Skip to main content
Top
Published in: World Journal of Surgical Oncology 1/2018

Open Access 01-12-2018 | Research

Knockdown of IFI27 inhibits cell proliferation and invasion in oral squamous cell carcinoma

Authors: Hong Wang, Xunding Qiu, Shigeng Lin, Xubin Chen, Tao Wang, Tianan Liao

Published in: World Journal of Surgical Oncology | Issue 1/2018

Login to get access

Abstract

Background

The development of oral squamous cell carcinoma (OSCC) involves genetic mutations, epigenetic gene expression modification, and other processes. It has been reported that IFI27 is upregulated in OSCC, but its function is unknown. The aim of this study was to investigate the role of IFI27 on OSCC cell proliferation and invasion.

Methods

The protein level of IFI27 in OSCC tissues and adjacent tissues was detected by immunohistochemistry. In the OSCC cell model, we designed the IFI27 siRNA to downregulate the expression of IFI27; gene and protein of IFI27 in those models were then detected by Q-PCR and Western blot. MTT assay was used to detect the effect of -IFI27 knockdown on cell proliferation; Annexin V-PI staining flow cytometry was used to detect the effect of IFI27 downregulation on apoptosis of cancer cells. The effect of IFI27 downregulation on oral cancer cell invasion was detected using Transwell assay.

Results

IFI27 was highly expressed in OSCC tissues by immunohistochemical assay. In the OSCC cell model, IFI27 siRNA could downregulate the mRNA and protein expression level of IFI27. As showed in MTT assay, Annexin V-PI assay, and Transwell assay, through the downregulation of IFI27, TSCCA and TCA8113 cell proliferation were inhibited, OSCC cell apoptosis was promoted, and its migration and invasion were inhibited.

Conclusion

IFI27 is involved in the development and progression of OSCC. