Skip to main content
Top
Published in: European Radiology 2/2010

Open Access 01-02-2010 | Molecular Imaging

Labelling of mammalian cells for visualisation by MRI

Authors: Monique R. Bernsen, Amber D. Moelker, Piotr A. Wielopolski, Sandra T. van Tiel, Gabriel P. Krestin

Published in: European Radiology | Issue 2/2010

Login to get access

Abstract

Through labelling of cells with magnetic contrast agents it is possible to follow the fate of transplanted cells in vivo with magnetic resonance imaging (MRI) as has been demonstrated in animal studies as well as in a clinical setting. A large variety of labelling strategies are available that allow for prolonged and sensitive detection of the labelled cells with MRI. The various protocols each harbour specific advantages and disadvantages. In choosing a particular labelling strategy it is also important to ascertain that the labelling procedure does not negatively influence cell functionality, for which a large variety of assays are available. In order to overcome the challenges still faced in fully exploiting the benefits of in vivo cell tracking by MRI a good understanding and standardisation of the procedures and assays used will be crucial.
Literature
1.
go back to reference Sutton EJ, Henning TD, Pichler BJ et al (2008) Cell tracking with optical imaging. Eur Radiol 18:2021–2032PubMedCrossRef Sutton EJ, Henning TD, Pichler BJ et al (2008) Cell tracking with optical imaging. Eur Radiol 18:2021–2032PubMedCrossRef
2.
go back to reference Zhang Y, Ruel M, Beanlands RS et al (2008) Tracking stem cell therapy in the myocardium: applications of positron emission tomography. Curr Pharm Des 14:3835–3853PubMedCrossRef Zhang Y, Ruel M, Beanlands RS et al (2008) Tracking stem cell therapy in the myocardium: applications of positron emission tomography. Curr Pharm Des 14:3835–3853PubMedCrossRef
3.
go back to reference Kurpisz M, Czepczynski R, Grygielska B et al (2007) Bone marrow stem cell imaging after intracoronary administration. Int J Cardiol 121:194–195PubMedCrossRef Kurpisz M, Czepczynski R, Grygielska B et al (2007) Bone marrow stem cell imaging after intracoronary administration. Int J Cardiol 121:194–195PubMedCrossRef
4.
go back to reference Ye Y, Bogaert J (2008) Cell therapy in myocardial infarction: emphasis on the role of MRI. Eur Radiol 18:548–569PubMedCrossRef Ye Y, Bogaert J (2008) Cell therapy in myocardial infarction: emphasis on the role of MRI. Eur Radiol 18:548–569PubMedCrossRef
5.
go back to reference Crich SG, Biancone L, Cantaluppi V et al (2004) Improved route for the visualization of stem cells labeled with a Gd-/Eu-chelate as dual (MRI and fluorescence) agent. Magn Reson Med 51:938–944PubMedCrossRef Crich SG, Biancone L, Cantaluppi V et al (2004) Improved route for the visualization of stem cells labeled with a Gd-/Eu-chelate as dual (MRI and fluorescence) agent. Magn Reson Med 51:938–944PubMedCrossRef
6.
go back to reference Kraitchman DL, Heldman AW, Atalar E et al (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107:2290–2293PubMedCrossRef Kraitchman DL, Heldman AW, Atalar E et al (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107:2290–2293PubMedCrossRef
7.
go back to reference Arbab AS, Yocum GT, Kalish H et al (2004) Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104:1217–1223PubMedCrossRef Arbab AS, Yocum GT, Kalish H et al (2004) Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104:1217–1223PubMedCrossRef
8.
go back to reference Modo M, Mellodew K, Cash D et al (2004) Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage 21:311–317PubMedCrossRef Modo M, Mellodew K, Cash D et al (2004) Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage 21:311–317PubMedCrossRef
9.
go back to reference Zhang Z, van den Bos EJ, Wielopolski PA et al (2005) In vitro imaging of single living human umbilical vein endothelial cells with a clinical 3.0-T MRI scanner. Magma 18:175–185PubMedCrossRef Zhang Z, van den Bos EJ, Wielopolski PA et al (2005) In vitro imaging of single living human umbilical vein endothelial cells with a clinical 3.0-T MRI scanner. Magma 18:175–185PubMedCrossRef
10.
go back to reference Hoehn M, Kustermann E, Blunk J et al (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci USA 99:16267–16272PubMedCrossRef Hoehn M, Kustermann E, Blunk J et al (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci USA 99:16267–16272PubMedCrossRef
11.
go back to reference Jendelova P, Herynek V, Urdzikova L et al (2004) Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res 76:232–243PubMedCrossRef Jendelova P, Herynek V, Urdzikova L et al (2004) Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res 76:232–243PubMedCrossRef
12.
go back to reference Arbab AS, Yocum GT, Wilson LB et al (2004) Comparison of transfection agents in forming complexes with ferumoxides, cell labeling efficiency, and cellular viability. Mol Imaging 3:24–32PubMedCrossRef Arbab AS, Yocum GT, Wilson LB et al (2004) Comparison of transfection agents in forming complexes with ferumoxides, cell labeling efficiency, and cellular viability. Mol Imaging 3:24–32PubMedCrossRef
13.
go back to reference Bulte JW, Douglas T, Witwer B et al (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147PubMedCrossRef Bulte JW, Douglas T, Witwer B et al (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147PubMedCrossRef
14.
go back to reference Daldrup-Link HE, Rudelius M, Oostendorp RA et al (2003) Targeting of hematopoietic progenitor cells with MR contrast agents. Radiology 228:760–767PubMedCrossRef Daldrup-Link HE, Rudelius M, Oostendorp RA et al (2003) Targeting of hematopoietic progenitor cells with MR contrast agents. Radiology 228:760–767PubMedCrossRef
15.
go back to reference de Vries IJ, Lesterhuis WJ, Barentsz JO et al (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407–1413PubMedCrossRef de Vries IJ, Lesterhuis WJ, Barentsz JO et al (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407–1413PubMedCrossRef
16.
go back to reference Hinds KA, Hill JM, Shapiro EM et al (2003) Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 102:867–872PubMedCrossRef Hinds KA, Hill JM, Shapiro EM et al (2003) Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 102:867–872PubMedCrossRef
17.
go back to reference Josephson L, Tung CH, Moore A et al (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem 10:186–191PubMedCrossRef Josephson L, Tung CH, Moore A et al (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem 10:186–191PubMedCrossRef
18.
go back to reference Montet-Abou K, Montet X, Weissleder R et al (2005) Transfection agent induced nanoparticle cell loading. Mol Imaging 4:165–171PubMed Montet-Abou K, Montet X, Weissleder R et al (2005) Transfection agent induced nanoparticle cell loading. Mol Imaging 4:165–171PubMed
19.
go back to reference Shapiro EM, Medford-Davis LN, Fahmy TM et al (2007) Antibody-mediated cell labeling of peripheral T cells with micron-sized iron oxide particles (MPIOs) allows single cell detection by MRI. Contrast Media Mol Imaging 2:147–153PubMedCrossRef Shapiro EM, Medford-Davis LN, Fahmy TM et al (2007) Antibody-mediated cell labeling of peripheral T cells with micron-sized iron oxide particles (MPIOs) allows single cell detection by MRI. Contrast Media Mol Imaging 2:147–153PubMedCrossRef
20.
go back to reference Slotkin JR, Cahill KS, Tharin SA et al (2007) Cellular magnetic resonance imaging: nanometer and micrometer size particles for noninvasive cell localization. Neurotherapeutics 4:428–433PubMedCrossRef Slotkin JR, Cahill KS, Tharin SA et al (2007) Cellular magnetic resonance imaging: nanometer and micrometer size particles for noninvasive cell localization. Neurotherapeutics 4:428–433PubMedCrossRef
21.
go back to reference Suzuki Y, Zhang S, Kundu P et al (2007) In vitro comparison of the biological effects of three transfection methods for magnetically labeling mouse embryonic stem cells with ferumoxides. Magn Reson Med 57:1173–1179PubMedCrossRef Suzuki Y, Zhang S, Kundu P et al (2007) In vitro comparison of the biological effects of three transfection methods for magnetically labeling mouse embryonic stem cells with ferumoxides. Magn Reson Med 57:1173–1179PubMedCrossRef
22.
