Skip to main content
Top
Published in: Journal of Interventional Cardiac Electrophysiology 1/2009

01-10-2009

Lack of gelsolin promotes perpetuation of atrial fibrillation in the mouse heart

Authors: Jan Wilko Schrickel, Klaus Fink, Rainer Meyer, Christian Grohé, Florian Stoeckigt, Klaus Tiemann, Alexander Ghanem, Lars Lickfett, Georg Nickenig, Thorsten Lewalter

Published in: Journal of Interventional Cardiac Electrophysiology | Issue 1/2009

Login to get access

Abstract

Purpose

Gelsolin (gsn) is involved in the reorganization of the cytoskeleton, thereby modulating cardiomyocytal L-type Ca2+ channels. We investigated global cardiac electrophysiological characteristics in a gsn-deficient (gsn−/−) mouse strain.

Methods

Using transvenous catheterization, atrial and ventricular stimulation were performed in 15 male mice [eight gsn−/−, seven wild-type (gsn+/+)]. Surface ECG, standard electrophysiological parameters, and inducibility of atrial fibrillation (AF) were evaluated.

Results

The surface ECG showed shorter PQ (37.8 ± 4.6 versus 42.9 ± 2.7 ms; P = 0.02), but longer QRS (16.5 ± 1.8 versus 13.9 ± 1.2 ms; P = 0.005) and QT intervals (38.5 ± 2.2 versus 35.6 ± 2.4 ms, P = 0.03) in gsn−/−. Gsn−/− exhibited significantly higher susceptibility to induction of prolonged AF episodes ≥60 s [six of eight gsn−/− versus one of seven gsn+/+; P = 0.04]. Sustained AF episodes ≥10 min were observed in 50% of the gsn-deficient animals.

Conclusions

Gsn deficiency results in perpetuation of inducible episodes of atrial fibrillation. Altered L-type Ca2+ currents and disturbed Ca2+ handling known to be associated to gsn deficiency likely contribute to this effect.
Literature
1.
go back to reference Yin, H. L. (1987). Gelsolin: Calcium- and polyphosphoinositide-regulated actin-modulating protein. Bioessays, 7, 176–179.PubMedCrossRef Yin, H. L. (1987). Gelsolin: Calcium- and polyphosphoinositide-regulated actin-modulating protein. Bioessays, 7, 176–179.PubMedCrossRef
2.
go back to reference Khaitlina, S., & Hinssen, H. (1997). Conformational changes in actin induced by its interaction with gelsolin. Biophys J, 73, 929–937.PubMedCrossRef Khaitlina, S., & Hinssen, H. (1997). Conformational changes in actin induced by its interaction with gelsolin. Biophys J, 73, 929–937.PubMedCrossRef
3.
go back to reference Furukawa, K., Fu, W., Li, Y., Witke, W., Kwiatkowski, D. J., & Mattson, M. P. (1997). The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. J Neurosci, 17, 8178–8186.PubMed Furukawa, K., Fu, W., Li, Y., Witke, W., Kwiatkowski, D. J., & Mattson, M. P. (1997). The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. J Neurosci, 17, 8178–8186.PubMed
4.
go back to reference Kinosian, H. J., Newman, J., Lincoln, B., Selden, L. A., Gershman, L. C., & Estes, J. E. (1998). Ca2+ regulation of gelsolin activity: binding and severing of F-actin. Biophys J, 75, 3101–3109.PubMedCrossRef Kinosian, H. J., Newman, J., Lincoln, B., Selden, L. A., Gershman, L. C., & Estes, J. E. (1998). Ca2+ regulation of gelsolin activity: binding and severing of F-actin. Biophys J, 75, 3101–3109.PubMedCrossRef
5.
go back to reference Zapun, A., Grammatyka, S., Deral, G., & Vernet, T. (2000). Calcium-dependent conformational stability of modules 1 and 2 of human gelsolin. Biochem J, 350(Pt 3), 873–881.PubMedCrossRef Zapun, A., Grammatyka, S., Deral, G., & Vernet, T. (2000). Calcium-dependent conformational stability of modules 1 and 2 of human gelsolin. Biochem J, 350(Pt 3), 873–881.PubMedCrossRef
6.
go back to reference Endres, M., Fink, K., Zhu, J., Stagliano, N. E., Bondada, V., Geddes, J. W., et al. (1999). Neuroprotective effects of gelsolin during murine stroke. J Clin Invest, 103, 347–354.PubMedCrossRef Endres, M., Fink, K., Zhu, J., Stagliano, N. E., Bondada, V., Geddes, J. W., et al. (1999). Neuroprotective effects of gelsolin during murine stroke. J Clin Invest, 103, 347–354.PubMedCrossRef
7.
go back to reference Lader, A. S., Kwiatkowski, D. J., & Cantiello, H. F. (1999). Role of gelsolin in the actin filament regulation of cardiac L-type calcium channels. Am J Physiol, 277, C1277–C1283.PubMed Lader, A. S., Kwiatkowski, D. J., & Cantiello, H. F. (1999). Role of gelsolin in the actin filament regulation of cardiac L-type calcium channels. Am J Physiol, 277, C1277–C1283.PubMed
8.
go back to reference Yang, J., Moravec, C. S., Sussman, M. A., DiPaola, N. R., Fu, D., Hawthorn, L., et al. (2000). Decreased SLIM1 expression and increased gelsolin expression in failing human hearts measured by high-density oligonucleotide arrays. Circulation, 102, 3046–3052.PubMed Yang, J., Moravec, C. S., Sussman, M. A., DiPaola, N. R., Fu, D., Hawthorn, L., et al. (2000). Decreased SLIM1 expression and increased gelsolin expression in failing human hearts measured by high-density oligonucleotide arrays. Circulation, 102, 3046–3052.PubMed
9.
go back to reference Witke, W., Sharpe, A. H., Hartwig, J. H., Azuma, T., Stossel, T. P., & Kwiatkowski, D. J. (1995). Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Cell, 81, 41–51.PubMedCrossRef Witke, W., Sharpe, A. H., Hartwig, J. H., Azuma, T., Stossel, T. P., & Kwiatkowski, D. J. (1995). Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Cell, 81, 41–51.PubMedCrossRef
10.
go back to reference Grohe, C., Kann, S., Fink, L., Djoufack, P. C., Paehr, M., van Eickels, M., et al. (2004). 17 Beta-estradiol regulates nNOS and eNOS activity in the hippocampus. Neuroreport, 15, 89–93.PubMedCrossRef Grohe, C., Kann, S., Fink, L., Djoufack, P. C., Paehr, M., van Eickels, M., et al. (2004). 17 Beta-estradiol regulates nNOS and eNOS activity in the hippocampus. Neuroreport, 15, 89–93.PubMedCrossRef
11.
go back to reference Kreuzberg, M. M., Schrickel, J. W., Ghanem, A., Kim, J. S., Degen, J., Janssen-Bienhold, U., et al. (2006). Connexin30.2 containing gap junction channels decelerate impulse propagation through the atrioventricular node. Proc Natl Acad Sci USA, 103, 5959–5964.PubMedCrossRef Kreuzberg, M. M., Schrickel, J. W., Ghanem, A., Kim, J. S., Degen, J., Janssen-Bienhold, U., et al. (2006). Connexin30.2 containing gap junction channels decelerate impulse propagation through the atrioventricular node. Proc Natl Acad Sci USA, 103, 5959–5964.PubMedCrossRef
12.
go back to reference Schrickel, J. W., Brixius, K., Herr, C., Clemen, C. S., Sasse, P., Reetz, K., et al. (2007). Enhanced heterogeneity of myocardial conduction and severe cardiac electrical instability in annexin A7-deficient mice. Cardiovasc Res, 76, 257–268.PubMedCrossRef Schrickel, J. W., Brixius, K., Herr, C., Clemen, C. S., Sasse, P., Reetz, K., et al. (2007). Enhanced heterogeneity of myocardial conduction and severe cardiac electrical instability in annexin A7-deficient mice. Cardiovasc Res, 76, 257–268.PubMedCrossRef
13.
go back to reference Mitchell, G. F., Jeron, A., & Koren, G. (1998). Measurement of heart rate and Q-T interval in the conscious mouse. Am J Physiol, 274, H747–H751.PubMed Mitchell, G. F., Jeron, A., & Koren, G. (1998). Measurement of heart rate and Q-T interval in the conscious mouse. Am J Physiol, 274, H747–H751.PubMed
14.
go back to reference Schrickel, J. W., Bielik, H., Yang, A., Schimpf, R., Shlevkov, N., Burkhardt, D., et al. (2002). Induction of atrial fibrillation in mice by rapid transesophageal atrial pacing. Basic Res Cardiol, 97, 452–460.PubMedCrossRef Schrickel, J. W., Bielik, H., Yang, A., Schimpf, R., Shlevkov, N., Burkhardt, D., et al. (2002). Induction of atrial fibrillation in mice by rapid transesophageal atrial pacing. Basic Res Cardiol, 97, 452–460.PubMedCrossRef
15.
go back to reference Hagendorff, A., Schumacher, B., Kirchhoff, S., Luderitz, B., & Willecke, K. (1999). Conduction disturbances and increased atrial vulnerability in Connexin40-deficient mice analyzed by transesophageal stimulation. Circulation, 99, 1508–1515.PubMed Hagendorff, A., Schumacher, B., Kirchhoff, S., Luderitz, B., & Willecke, K. (1999). Conduction disturbances and increased atrial vulnerability in Connexin40-deficient mice analyzed by transesophageal stimulation. Circulation, 99, 1508–1515.PubMed
16.
go back to reference Calaghan, S. C., Le Guennec, J. Y., & White, E. (2004). Cytoskeletal modulation of electrical and mechanical activity in cardiac myocytes. Prog Biophys Mol Biol, 84, 29–59.PubMedCrossRef Calaghan, S. C., Le Guennec, J. Y., & White, E. (2004). Cytoskeletal modulation of electrical and mechanical activity in cardiac myocytes. Prog Biophys Mol Biol, 84, 29–59.PubMedCrossRef
17.
go back to reference Silacci, P., Mazzolai, L., Gauci, C., Stergiopulos, N., Yin, H. L., & Hayoz, D. (2004). Gelsolin superfamily proteins: key regulators of cellular functions. Cell Mol Life Sci, 61, 2614–2623.PubMedCrossRef Silacci, P., Mazzolai, L., Gauci, C., Stergiopulos, N., Yin, H. L., & Hayoz, D. (2004). Gelsolin superfamily proteins: key regulators of cellular functions. Cell Mol Life Sci, 61, 2614–2623.PubMedCrossRef
18.
go back to reference Stendahl, O., Krause, K. H., Krischer, J., Jerstrom, P., Theler, J. M., Clark, R. A., et al. (1994). Redistribution of intracellular Ca2+ stores during phagocytosis in human neutrophils. Science, 265, 1439–1441.PubMedCrossRef Stendahl, O., Krause, K. H., Krischer, J., Jerstrom, P., Theler, J. M., Clark, R. A., et al. (1994). Redistribution of intracellular Ca2+ stores during phagocytosis in human neutrophils. Science, 265, 1439–1441.PubMedCrossRef
19.
go back to reference Lai, L. P., Su, M. J., Lin, J. L., Lin, F. Y., Tsai, C. H., Chen, Y. S., et al. (1999). Down-regulation of L-type calcium channel and sarcoplasmic reticular Ca(2+)-ATPase mRNA in human atrial fibrillation without significant change in the mRNA of ryanodine receptor, calsequestrin and phospholamban: an insight into the mechanism of atrial electrical remodeling. J Am Coll Cardiol, 33, 1231–1237.PubMedCrossRef Lai, L. P., Su, M. J., Lin, J. L., Lin, F. Y., Tsai, C. H., Chen, Y. S., et al. (1999). Down-regulation of L-type calcium channel and sarcoplasmic reticular Ca(2+)-ATPase mRNA in human atrial fibrillation without significant change in the mRNA of ryanodine receptor, calsequestrin and phospholamban: an insight into the mechanism of atrial electrical remodeling. J Am Coll Cardiol, 33, 1231–1237.PubMedCrossRef
20.
go back to reference Van Wagoner, D. R., & Nerbonne, J. M. (2000). Molecular basis of electrical remodeling in atrial fibrillation. J Mol Cell Cardiol, 32, 1101–1117.PubMedCrossRef Van Wagoner, D. R., & Nerbonne, J. M. (2000). Molecular basis of electrical remodeling in atrial fibrillation. J Mol Cell Cardiol, 32, 1101–1117.PubMedCrossRef
21.
go back to reference Van Wagoner, D. R., Pond, A. L., Lamorgese, M., Rossie, S. S., McCarthy, P. M., & Nerbonne, J. M. (1999). Atrial L-type Ca2+ currents and human atrial fibrillation. Circ Res, 85, 428–436.PubMed Van Wagoner, D. R., Pond, A. L., Lamorgese, M., Rossie, S. S., McCarthy, P. M., & Nerbonne, J. M. (1999). Atrial L-type Ca2+ currents and human atrial fibrillation. Circ Res, 85, 428–436.PubMed
22.
go back to reference Skasa, M., Jungling, E., Picht, E., Schondube, F., & Luckhoff, A. (2001). L-type calcium currents in atrial myocytes from patients with persistent and non-persistent atrial fibrillation. Basic Res Cardiol, 96, 151–159.PubMedCrossRef Skasa, M., Jungling, E., Picht, E., Schondube, F., & Luckhoff, A. (2001). L-type calcium currents in atrial myocytes from patients with persistent and non-persistent atrial fibrillation. Basic Res Cardiol, 96, 151–159.PubMedCrossRef
23.
go back to reference van der Velden, H. M. W., van der Zee, L., Wijffels, M. C., van Leuven, C., Dorland, R., Vos, M. A., et al. (2000). Atrial fibrillation in the goat induces changes in monophasic action potential and mRNA expression of ion channels involved in repolarization. J Cardiovasc Electrophysiol, 11, 1262–1269.PubMedCrossRef van der Velden, H. M. W., van der Zee, L., Wijffels, M. C., van Leuven, C., Dorland, R., Vos, M. A., et al. (2000). Atrial fibrillation in the goat induces changes in monophasic action potential and mRNA expression of ion channels involved in repolarization. J Cardiovasc Electrophysiol, 11, 1262–1269.PubMedCrossRef
24.
go back to reference Klein, G., Schroder, F., Vogler, D., Schaefer, A., Haverich, A., Schieffer, B., et al. (2003). Increased open probability of single cardiac L-type calcium channels in patients with chronic atrial fibrillation. Role of phosphatase 2A. Cardiovasc Res, 59, 37–45.PubMedCrossRef Klein, G., Schroder, F., Vogler, D., Schaefer, A., Haverich, A., Schieffer, B., et al. (2003). Increased open probability of single cardiac L-type calcium channels in patients with chronic atrial fibrillation. Role of phosphatase 2A. Cardiovasc Res, 59, 37–45.PubMedCrossRef
Metadata
Title
Lack of gelsolin promotes perpetuation of atrial fibrillation in the mouse heart
Authors
Jan Wilko Schrickel
Klaus Fink
Rainer Meyer
Christian Grohé
Florian Stoeckigt
Klaus Tiemann
Alexander Ghanem
Lars Lickfett
Georg Nickenig
Thorsten Lewalter
Publication date
01-10-2009
Publisher
Springer US
Published in
Journal of Interventional Cardiac Electrophysiology / Issue 1/2009
Print ISSN: 1383-875X
Electronic ISSN: 1572-8595
DOI
https://doi.org/10.1007/s10840-009-9425-4

Other articles of this Issue 1/2009

Journal of Interventional Cardiac Electrophysiology 1/2009 Go to the issue