the immediate vicinity of small blood vessels and localized predominantly in the myofibroblast layer. Correspondingly, the DC-associated blood vessels contained increased levels of phosphorylated AKT, a hallmark of activated growth factor signaling. When studying the expression of potential activators of AKT signaling we found that the expression of bFGF was confined to the endothelium of the small blood vessels, IGF-2 was present uniformly in the DC tissue and CTGF was expressed in the DC-associated sweat gland acini. In addition, the blood vessels in DC nodules contained increased amounts of laminins 511 and 521, which have been previously shown to promote the proliferation and stem cell properties of different cell types.

Conclusions

Based on our findings, we propose that in the DC-associated small blood vessels the presence of growth factors in combination with favorable extracellular matrix composition provide a supportive environment for sustained proliferation of myofibroblasts and thus the blood vessels play an important role in DC pathogenesis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rayan GM. Dupuytren disease: Anatomy, pathology, presentation, and treatment. J Bone Joint Surg Am. 2007;89:189–98.PubMed Rayan GM. Dupuytren disease: Anatomy, pathology, presentation, and treatment. J Bone Joint Surg Am. 2007;89:189–98.PubMed
2.
go back to reference Dibenedetti DB, Nguyen D, Zografos L, Ziemiecki R, Zhou X. Prevalence, incidence, and treatments of Dupuytren’s disease in the United States: results from a population-based study. Hand (N Y). 2011;6:149–58. doi:10.1007/s11552-010-9306-4.CrossRef Dibenedetti DB, Nguyen D, Zografos L, Ziemiecki R, Zhou X. Prevalence, incidence, and treatments of Dupuytren’s disease in the United States: results from a population-based study. Hand (N Y). 2011;6:149–58. doi:10.​1007/​s11552-010-9306-4.CrossRef
3.
go back to reference Rehman S, Goodacre R, Day PJ, Bayat A, Westerhoff HV. Dupuytren’s: a systems biology disease. Arthritis Res Ther. 2011;13:238. doi:10.1186/ar3438, ar3438. Rehman S, Goodacre R, Day PJ, Bayat A, Westerhoff HV. Dupuytren’s: a systems biology disease. Arthritis Res Ther. 2011;13:238. doi:10.1186/ar3438, ar3438.
5.
go back to reference Shaw Jr RB, Chong AK, Zhang A, Hentz VR, Chang J. Dupuytren’s disease: history, diagnosis, and treatment. Plast Reconstr Surg. 2007;120:44e–54e. doi:10.1097/01.prs.0000278455.63546.03. Shaw Jr RB, Chong AK, Zhang A, Hentz VR, Chang J. Dupuytren’s disease: history, diagnosis, and treatment. Plast Reconstr Surg. 2007;120:44e–54e. doi:10.1097/01.prs.0000278455.63546.03.
6.
go back to reference Shih B, Wijeratne D, Armstrong DJ, Lindau T, Day P, Bayat A. Identification of biomarkers in Dupuytren’s disease by comparative analysis of fibroblasts versus tissue biopsies in disease-specific phenotypes. J Hand Surg Am. 2009;34:124–36. doi:10.1016/j.jhsa.2008.09.017.PubMedCrossRef Shih B, Wijeratne D, Armstrong DJ, Lindau T, Day P, Bayat A. Identification of biomarkers in Dupuytren’s disease by comparative analysis of fibroblasts versus tissue biopsies in disease-specific phenotypes. J Hand Surg Am. 2009;34:124–36. doi:10.​1016/​j.​jhsa.​2008.​09.​017.PubMedCrossRef
7.
go back to reference Berndt A, Kosmehl H, Katenkamp D, Tauchmann V. Appearance of the myofibroblastic phenotype in Dupuytren’s disease is associated with a fibronectin, laminin, collagen type IV and tenascin extracellular matrix. Pathobiology. 1994;62:55–8.PubMedCrossRef Berndt A, Kosmehl H, Katenkamp D, Tauchmann V. Appearance of the myofibroblastic phenotype in Dupuytren’s disease is associated with a fibronectin, laminin, collagen type IV and tenascin extracellular matrix. Pathobiology. 1994;62:55–8.PubMedCrossRef
8.
go back to reference Kraljevic Pavelic S, Sedic M, Hock K, Vucinic S, Jurisic D, Gehrig P, et al. An integrated proteomics approach for studying the molecular pathogenesis of Dupuytren’s disease. J Pathol. 2009;217:524–33. doi:10.1002/path.2483.PubMedCrossRef Kraljevic Pavelic S, Sedic M, Hock K, Vucinic S, Jurisic D, Gehrig P, et al. An integrated proteomics approach for studying the molecular pathogenesis of Dupuytren’s disease. J Pathol. 2009;217:524–33. doi:10.​1002/​path.​2483.PubMedCrossRef
10.
go back to reference Gonzalez AM, Buscaglia M, Fox R, Isacchi A, Sarmientos P, Farris J, et al. Basic fibroblast growth factor in Dupuytren’s contracture. Am J Pathol. 1992;141:661–71.PubMedCentralPubMed Gonzalez AM, Buscaglia M, Fox R, Isacchi A, Sarmientos P, Farris J, et al. Basic fibroblast growth factor in Dupuytren’s contracture. Am J Pathol. 1992;141:661–71.PubMedCentralPubMed
11.
12.
go back to reference Raykha C, Crawford J, Gan BS, Fu P, Bach LA, O'Gorman DB. IGF-II and IGFBP-6 regulate cellular contractility and proliferation in Dupuytren’s disease. Biochim Biophys Acta. 1832;2013:1511–9. doi:10.1016/j.bbadis.2013.04.018. Raykha C, Crawford J, Gan BS, Fu P, Bach LA, O'Gorman DB. IGF-II and IGFBP-6 regulate cellular contractility and proliferation in Dupuytren’s disease. Biochim Biophys Acta. 1832;2013:1511–9. doi:10.​1016/​j.​bbadis.​2013.​04.​018.
15.
go back to reference Rodin S, Domogatskaya A, Strom S, Hansson EM, Chien KR, Inzunza J, et al. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol. 2010;28:611–5. doi:10.1038/nbt.1620.PubMedCrossRef Rodin S, Domogatskaya A, Strom S, Hansson EM, Chien KR, Inzunza J, et al. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol. 2010;28:611–5. doi:10.​1038/​nbt.​1620.PubMedCrossRef
17.
go back to reference Kosmehl H, Berndt A, Katenkamp D, Mandel U, Bohle R, Gabler U, et al. Differential expression of fibronectin splice variants, oncofetal glycosylated fibronectin and laminin isoforms in nodular palmar fibromatosis. Pathol Res Pract. 1995;191:1105–13. doi:10.1016/S0344-0338(11)80655-2. Kosmehl H, Berndt A, Katenkamp D, Mandel U, Bohle R, Gabler U, et al. Differential expression of fibronectin splice variants, oncofetal glycosylated fibronectin and laminin isoforms in nodular palmar fibromatosis. Pathol Res Pract. 1995;191:1105–13. doi:10.1016/S0344-0338(11)80655-2.
19.
go back to reference Nassiri F, Cusimano MD, Scheithauer BW, Rotondo F, Fazio A, Yousef GM, et al. Endoglin (CD105): a review of its role in angiogenesis and tumor diagnosis, progression and therapy. Anticancer Res. 2011;31:2283–90.PubMed Nassiri F, Cusimano MD, Scheithauer BW, Rotondo F, Fazio A, Yousef GM, et al. Endoglin (CD105): a review of its role in angiogenesis and tumor diagnosis, progression and therapy. Anticancer Res. 2011;31:2283–90.PubMed
20.
21.
27.
go back to reference Burrows FJ, Derbyshire EJ, Tazzari PL, Amlot P, Gazdar AF, King SW, et al. Up-regulation of endoglin on vascular endothelial cells in human solid tumors: implications for diagnosis and therapy. Clin Cancer Res. 1995;1:1623–34.PubMed Burrows FJ, Derbyshire EJ, Tazzari PL, Amlot P, Gazdar AF, King SW, et al. Up-regulation of endoglin on vascular endothelial cells in human solid tumors: implications for diagnosis and therapy. Clin Cancer Res. 1995;1:1623–34.PubMed
29.
go back to reference Wikstrom P, Lissbrant IF, Stattin P, Egevad L, Bergh A. Endoglin (CD105) is expressed on immature blood vessels and is a marker for survival in prostate cancer. Prostate. 2002;51:268–75. doi:10.1002/pros.10083.PubMedCrossRef Wikstrom P, Lissbrant IF, Stattin P, Egevad L, Bergh A. Endoglin (CD105) is expressed on immature blood vessels and is a marker for survival in prostate cancer. Prostate. 2002;51:268–75. doi:10.​1002/​pros.​10083.PubMedCrossRef
30.
31.
go back to reference Bradham DM, Igarashi A, Potter RL, Grotendorst GR. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol. 1991;114:1285–94.PubMedCrossRef Bradham DM, Igarashi A, Potter RL, Grotendorst GR. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol. 1991;114:1285–94.PubMedCrossRef
33.
go back to reference Bendall SC, Stewart MH, Menendez P, George D, Vijayaragavan K, Werbowetski-Ogilvie T, et al. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature. 2007;448:1015–21. doi:10.1038/nature06027.PubMedCrossRef Bendall SC, Stewart MH, Menendez P, George D, Vijayaragavan K, Werbowetski-Ogilvie T, et al. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature. 2007;448:1015–21. doi:10.​1038/​nature06027.PubMedCrossRef
Metadata
Title
Laminin-rich blood vessels display activated growth factor signaling and act as the proliferation centers in Dupuytren’s contracture
Authors
Janeli Viil
Katre Maasalu
Kristina Mäemets-Allas
Liis Tamming
Kadi Lõhmussaar
Mikk Tooming
Sulev Ingerpuu
Aare Märtson
Viljar Jaks
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Arthritis Research & Therapy / Issue 1/2015
Electronic ISSN: 1478-6362
DOI
https://doi.org/10.1186/s13075-015-0661-y

Other articles of this Issue 1/2015

Arthritis Research & Therapy 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.