go back to reference van den Bos EJ, Wagner A, Mahrholdt H et al (2003) Improved efficacy of stem cell labeling for magnetic resonance imaging studies by the use of cationic liposomes. Cell Transplant 12:743–756PubMed van den Bos EJ, Wagner A, Mahrholdt H et al (2003) Improved efficacy of stem cell labeling for magnetic resonance imaging studies by the use of cationic liposomes. Cell Transplant 12:743–756PubMed
23.
go back to reference Vuu K, Xie J, McDonald MA et al (2005) Gadolinium-rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging. Bioconjug Chem 16:995–999PubMedCrossRef Vuu K, Xie J, McDonald MA et al (2005) Gadolinium-rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging. Bioconjug Chem 16:995–999PubMedCrossRef
24.
go back to reference Walczak P, Ruiz-Cabello J, Kedziorek DA et al (2006) Magnetoelectroporation: improved labeling of neural stem cells and leukocytes for cellular magnetic resonance imaging using a single FDA-approved agent. Nanomedicine 2:89–94PubMed Walczak P, Ruiz-Cabello J, Kedziorek DA et al (2006) Magnetoelectroporation: improved labeling of neural stem cells and leukocytes for cellular magnetic resonance imaging using a single FDA-approved agent. Nanomedicine 2:89–94PubMed
25.
go back to reference Hoehn M, Himmelreich U, Kruttwig K et al (2008) Molecular and cellular MR imaging: potentials and challenges for neurological applications. J Magn Reson Imaging 27:941–954PubMedCrossRef Hoehn M, Himmelreich U, Kruttwig K et al (2008) Molecular and cellular MR imaging: potentials and challenges for neurological applications. J Magn Reson Imaging 27:941–954PubMedCrossRef
26.
go back to reference Jing XH, Yang L, Duan XJ et al (2008) In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection. Jt Bone Spine 75:432–438CrossRef Jing XH, Yang L, Duan XJ et al (2008) In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection. Jt Bone Spine 75:432–438CrossRef
27.
go back to reference Evgenov NV, Medarova Z, Dai G et al (2006) In vivo imaging of islet transplantation. Nat Med 12:144–148PubMedCrossRef Evgenov NV, Medarova Z, Dai G et al (2006) In vivo imaging of islet transplantation. Nat Med 12:144–148PubMedCrossRef
28.
go back to reference Akins EJ, Dubey P (2008) Noninvasive imaging of cell-mediated therapy for treatment of cancer. J Nucl Med 49(Suppl 2):180S–195SPubMedCrossRef Akins EJ, Dubey P (2008) Noninvasive imaging of cell-mediated therapy for treatment of cancer. J Nucl Med 49(Suppl 2):180S–195SPubMedCrossRef
29.
go back to reference Modo MJ, Bulte JWM (2007) Cellular and molecular MR imaging. CRC, Boca Raton Modo MJ, Bulte JWM (2007) Cellular and molecular MR imaging. CRC, Boca Raton
30.
32.
go back to reference Himmelreich U, Hoehn M (2008) Stem cell labeling for magnetic resonance imaging. Minim Invasive Ther Allied Technol 17:132–142PubMedCrossRef Himmelreich U, Hoehn M (2008) Stem cell labeling for magnetic resonance imaging. Minim Invasive Ther Allied Technol 17:132–142PubMedCrossRef
33.
34.
35.
go back to reference Sykova E, Jendelova P (2007) In vivo tracking of stem cells in brain and spinal cord injury. Prog Brain Res 161:367–383PubMedCrossRef Sykova E, Jendelova P (2007) In vivo tracking of stem cells in brain and spinal cord injury. Prog Brain Res 161:367–383PubMedCrossRef
36.
go back to reference Zhu J, Zhou L, XingWu F (2006) Tracking neural stem cells in patients with brain trauma. N Engl J Med 355:2376–2378PubMedCrossRef Zhu J, Zhou L, XingWu F (2006) Tracking neural stem cells in patients with brain trauma. N Engl J Med 355:2376–2378PubMedCrossRef
37.
go back to reference Toso C, Vallee JP, Morel P et al (2008) Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. Am J Transplant 8:701–706PubMedCrossRef Toso C, Vallee JP, Morel P et al (2008) Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. Am J Transplant 8:701–706PubMedCrossRef
38.
go back to reference Aime S, Barge A, Cabella C et al (2004) Targeting cells with MR imaging probes based on paramagnetic Gd(III) chelates. Curr Pharm Biotechnol 5:509–518PubMedCrossRef Aime S, Barge A, Cabella C et al (2004) Targeting cells with MR imaging probes based on paramagnetic Gd(III) chelates. Curr Pharm Biotechnol 5:509–518PubMedCrossRef
39.
go back to reference Anderson SA, Lee KK, Frank JA (2006) Gadolinium-fullerenol as a paramagnetic contrast agent for cellular imaging. Invest Radiol 41:332–338PubMedCrossRef Anderson SA, Lee KK, Frank JA (2006) Gadolinium-fullerenol as a paramagnetic contrast agent for cellular imaging. Invest Radiol 41:332–338PubMedCrossRef
40.
go back to reference Brekke C, Morgan SC, Lowe AS et al (2007) The in vitro effects of a bimodal contrast agent on cellular functions and relaxometry. NMR Biomed 20:77–89PubMedCrossRef Brekke C, Morgan SC, Lowe AS et al (2007) The in vitro effects of a bimodal contrast agent on cellular functions and relaxometry. NMR Biomed 20:77–89PubMedCrossRef
41.
go back to reference Choi JH, Nguyen FT, Barone PW et al (2007) Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. Nano Lett 7:861–867PubMedCrossRef Choi JH, Nguyen FT, Barone PW et al (2007) Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. Nano Lett 7:861–867PubMedCrossRef
42.
go back to reference Du L, Chen J, Qi Y et al (2007) Preparation and biomedical application of a non-polymer coated superparamagnetic nanoparticle. Int J Nanomedicine 2:805–812PubMedCrossRef Du L, Chen J, Qi Y et al (2007) Preparation and biomedical application of a non-polymer coated superparamagnetic nanoparticle. Int J Nanomedicine 2:805–812PubMedCrossRef
43.
go back to reference Henning TD, Saborowski O, Golovko D et al (2007) Cell labeling with the positive MR contrast agent gadofluorine M. Eur Radiol 17:1226–1234PubMedCrossRef Henning TD, Saborowski O, Golovko D et al (2007) Cell labeling with the positive MR contrast agent gadofluorine M. Eur Radiol 17:1226–1234PubMedCrossRef
44.
go back to reference Hsiao JK, Tai MF, Chu HH et al (2007) Magnetic nanoparticle labeling of mesenchymal stem cells without transfection agent: cellular behavior and capability of detection with clinical 1.5 T magnetic resonance at the single cell level. Magn Reson Med 58:717–724PubMedCrossRef Hsiao JK, Tai MF, Chu HH et al (2007) Magnetic nanoparticle labeling of mesenchymal stem cells without transfection agent: cellular behavior and capability of detection with clinical 1.5 T magnetic resonance at the single cell level. Magn Reson Med 58:717–724PubMedCrossRef
45.
go back to reference Shen T, Weissleder R, Papisov M et al (1993) Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn Reson Med 29:599–604PubMedCrossRef Shen T, Weissleder R, Papisov M et al (1993) Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn Reson Med 29:599–604PubMedCrossRef
46.
go back to reference Strijkers GJ, Mulder WJ, van Tilborg GA et al (2007) MRI contrast agents: current status and future perspectives. Anticancer Agents Med Chem 7:291–305PubMedCrossRef Strijkers GJ, Mulder WJ, van Tilborg GA et al (2007) MRI contrast agents: current status and future perspectives. Anticancer Agents Med Chem 7:291–305PubMedCrossRef
47.
go back to reference Tromsdorf UI, Bigall NC, Kaul MG et al (2007) Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. Nano Lett 7:2422–2427PubMedCrossRef Tromsdorf UI, Bigall NC, Kaul MG et al (2007) Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. Nano Lett 7:2422–2427PubMedCrossRef
48.
go back to reference Kim D, Hong KS, Song J (2007) The present status of cell tracking methods in animal models using magnetic resonance imaging technology. Mol Cells 23:132–137PubMed Kim D, Hong KS, Song J (2007) The present status of cell tracking methods in animal models using magnetic resonance imaging technology. Mol Cells 23:132–137PubMed
49.
go back to reference Arbab AS, Yocum GT, Rad AM et al (2005) Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed 18:553–559PubMedCrossRef Arbab AS, Yocum GT, Rad AM et al (2005) Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed 18:553–559PubMedCrossRef
50.
go back to reference Bulte JW, Kostura L, Mackay A et al (2005) Feridex-labeled mesenchymal stem cells: cellular differentiation and MR assessment in a canine myocardial infarction model. Acad Radiol 12(Suppl 1):S2–S6PubMedCrossRef Bulte JW, Kostura L, Mackay A et al (2005) Feridex-labeled mesenchymal stem cells: cellular differentiation and MR assessment in a canine myocardial infarction model. Acad Radiol 12(Suppl 1):S2–S6PubMedCrossRef
51.
go back to reference Kostura L, Kraitchman DL, Mackay AM et al (2004) Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed 17:513–517PubMedCrossRef Kostura L, Kraitchman DL, Mackay AM et al (2004) Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed 17:513–517PubMedCrossRef
52.
go back to reference Amsalem Y, Mardor Y, Feinberg MS et al (2007) Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation 116:I38–I45PubMedCrossRef Amsalem Y, Mardor Y, Feinberg MS et al (2007) Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation 116:I38–I45PubMedCrossRef
53.
go back to reference Farrell E, Wielopolski P, Pavljasevic P et al (2008) Effects of iron oxide incorporation for long term cell tracking on MSC differentiation in vitro and in vivo. Biochem Biophys Res Commun 369:1076–1081PubMedCrossRef Farrell E, Wielopolski P, Pavljasevic P et al (2008) Effects of iron oxide incorporation for long term cell tracking on MSC differentiation in vitro and in vivo. Biochem Biophys Res Commun 369:1076–1081PubMedCrossRef
54.
go back to reference Kustermann E, Himmelreich U, Kandal K et al (2008) Efficient stem cell labeling for MRI studies. Contrast Media Mol Imaging 3:27–37PubMedCrossRef Kustermann E, Himmelreich U, Kandal K et al (2008) Efficient stem cell labeling for MRI studies. Contrast Media Mol Imaging 3:27–37PubMedCrossRef
55.
go back to reference Neri M, Maderna C, Cavazzin C et al (2008) Efficient in vitro labeling of human neural precursor cells with superparamagnetic iron oxide particles: relevance for in vivo cell tracking. Stem Cells 26:505–516PubMedCrossRef Neri M, Maderna C, Cavazzin C et al (2008) Efficient in vitro labeling of human neural precursor cells with superparamagnetic iron oxide particles: relevance for in vivo cell tracking. Stem Cells 26:505–516PubMedCrossRef
56.
go back to reference Oude Engberink RD, van der Pol SM, Dopp EA et al (2007) Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function. Radiology 243:467–474PubMedCrossRef Oude Engberink RD, van der Pol SM, Dopp EA et al (2007) Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function. Radiology 243:467–474PubMedCrossRef
57.
go back to reference Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331PubMedCrossRef Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331PubMedCrossRef
58.
go back to reference Heymer A, Haddad D, Weber M et al (2008) Iron oxide labelling of human mesenchymal stem cells in collagen hydrogels for articular cartilage repair. Biomaterials 29:1473–1483PubMedCrossRef Heymer A, Haddad D, Weber M et al (2008) Iron oxide labelling of human mesenchymal stem cells in collagen hydrogels for articular cartilage repair. Biomaterials 29:1473–1483PubMedCrossRef
59.
go back to reference Stroh A, Zimmer C, Werner N et al (2006) Tracking of systemically administered mononuclear cells in the ischemic brain by high-field magnetic resonance imaging. Neuroimage 33:886–897PubMedCrossRef Stroh A, Zimmer C, Werner N et al (2006) Tracking of systemically administered mononuclear cells in the ischemic brain by high-field magnetic resonance imaging. Neuroimage 33:886–897PubMedCrossRef
60.
go back to reference Taupitz M, Wagner S, Schnorr J et al (2004) Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Invest Radiol 39:394–405PubMedCrossRef Taupitz M, Wagner S, Schnorr J et al (2004) Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Invest Radiol 39:394–405PubMedCrossRef
61.
go back to reference Shen F, Li AA, Gong YK et al (2005) Encapsulation of recombinant cells with a novel magnetized alginate for magnetic resonance imaging. Hum Gene Ther 16:971–984PubMedCrossRef Shen F, Li AA, Gong YK et al (2005) Encapsulation of recombinant cells with a novel magnetized alginate for magnetic resonance imaging. Hum Gene Ther 16:971–984PubMedCrossRef
62.
go back to reference Munnier E, Cohen-Jonathan S, Linassier C et al (2008) Novel method of doxorubicin-SPION reversible association for magnetic drug targeting. Int J Pharm 363:170–176PubMedCrossRef Munnier E, Cohen-Jonathan S, Linassier C et al (2008) Novel method of doxorubicin-SPION reversible association for magnetic drug targeting. Int J Pharm 363:170–176PubMedCrossRef
63.
go back to reference Weissleder R, Cheng HC, Bogdanova A et al (1997) Magnetically labeled cells can be detected by MR imaging. J Magn Reson Imaging 7:258–263PubMedCrossRef Weissleder R, Cheng HC, Bogdanova A et al (1997) Magnetically labeled cells can be detected by MR imaging. J Magn Reson Imaging 7:258–263PubMedCrossRef
64.
go back to reference Kircher MF, Allport JR, Graves EE et al (2003) In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res 63:6838–6846PubMed Kircher MF, Allport JR, Graves EE et al (2003) In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res 63:6838–6846PubMed
65.
go back to reference Song M, Moon WK, Kim Y et al (2007) Labeling efficacy of superparamagnetic iron oxide nanoparticles to human neural stem cells: comparison of ferumoxides, monocrystalline iron oxide, cross-linked iron oxide (CLIO)-NH2 and tat-CLIO. Korean J Radiol 8:365–371PubMedCrossRef Song M, Moon WK, Kim Y et al (2007) Labeling efficacy of superparamagnetic iron oxide nanoparticles to human neural stem cells: comparison of ferumoxides, monocrystalline iron oxide, cross-linked iron oxide (CLIO)-NH2 and tat-CLIO. Korean J Radiol 8:365–371PubMedCrossRef
66.
go back to reference Koch AM, Reynolds F, Kircher MF et al (2003) Uptake and metabolism of a dual fluorochrome Tat-nanoparticle in HeLa cells. Bioconjug Chem 14:1115–1121PubMedCrossRef Koch AM, Reynolds F, Kircher MF et al (2003) Uptake and metabolism of a dual fluorochrome Tat-nanoparticle in HeLa cells. Bioconjug Chem 14:1115–1121PubMedCrossRef
67.
go back to reference Corot C, Robert P, Idee JM et al (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504PubMedCrossRef Corot C, Robert P, Idee JM et al (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504PubMedCrossRef
68.
go back to reference Jung CW (1995) Surface properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13:675–691PubMedCrossRef Jung CW (1995) Surface properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13:675–691PubMedCrossRef
69.
go back to reference Jung CW, Jacobs P (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13:661–674PubMedCrossRef Jung CW, Jacobs P (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13:661–674PubMedCrossRef
70.
go back to reference Bulte JW, Kraitchman DL, Mackay AM et al (2004) Chondrogenic differentiation of mesenchymal stem cells is inhibited after magnetic labeling with ferumoxides. Blood 104:3410–3412; author reply 3412–3413PubMedCrossRef Bulte JW, Kraitchman DL, Mackay AM et al (2004) Chondrogenic differentiation of mesenchymal stem cells is inhibited after magnetic labeling with ferumoxides. Blood 104:3410–3412; author reply 3412–3413PubMedCrossRef
71.
go back to reference Siglienti I, Bendszus M, Kleinschnitz C et al (2006) Cytokine profile of iron-laden macrophages: implications for cellular magnetic resonance imaging. J Neuroimmunol 173:166–173PubMedCrossRef Siglienti I, Bendszus M, Kleinschnitz C et al (2006) Cytokine profile of iron-laden macrophages: implications for cellular magnetic resonance imaging. J Neuroimmunol 173:166–173PubMedCrossRef
72.
go back to reference Bulte JW, Hoekstra Y, Kamman RL et al (1992) Specific MR imaging of human lymphocytes by monoclonal antibody-guided dextran-magnetite particles. Magn Reson Med 25:148–157PubMedCrossRef Bulte JW, Hoekstra Y, Kamman RL et al (1992) Specific MR imaging of human lymphocytes by monoclonal antibody-guided dextran-magnetite particles. Magn Reson Med 25:148–157PubMedCrossRef
73.
go back to reference Lisy MR, Hartung A, Lang C et al (2007) Fluorescent bacterial magnetic nanoparticles as bimodal contrast agents. Invest Radiol 42:235–241PubMedCrossRef Lisy MR, Hartung A, Lang C et al (2007) Fluorescent bacterial magnetic nanoparticles as bimodal contrast agents. Invest Radiol 42:235–241PubMedCrossRef
74.
go back to reference Veiseh O, Sun C, Gunn J et al (2005) Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett 5:1003–1008PubMedCrossRef Veiseh O, Sun C, Gunn J et al (2005) Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett 5:1003–1008PubMedCrossRef
75.
go back to reference Tai JH, Foster P, Rosales A et al (2006) Imaging islets labeled with magnetic nanoparticles at 1.5 Tesla. Diabetes 55:2931–2938PubMedCrossRef Tai JH, Foster P, Rosales A et al (2006) Imaging islets labeled with magnetic nanoparticles at 1.5 Tesla. Diabetes 55:2931–2938PubMedCrossRef
76.
go back to reference Groman EV, Bouchard JC, Reinhardt CP et al (2007) Ultrasmall mixed ferrite colloids as multidimensional magnetic resonance imaging, cell labeling, and cell sorting agents. Bioconjug Chem 18:1763–1771PubMedCrossRef Groman EV, Bouchard JC, Reinhardt CP et al (2007) Ultrasmall mixed ferrite colloids as multidimensional magnetic resonance imaging, cell labeling, and cell sorting agents. Bioconjug Chem 18:1763–1771PubMedCrossRef
77.
go back to reference Terrovitis JV, Bulte JW, Sarvananthan S et al (2006) Magnetic resonance imaging of ferumoxide-labeled mesenchymal stem cells seeded on collagen scaffolds-relevance to tissue engineering. Tissue Eng 12:2765–2775PubMedCrossRef Terrovitis JV, Bulte JW, Sarvananthan S et al (2006) Magnetic resonance imaging of ferumoxide-labeled mesenchymal stem cells seeded on collagen scaffolds-relevance to tissue engineering. Tissue Eng 12:2765–2775PubMedCrossRef
78.
go back to reference Oliver M, Ahmad A, Kamaly N et al (2006) MAGfect: a novel liposome formulation for MRI labelling and visualization of cells. Org Biomol Chem 4:3489–3497PubMedCrossRef Oliver M, Ahmad A, Kamaly N et al (2006) MAGfect: a novel liposome formulation for MRI labelling and visualization of cells. Org Biomol Chem 4:3489–3497PubMedCrossRef
79.
go back to reference Kamaly N, Kalber T, Ahmad A et al (2008) Bimodal paramagnetic and fluorescent liposomes for cellular and tumor magnetic resonance imaging. Bioconjug Chem 19:118–129PubMedCrossRef Kamaly N, Kalber T, Ahmad A et al (2008) Bimodal paramagnetic and fluorescent liposomes for cellular and tumor magnetic resonance imaging. Bioconjug Chem 19:118–129PubMedCrossRef
80.
go back to reference Krishnan AS, Neves AA, de Backer MM et al (2008) Detection of cell death in tumors by using MR imaging and a gadolinium-based targeted contrast agent. Radiology 246:854–862PubMedCrossRef Krishnan AS, Neves AA, de Backer MM et al (2008) Detection of cell death in tumors by using MR imaging and a gadolinium-based targeted contrast agent. Radiology 246:854–862PubMedCrossRef
81.
go back to reference Cohen B, Ziv K, Plaks V et al (2007) MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat Med 13:498–503PubMedCrossRef Cohen B, Ziv K, Plaks V et al (2007) MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat Med 13:498–503PubMedCrossRef
82.
go back to reference Kayyem JF, Kumar RM, Fraser SE et al (1995) Receptor-targeted co-transport of DNA and magnetic resonance contrast agents. Chem Biol 2:615–620PubMedCrossRef Kayyem JF, Kumar RM, Fraser SE et al (1995) Receptor-targeted co-transport of DNA and magnetic resonance contrast agents. Chem Biol 2:615–620PubMedCrossRef
83.
go back to reference Zurkiya O, Chan AW, Hu X (2008) MagA is sufficient for producing magnetic nanoparticles in mammalian cells, making it an MRI reporter. Magn Reson Med 59:1225–1231PubMedCrossRef Zurkiya O, Chan AW, Hu X (2008) MagA is sufficient for producing magnetic nanoparticles in mammalian cells, making it an MRI reporter. Magn Reson Med 59:1225–1231PubMedCrossRef
84.
go back to reference Gilad AA, Winnard PT Jr, van Zijl PC et al (2007) Developing MR reporter genes: promises and pitfalls. NMR Biomed 20:275–290PubMedCrossRef Gilad AA, Winnard PT Jr, van Zijl PC et al (2007) Developing MR reporter genes: promises and pitfalls. NMR Biomed 20:275–290PubMedCrossRef
85.
go back to reference Weissleder R, Moore A, Mahmood U et al (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6:351–355PubMedCrossRef Weissleder R, Moore A, Mahmood U et al (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6:351–355PubMedCrossRef
86.
go back to reference Aoki I, Takahashi Y, Chuang KH et al (2006) Cell labeling for magnetic resonance imaging with the T1 agent manganese chloride. NMR Biomed 19:50–59PubMedCrossRef Aoki I, Takahashi Y, Chuang KH et al (2006) Cell labeling for magnetic resonance imaging with the T1 agent manganese chloride. NMR Biomed 19:50–59PubMedCrossRef
87.
go back to reference Sotak CH, Sharer K, Koretsky AP (2008) Manganese cell labeling of murine hepatocytes using manganese(III)-transferrin. Contrast Media Mol Imaging 3:95–105PubMedCrossRef Sotak CH, Sharer K, Koretsky AP (2008) Manganese cell labeling of murine hepatocytes using manganese(III)-transferrin. Contrast Media Mol Imaging 3:95–105PubMedCrossRef
88.
go back to reference Janjic JM, Srinivas M, Kadayakkara DK et al (2008) Self-delivering nanoemulsions for dual fluorine-19 MRI and fluorescence detection. J Am Chem Soc 130:2832–2841PubMedCrossRef Janjic JM, Srinivas M, Kadayakkara DK et al (2008) Self-delivering nanoemulsions for dual fluorine-19 MRI and fluorescence detection. J Am Chem Soc 130:2832–2841PubMedCrossRef
89.
go back to reference Partlow KC, Chen J, Brant JA et al (2007) 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J 21:1647–1654PubMedCrossRef Partlow KC, Chen J, Brant JA et al (2007) 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J 21:1647–1654PubMedCrossRef
90.
go back to reference Srinivas M, Morel PA, Ernst LA et al (2007) Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magn Reson Med 58:725–734PubMedCrossRef Srinivas M, Morel PA, Ernst LA et al (2007) Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magn Reson Med 58:725–734PubMedCrossRef
91.
go back to reference Aime S, Carrera C, Delli Castelli D et al (2005) Tunable imaging of cells labeled with MRI-PARACEST agents. Angew Chem Int Ed Engl 44:1813–1815PubMedCrossRef Aime S, Carrera C, Delli Castelli D et al (2005) Tunable imaging of cells labeled with MRI-PARACEST agents. Angew Chem Int Ed Engl 44:1813–1815PubMedCrossRef
92.
go back to reference Gilad AA, van Laarhoven HW, McMahon MT et al (2009) Feasibility of concurrent dual contrast enhancement using CEST contrast agents and superparamagnetic iron oxide particles. Magn Reson Med 61:970–974PubMedCrossRef Gilad AA, van Laarhoven HW, McMahon MT et al (2009) Feasibility of concurrent dual contrast enhancement using CEST contrast agents and superparamagnetic iron oxide particles. Magn Reson Med 61:970–974PubMedCrossRef
93.
go back to reference Terreno E, Delli Castelli D, Cabella C et al (2008) Paramagnetic liposomes as innovative contrast agents for magnetic resonance (MR) molecular imaging applications. Chem Biodivers 5:1901–1912PubMedCrossRef Terreno E, Delli Castelli D, Cabella C et al (2008) Paramagnetic liposomes as innovative contrast agents for magnetic resonance (MR) molecular imaging applications. Chem Biodivers 5:1901–1912PubMedCrossRef
94.
go back to reference Li AX, Wojciechowski F, Suchy M et al (2008) A sensitive PARACEST contrast agent for temperature MRI: Eu3+-DOTAM-glycine (Gly)-phenylalanine (Phe). Magn Reson Med 59:374–381PubMedCrossRef Li AX, Wojciechowski F, Suchy M et al (2008) A sensitive PARACEST contrast agent for temperature MRI: Eu3+-DOTAM-glycine (Gly)-phenylalanine (Phe). Magn Reson Med 59:374–381PubMedCrossRef
95.
go back to reference Pikkemaat JA, Wegh RT, Lamerichs R et al (2007) Dendritic PARACEST contrast agents for magnetic resonance imaging. Contrast Media Mol Imaging 2:229–239PubMedCrossRef Pikkemaat JA, Wegh RT, Lamerichs R et al (2007) Dendritic PARACEST contrast agents for magnetic resonance imaging. Contrast Media Mol Imaging 2:229–239PubMedCrossRef
96.
go back to reference Yoo B, Raam MS, Rosenblum RM et al (2007) Enzyme-responsive PARACEST MRI contrast agents: a new biomedical imaging approach for studies of the proteasome. Contrast Media Mol Imaging 2:189–198PubMedCrossRef Yoo B, Raam MS, Rosenblum RM et al (2007) Enzyme-responsive PARACEST MRI contrast agents: a new biomedical imaging approach for studies of the proteasome. Contrast Media Mol Imaging 2:189–198PubMedCrossRef
97.
go back to reference Golman K, Petersson JS (2006) Metabolic imaging and other applications of hyperpolarized 13C1. Acad Radiol 13:932–942PubMedCrossRef Golman K, Petersson JS (2006) Metabolic imaging and other applications of hyperpolarized 13C1. Acad Radiol 13:932–942PubMedCrossRef
98.
go back to reference Zhao JM, Har-El YE, McMahon MT et al (2008) Size-induced enhancement of chemical exchange saturation transfer (CEST) contrast in liposomes. J Am Chem Soc 130:5178–5184PubMedCrossRef Zhao JM, Har-El YE, McMahon MT et al (2008) Size-induced enhancement of chemical exchange saturation transfer (CEST) contrast in liposomes. J Am Chem Soc 130:5178–5184PubMedCrossRef
99.
go back to reference Terreno E, Delli Castelli D, Violante E et al (2009) Osmotically shrunken LIPOCEST agents: an innovative class of magnetic resonance imaging contrast media based on chemical exchange saturation transfer. Chemistry 15:1440–1448PubMedCrossRef Terreno E, Delli Castelli D, Violante E et al (2009) Osmotically shrunken LIPOCEST agents: an innovative class of magnetic resonance imaging contrast media based on chemical exchange saturation transfer. Chemistry 15:1440–1448PubMedCrossRef
100.
go back to reference Day SE, Kettunen MI, Gallagher FA et al (2007) Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med 13:1382–1387PubMedCrossRef Day SE, Kettunen MI, Gallagher FA et al (2007) Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med 13:1382–1387PubMedCrossRef
101.
go back to reference Macdonald JM, Schmidlin O, James TL (2002) In vivo monitoring of hepatic glutathione in anesthetized rats by 13C NMR. Magn Reson Med 48:430–439PubMedCrossRef Macdonald JM, Schmidlin O, James TL (2002) In vivo monitoring of hepatic glutathione in anesthetized rats by 13C NMR. Magn Reson Med 48:430–439PubMedCrossRef
102.
go back to reference Johansson E, Olsson LE, Mansson S et al (2004) Perfusion assessment with bolus differentiation: a technique applicable to hyperpolarized tracers. Magn Reson Med 52:1043–1051PubMedCrossRef Johansson E, Olsson LE, Mansson S et al (2004) Perfusion assessment with bolus differentiation: a technique applicable to hyperpolarized tracers. Magn Reson Med 52:1043–1051PubMedCrossRef
103.
go back to reference Gallagher FA, Kettunen MI, Day SE et al (2008) Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453:940–943PubMedCrossRef Gallagher FA, Kettunen MI, Day SE et al (2008) Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453:940–943PubMedCrossRef
104.
105.
106.
go back to reference Samaj J, Baluska F, Voigt B et al (2004) Endocytosis, actin cytoskeleton, and signaling. Plant Physiol 135:1150–1161PubMedCrossRef Samaj J, Baluska F, Voigt B et al (2004) Endocytosis, actin cytoskeleton, and signaling. Plant Physiol 135:1150–1161PubMedCrossRef
107.
go back to reference Arbab AS, Liu W, Frank JA (2006) Cellular magnetic resonance imaging: current status and future prospects. Expert Rev Med Devices 3:427–439PubMedCrossRef Arbab AS, Liu W, Frank JA (2006) Cellular magnetic resonance imaging: current status and future prospects. Expert Rev Med Devices 3:427–439PubMedCrossRef
108.
go back to reference Daldrup-Link HE, Rudelius M, Oostendorp RA et al (2005) Comparison of iron oxide labeling properties of hematopoietic progenitor cells from umbilical cord blood and from peripheral blood for subsequent in vivo tracking in a xenotransplant mouse model XXX. Acad Radiol 12:502–510PubMedCrossRef Daldrup-Link HE, Rudelius M, Oostendorp RA et al (2005) Comparison of iron oxide labeling properties of hematopoietic progenitor cells from umbilical cord blood and from peripheral blood for subsequent in vivo tracking in a xenotransplant mouse model XXX. Acad Radiol 12:502–510PubMedCrossRef
109.
go back to reference Thorek DL, Tsourkas A (2008) Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials 29:3583–3590PubMedCrossRef Thorek DL, Tsourkas A (2008) Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials 29:3583–3590PubMedCrossRef
110.
go back to reference Byk T, Haddada H, Vainchenker W et al (1998) Lipofectamine and related cationic lipids strongly improve adenoviral infection efficiency of primitive human hematopoietic cells. Hum Gene Ther 9:2493–2502PubMedCrossRef Byk T, Haddada H, Vainchenker W et al (1998) Lipofectamine and related cationic lipids strongly improve adenoviral infection efficiency of primitive human hematopoietic cells. Hum Gene Ther 9:2493–2502PubMedCrossRef
111.
go back to reference Liu C, Dalby B, Chen W et al (2008) Transient transfection factors for high-level recombinant protein production in suspension cultured mammalian cells. Mol Biotechnol 39:141–153PubMedCrossRef Liu C, Dalby B, Chen W et al (2008) Transient transfection factors for high-level recombinant protein production in suspension cultured mammalian cells. Mol Biotechnol 39:141–153PubMedCrossRef
112.
go back to reference Walsh M, Tangney M, O’Neill MJ et al (2006) Evaluation of cellular uptake and gene transfer efficiency of pegylated poly-L-lysine compacted DNA: implications for cancer gene therapy. Mol Pharm 3:644–653PubMedCrossRef Walsh M, Tangney M, O’Neill MJ et al (2006) Evaluation of cellular uptake and gene transfer efficiency of pegylated poly-L-lysine compacted DNA: implications for cancer gene therapy. Mol Pharm 3:644–653PubMedCrossRef
113.
go back to reference Kim TW, Chung H, Kwon IC et al (2005) Polycations enhance emulsion-mediated in vitro and in vivo transfection. Int J Pharm 295:35–45PubMedCrossRef Kim TW, Chung H, Kwon IC et al (2005) Polycations enhance emulsion-mediated in vitro and in vivo transfection. Int J Pharm 295:35–45PubMedCrossRef
114.
go back to reference Lewin M, Carlesso N, Tung CH et al (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414PubMedCrossRef Lewin M, Carlesso N, Tung CH et al (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414PubMedCrossRef
115.
go back to reference Walczak P, Kedziorek DA, Gilad AA et al (2005) Instant MR labeling of stem cells using magnetoelectroporation. Magn Reson Med 54:769–774PubMedCrossRef Walczak P, Kedziorek DA, Gilad AA et al (2005) Instant MR labeling of stem cells using magnetoelectroporation. Magn Reson Med 54:769–774PubMedCrossRef
116.
go back to reference Terreno E, Geninatti Crich S, Belfiore S et al (2006) Effect of the intracellular localization of a Gd-based imaging probe on the relaxation enhancement of water protons. Magn Reson Med 55:491–497PubMedCrossRef Terreno E, Geninatti Crich S, Belfiore S et al (2006) Effect of the intracellular localization of a Gd-based imaging probe on the relaxation enhancement of water protons. Magn Reson Med 55:491–497PubMedCrossRef
117.
go back to reference Odani N, Ito K, Nakamura H (2008) Electroporation as an efficient method of gene transfer. Dev Growth Differ 50(6):443–448 Odani N, Ito K, Nakamura H (2008) Electroporation as an efficient method of gene transfer. Dev Growth Differ 50(6):443–448
118.
go back to reference Siemen H, Nix M, Endl E et al (2005) Nucleofection of human embryonic stem cells. Stem Cells Dev 14:378–383PubMedCrossRef Siemen H, Nix M, Endl E et al (2005) Nucleofection of human embryonic stem cells. Stem Cells Dev 14:378–383PubMedCrossRef
119.
go back to reference Jiang Q, Zhang ZG, Ding GL et al (2005) Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI. Neuroimage 28:698–707PubMedCrossRef Jiang Q, Zhang ZG, Ding GL et al (2005) Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI. Neuroimage 28:698–707PubMedCrossRef
120.
go back to reference Zhang ZG, Jiang Q, Zhang R et al (2003) Magnetic resonance imaging and neurosphere therapy of stroke in rat. Ann Neurol 53:259–263PubMedCrossRef Zhang ZG, Jiang Q, Zhang R et al (2003) Magnetic resonance imaging and neurosphere therapy of stroke in rat. Ann Neurol 53:259–263PubMedCrossRef
121.
go back to reference Wang S, Zhang C, Zhang L et al (2008) The relative immunogenicity of DNA vaccines delivered by the intramuscular needle injection, electroporation and gene gun methods. Vaccine 26:2100–2110PubMedCrossRef Wang S, Zhang C, Zhang L et al (2008) The relative immunogenicity of DNA vaccines delivered by the intramuscular needle injection, electroporation and gene gun methods. Vaccine 26:2100–2110PubMedCrossRef
122.
go back to reference Kang HW, Josephson L, Petrovsky A et al (2002) Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjug Chem 13:122–127PubMedCrossRef Kang HW, Josephson L, Petrovsky A et al (2002) Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjug Chem 13:122–127PubMedCrossRef
123.
go back to reference Paschkunova-Martic I, Kremser C, Mistlberger K et al (2005) Design, synthesis, physical and chemical characterisation, and biological interactions of lectin-targeted latex nanoparticles bearing Gd-DTPA chelates: an exploration of magnetic resonance molecular imaging (MRMI). Histochem Cell Biol 123:283–301PubMedCrossRef Paschkunova-Martic I, Kremser C, Mistlberger K et al (2005) Design, synthesis, physical and chemical characterisation, and biological interactions of lectin-targeted latex nanoparticles bearing Gd-DTPA chelates: an exploration of magnetic resonance molecular imaging (MRMI). Histochem Cell Biol 123:283–301PubMedCrossRef
124.
go back to reference Schafer R, Wiskirchen J, Guo K et al (2007) Aptamer-based isolation and subsequent imaging of mesenchymal stem cells in ischemic myocard by magnetic resonance imaging. Rofo 179:1009–1015PubMed Schafer R, Wiskirchen J, Guo K et al (2007) Aptamer-based isolation and subsequent imaging of mesenchymal stem cells in ischemic myocard by magnetic resonance imaging. Rofo 179:1009–1015PubMed
125.
go back to reference Kim HC, Han BH, Lee CH et al (2007) Registration of sheep brain MR images for cell tracking using ferrite-composite micro-beads as markers. Conf Proc IEEE Eng Med Biol Soc 2007:6384–6387PubMed Kim HC, Han BH, Lee CH et al (2007) Registration of sheep brain MR images for cell tracking using ferrite-composite micro-beads as markers. Conf Proc IEEE Eng Med Biol Soc 2007:6384–6387PubMed
126.
go back to reference Anderson SA, Glod J, Arbab AS et al (2005) Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood 105:420–425PubMedCrossRef Anderson SA, Glod J, Arbab AS et al (2005) Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood 105:420–425PubMedCrossRef
127.
go back to reference Pirko I, Johnson A, Ciric B et al (2004) In vivo magnetic resonance imaging of immune cells in the central nervous system with superparamagnetic antibodies. FASEB J 18:179–182PubMed Pirko I, Johnson A, Ciric B et al (2004) In vivo magnetic resonance imaging of immune cells in the central nervous system with superparamagnetic antibodies. FASEB J 18:179–182PubMed
128.
go back to reference Rogers WJ, Meyer CH, Kramer CM (2006) Technology insight: in vivo cell tracking by use of MRI. Nat Clin Pract Cardiovasc Med 3:554–562PubMedCrossRef Rogers WJ, Meyer CH, Kramer CM (2006) Technology insight: in vivo cell tracking by use of MRI. Nat Clin Pract Cardiovasc Med 3:554–562PubMedCrossRef
129.
go back to reference Ahrens ET, Flores R, Xu H et al (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23:983–987PubMedCrossRef Ahrens ET, Flores R, Xu H et al (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23:983–987PubMedCrossRef
130.
go back to reference Zong Y, Guo J, Ke T et al (2006) Effect of size and charge on pharmacokinetics and in vivo MRI contrast enhancement of biodegradable polydisulfide Gd(III) complexes. J Control Release 112:350–356PubMedCrossRef Zong Y, Guo J, Ke T et al (2006) Effect of size and charge on pharmacokinetics and in vivo MRI contrast enhancement of biodegradable polydisulfide Gd(III) complexes. J Control Release 112:350–356PubMedCrossRef
131.
go back to reference Bulte JW (2006) Intracellular endosomal magnetic labeling of cells. Methods Mol Med 124:419–439PubMed Bulte JW (2006) Intracellular endosomal magnetic labeling of cells. Methods Mol Med 124:419–439PubMed
132.
go back to reference Jendelova P, Herynek V, DeCroos J et al (2003) Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn Reson Med 50:767–776PubMedCrossRef Jendelova P, Herynek V, DeCroos J et al (2003) Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn Reson Med 50:767–776PubMedCrossRef
133.
go back to reference Moore A, Sun PZ, Cory D et al (2002) MRI of insulitis in autoimmune diabetes. Magn Reson Med 47:751–758PubMedCrossRef Moore A, Sun PZ, Cory D et al (2002) MRI of insulitis in autoimmune diabetes. Magn Reson Med 47:751–758PubMedCrossRef
134.
go back to reference Parmley RT, Spicer SS, Alvarez CJ (1978) Ultrastructural localization of nonheme celluar iron with ferrocyanide. J Histochem Cytochem 26:729–741PubMed Parmley RT, Spicer SS, Alvarez CJ (1978) Ultrastructural localization of nonheme celluar iron with ferrocyanide. J Histochem Cytochem 26:729–741PubMed
135.
go back to reference Arab K, Steghens JP (2004) Plasma lipid hydroperoxides measurement by an automated xylenol orange method. Anal Biochem 325:158–163PubMedCrossRef Arab K, Steghens JP (2004) Plasma lipid hydroperoxides measurement by an automated xylenol orange method. Anal Biochem 325:158–163PubMedCrossRef
136.
go back to reference Beer AJ, Holzapfel K, Neudorfer J et al (2008) Visualization of antigen-specific human cytotoxic T lymphocytes labeled with superparamagnetic iron-oxide particles. Eur Radiol 18:1087–1095 Beer AJ, Holzapfel K, Neudorfer J et al (2008) Visualization of antigen-specific human cytotoxic T lymphocytes labeled with superparamagnetic iron-oxide particles. Eur Radiol 18:1087–1095
137.
go back to reference Ahrens ET, Feili-Hariri M, Xu H et al (2003) Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging. Magn Reson Med 49:1006–1013PubMedCrossRef Ahrens ET, Feili-Hariri M, Xu H et al (2003) Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging. Magn Reson Med 49:1006–1013PubMedCrossRef
138.
go back to reference Berd D (2003) Contribution of dead cells to the immunogenicity of an autologous, hapten-modified melanoma vaccine. Vaccine 21:795–797PubMedCrossRef Berd D (2003) Contribution of dead cells to the immunogenicity of an autologous, hapten-modified melanoma vaccine. Vaccine 21:795–797PubMedCrossRef
139.
go back to reference Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11:127–152PubMedCrossRef Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11:127–152PubMedCrossRef
140.
go back to reference Perfetto SP, Chattopadhyay PK, Lamoreaux L et al (2006) Amine reactive dyes: an effective tool to discriminate live and dead cells in polychromatic flow cytometry. J Immunol Methods 313:199–208PubMedCrossRef Perfetto SP, Chattopadhyay PK, Lamoreaux L et al (2006) Amine reactive dyes: an effective tool to discriminate live and dead cells in polychromatic flow cytometry. J Immunol Methods 313:199–208PubMedCrossRef
141.
go back to reference Herzog E, Casey A, Lyng FM et al (2007) A new approach to the toxicity testing of carbon-based nanomaterials—the clonogenic assay. Toxicol Lett 174:49–60PubMedCrossRef Herzog E, Casey A, Lyng FM et al (2007) A new approach to the toxicity testing of carbon-based nanomaterials—the clonogenic assay. Toxicol Lett 174:49–60PubMedCrossRef
142.
go back to reference Nakayama GR, Caton MC, Nova MP et al (1997) Assessment of the Alamar Blue assay for cellular growth and viability in vitro. J Immunol Methods 204:205–208PubMedCrossRef Nakayama GR, Caton MC, Nova MP et al (1997) Assessment of the Alamar Blue assay for cellular growth and viability in vitro. J Immunol Methods 204:205–208PubMedCrossRef
144.
go back to reference Yan L, Han Y, He Y et al (2007) Cell tracing techniques in stem cell transplantation. Stem Cell Rev 3:265–269PubMedCrossRef Yan L, Han Y, He Y et al (2007) Cell tracing techniques in stem cell transplantation. Stem Cell Rev 3:265–269PubMedCrossRef
145.
go back to reference Callard R, Hodgkin P (2007) Modeling T- and B-cell growth and differentiation. Immunol Rev 216:119–129PubMed Callard R, Hodgkin P (2007) Modeling T- and B-cell growth and differentiation. Immunol Rev 216:119–129PubMed
146.
go back to reference Wilhelm C, Bal L, Smirnov P et al (2007) Magnetic control of vascular network formation with magnetically labeled endothelial progenitor cells. Biomaterials 28:3797–3806PubMedCrossRef Wilhelm C, Bal L, Smirnov P et al (2007) Magnetic control of vascular network formation with magnetically labeled endothelial progenitor cells. Biomaterials 28:3797–3806PubMedCrossRef
147.
go back to reference Yamamoto K, Takahashi T, Asahara T et al (2003) Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. J Appl Physiol 95:2081–2088PubMed Yamamoto K, Takahashi T, Asahara T et al (2003) Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. J Appl Physiol 95:2081–2088PubMed
148.
go back to reference Kleinman HK, Jacob K (2001) Invasion assays. Curr Protoc Cell Biol Chap 12:Unit 12.2 Kleinman HK, Jacob K (2001) Invasion assays. Curr Protoc Cell Biol Chap 12:Unit 12.2
149.
go back to reference Magnitsky S, Walton RM, Wolfe JH et al (2007) Magnetic resonance imaging as a tool for monitoring stem cell migration. Neurodegener Dis 4:314–321PubMedCrossRef Magnitsky S, Walton RM, Wolfe JH et al (2007) Magnetic resonance imaging as a tool for monitoring stem cell migration. Neurodegener Dis 4:314–321PubMedCrossRef
150.
go back to reference Raymond KN, Pierre VC (2005) Next generation, high relaxivity gadolinium MRI agents. Bioconjug Chem 16:3–8PubMedCrossRef Raymond KN, Pierre VC (2005) Next generation, high relaxivity gadolinium MRI agents. Bioconjug Chem 16:3–8PubMedCrossRef
151.
go back to reference Biancone L, Crich SG, Cantaluppi V et al (2007) Magnetic resonance imaging of gadolinium-labeled pancreatic islets for experimental transplantation. NMR Biomed 20:40–48PubMedCrossRef Biancone L, Crich SG, Cantaluppi V et al (2007) Magnetic resonance imaging of gadolinium-labeled pancreatic islets for experimental transplantation. NMR Biomed 20:40–48PubMedCrossRef
152.
go back to reference Bos C, Delmas Y, Desmouliere A et al (2004) In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 233:781–789PubMedCrossRef Bos C, Delmas Y, Desmouliere A et al (2004) In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 233:781–789PubMedCrossRef
153.
go back to reference Bulte JW, Zhang S, van Gelderen P et al (1999) Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA 96:15256–15261PubMedCrossRef Bulte JW, Zhang S, van Gelderen P et al (1999) Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA 96:15256–15261PubMedCrossRef
154.
go back to reference Ittrich H, Lange C, Togel F et al (2007) In vivo magnetic resonance imaging of iron oxide-labeled, arterially-injected mesenchymal stem cells in kidneys of rats with acute ischemic kidney injury: detection and monitoring at 3 T. J Magn Reson Imaging 25:1179–1191PubMedCrossRef Ittrich H, Lange C, Togel F et al (2007) In vivo magnetic resonance imaging of iron oxide-labeled, arterially-injected mesenchymal stem cells in kidneys of rats with acute ischemic kidney injury: detection and monitoring at 3 T. J Magn Reson Imaging 25:1179–1191PubMedCrossRef
155.
go back to reference Daldrup-Link HE, Rudelius M, Metz S et al (2004) Cell tracking with gadophrin-2: a bifunctional contrast agent for MR imaging, optical imaging, and fluorescence microscopy. Eur J Nucl Med Mol Imaging 31:1312–1321PubMedCrossRef Daldrup-Link HE, Rudelius M, Metz S et al (2004) Cell tracking with gadophrin-2: a bifunctional contrast agent for MR imaging, optical imaging, and fluorescence microscopy. Eur J Nucl Med Mol Imaging 31:1312–1321PubMedCrossRef
156.
go back to reference Foster-Gareau P, Heyn C, Alejski A et al (2003) Imaging single mammalian cells with a 1.5 T clinical MRI scanner. Magn Reson Med 49:968–971PubMedCrossRef Foster-Gareau P, Heyn C, Alejski A et al (2003) Imaging single mammalian cells with a 1.5 T clinical MRI scanner. Magn Reson Med 49:968–971PubMedCrossRef
157.
go back to reference Hill JM, Dick AJ, Raman VK et al (2003) Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 108:1009–1014PubMedCrossRef Hill JM, Dick AJ, Raman VK et al (2003) Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 108:1009–1014PubMedCrossRef
159.
go back to reference Rad AM, Arbab AS, Iskander AS et al (2007) Quantification of superparamagnetic iron oxide (SPIO)-labeled cells using MRI. J Magn Reson Imaging 26:366–374PubMedCrossRef Rad AM, Arbab AS, Iskander AS et al (2007) Quantification of superparamagnetic iron oxide (SPIO)-labeled cells using MRI. J Magn Reson Imaging 26:366–374PubMedCrossRef
160.
go back to reference Cunningham CH, Arai T, Yang PC et al (2005) Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med 53:999–1005PubMedCrossRef Cunningham CH, Arai T, Yang PC et al (2005) Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med 53:999–1005PubMedCrossRef
161.
go back to reference Mani V, Adler E, Briley-Saebo KC et al (2008) Serial in vivo positive contrast MRI of iron oxide-labeled embryonic stem cell-derived cardiac precursor cells in a mouse model of myocardial infarction. Magn Reson Med 60:73–81PubMedCrossRef Mani V, Adler E, Briley-Saebo KC et al (2008) Serial in vivo positive contrast MRI of iron oxide-labeled embryonic stem cell-derived cardiac precursor cells in a mouse model of myocardial infarction. Magn Reson Med 60:73–81PubMedCrossRef
162.
go back to reference Mani V, Briley-Saebo KC, Itskovich VV et al (2006) Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5 T and 3 T. Magn Reson Med 55:126–135PubMedCrossRef Mani V, Briley-Saebo KC, Itskovich VV et al (2006) Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5 T and 3 T. Magn Reson Med 55:126–135PubMedCrossRef
163.
go back to reference Suzuki Y, Cunningham CH, Noguchi K et al (2008) In vivo serial evaluation of superparamagnetic iron-oxide labeled stem cells by off-resonance positive contrast. Magn Reson Med 60:1269–1275PubMedCrossRef Suzuki Y, Cunningham CH, Noguchi K et al (2008) In vivo serial evaluation of superparamagnetic iron-oxide labeled stem cells by off-resonance positive contrast. Magn Reson Med 60:1269–1275PubMedCrossRef
164.
go back to reference Bowen CV, Zhang X, Saab G et al (2002) Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells. Magn Reson Med 48:52–61PubMedCrossRef Bowen CV, Zhang X, Saab G et al (2002) Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells. Magn Reson Med 48:52–61PubMedCrossRef
165.
go back to reference Dahnke H, Schaeffter T (2005) Limits of detection of SPIO at 3.0 T using T2 relaxometry. Magn Reson Med 53:1202–1206PubMedCrossRef Dahnke H, Schaeffter T (2005) Limits of detection of SPIO at 3.0 T using T2 relaxometry. Magn Reson Med 53:1202–1206PubMedCrossRef
166.
go back to reference Pintaske J, Muller-Bierl B, Schick F (2006) Effect of spatial distribution of magnetic dipoles on Lamor frequency distribution and MR signal decay—a numerical approach under static dephasing conditions. MAGMA 19:46–53PubMedCrossRef Pintaske J, Muller-Bierl B, Schick F (2006) Effect of spatial distribution of magnetic dipoles on Lamor frequency distribution and MR signal decay—a numerical approach under static dephasing conditions. MAGMA 19:46–53PubMedCrossRef
167.
go back to reference Ro YM, Cho ZH (1995) Susceptibility magnetic resonance imaging using spectral decomposition. Magn Reson Med 33:521–528PubMedCrossRef Ro YM, Cho ZH (1995) Susceptibility magnetic resonance imaging using spectral decomposition. Magn Reson Med 33:521–528PubMedCrossRef
168.
169.
go back to reference Farrar CT, Dai G, Novikov M et al (2008) Impact of field strength and iron oxide nanoparticle concentration on the linearity and diagnostic accuracy of off-resonance imaging. NMR Biomed 21:453–463PubMedCrossRef Farrar CT, Dai G, Novikov M et al (2008) Impact of field strength and iron oxide nanoparticle concentration on the linearity and diagnostic accuracy of off-resonance imaging. NMR Biomed 21:453–463PubMedCrossRef
171.
go back to reference Thompson RB, Parsa CJ, van den Bos EJ et al (2004) Video-assisted thoracoscopic transplantation of myoblasts into the heart. Ann Thorac Surg 78:303–307PubMedCrossRef Thompson RB, Parsa CJ, van den Bos EJ et al (2004) Video-assisted thoracoscopic transplantation of myoblasts into the heart. Ann Thorac Surg 78:303–307PubMedCrossRef
172.
go back to reference Arbab AS, Bashaw LA, Miller BR et al (2003) Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. Transplantation 76:1123–1130PubMedCrossRef Arbab AS, Bashaw LA, Miller BR et al (2003) Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. Transplantation 76:1123–1130PubMedCrossRef
173.
go back to reference Ju S, Teng GJ, Lu H et al (2007) In vivo MR tracking of mesenchymal stem cells in rat liver after intrasplenic transplantation. Radiology 245:206–215PubMedCrossRef Ju S, Teng GJ, Lu H et al (2007) In vivo MR tracking of mesenchymal stem cells in rat liver after intrasplenic transplantation. Radiology 245:206–215PubMedCrossRef
174.
go back to reference Bogdanov A Jr, Matuszewski L, Bremer C et al (2002) Oligomerization of paramagnetic substrates result in signal amplification and can be used for MR imaging of molecular targets. Mol Imaging 1:16–23PubMedCrossRef Bogdanov A Jr, Matuszewski L, Bremer C et al (2002) Oligomerization of paramagnetic substrates result in signal amplification and can be used for MR imaging of molecular targets. Mol Imaging 1:16–23PubMedCrossRef
175.
go back to reference Lee IH, Bulte JW, Schweinhardt P et al (2004) In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord. Exp Neurol 187:509–516PubMedCrossRef Lee IH, Bulte JW, Schweinhardt P et al (2004) In vivo magnetic resonance tracking of olfactory ensheathing glia grafted into the rat spinal cord. Exp Neurol 187:509–516PubMedCrossRef
176.
go back to reference Jiang Q, Zhang ZG, Ding GL et al (2006) MRI detects white matter reorganization after neural progenitor cell treatment of stroke. Neuroimage 32:1080–1089PubMedCrossRef Jiang Q, Zhang ZG, Ding GL et al (2006) MRI detects white matter reorganization after neural progenitor cell treatment of stroke. Neuroimage 32:1080–1089PubMedCrossRef
177.
go back to reference Bhorade R, Weissleder R, Nakakoshi T et al (2000) Macrocyclic chelators with paramagnetic cations are internalized into mammalian cells via a HIV-tat derived membrane translocation peptide. Bioconjug Chem 11:301–305PubMedCrossRef Bhorade R, Weissleder R, Nakakoshi T et al (2000) Macrocyclic chelators with paramagnetic cations are internalized into mammalian cells via a HIV-tat derived membrane translocation peptide. Bioconjug Chem 11:301–305PubMedCrossRef
178.
go back to reference Garden OA, Reynolds PR, Yates J et al (2006) A rapid method for labelling CD4+ T cells with ultrasmall paramagnetic iron oxide nanoparticles for magnetic resonance imaging that preserves proliferative, regulatory and migratory behaviour in vitro. J Immunol Methods 314:123–133PubMedCrossRef Garden OA, Reynolds PR, Yates J et al (2006) A rapid method for labelling CD4+ T cells with ultrasmall paramagnetic iron oxide nanoparticles for magnetic resonance imaging that preserves proliferative, regulatory and migratory behaviour in vitro. J Immunol Methods 314:123–133PubMedCrossRef
179.
go back to reference Zhao M, Kircher MF, Josephson L et al (2002) Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug Chem 13:840–844PubMedCrossRef Zhao M, Kircher MF, Josephson L et al (2002) Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug Chem 13:840–844PubMedCrossRef
180.
go back to reference Crich SG, Lanzardo S, Barge A et al (2005) Visualization through magnetic resonance imaging of DNA internalized following “in vivo” electroporation. Mol Imaging 4:7–17PubMed Crich SG, Lanzardo S, Barge A et al (2005) Visualization through magnetic resonance imaging of DNA internalized following “in vivo” electroporation. Mol Imaging 4:7–17PubMed
181.
go back to reference Guignet EG, Meyer T (2008) Suspended-drop electroporation for high-throughput delivery of biomolecules into cells. Nat Methods 5:393–395PubMedCrossRef Guignet EG, Meyer T (2008) Suspended-drop electroporation for high-throughput delivery of biomolecules into cells. Nat Methods 5:393–395PubMedCrossRef
182.
go back to reference Zhang Z, Jiang Q, Jiang F et al (2004) In vivo magnetic resonance imaging tracks adult neural progenitor cell targeting of brain tumor. Neuroimage 23:281–287PubMedCrossRef Zhang Z, Jiang Q, Jiang F et al (2004) In vivo magnetic resonance imaging tracks adult neural progenitor cell targeting of brain tumor. Neuroimage 23:281–287PubMedCrossRef
183.
go back to reference Polyak B, Fishbein I, Chorny M et al (2008) High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proc Natl Acad Sci USA 105:698–703PubMedCrossRef Polyak B, Fishbein I, Chorny M et al (2008) High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. Proc Natl Acad Sci USA 105:698–703PubMedCrossRef
184.
go back to reference Berry CC, Charles S, Wells S et al (2004) The influence of transferrin stabilised magnetic nanoparticles on human dermal fibroblasts in culture. Int J Pharm 269:211–225PubMedCrossRef Berry CC, Charles S, Wells S et al (2004) The influence of transferrin stabilised magnetic nanoparticles on human dermal fibroblasts in culture. Int J Pharm 269:211–225PubMedCrossRef
185.
go back to reference Dodd CH, Hsu HC, Chu WJ et al (2001) Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J Immunol Methods 256:89–105PubMedCrossRef Dodd CH, Hsu HC, Chu WJ et al (2001) Normal T-cell response and in vivo magnetic resonance imaging of T cells loaded with HIV transactivator-peptide-derived superparamagnetic nanoparticles. J Immunol Methods 256:89–105PubMedCrossRef
186.
go back to reference Stroh A, Faber C, Neuberger T et al (2005) In vivo detection limits of magnetically labeled embryonic stem cells in the rat brain using high-field (17.6 T) magnetic resonance imaging. Neuroimage 24:635–645PubMedCrossRef Stroh A, Faber C, Neuberger T et al (2005) In vivo detection limits of magnetically labeled embryonic stem cells in the rat brain using high-field (17.6 T) magnetic resonance imaging. Neuroimage 24:635–645PubMedCrossRef
Metadata
Title
Labelling of mammalian cells for visualisation by MRI
Authors
Monique R. Bernsen
Amber D. Moelker
Piotr A. Wielopolski
Sandra T. van Tiel
Gabriel P. Krestin
Publication date
01-02-2010
Publisher
Springer-Verlag
Published in
European Radiology / Issue 2/2010
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-009-1540-1

Other articles of this Issue 2/2010

European Radiology 2/2010 Go to the issue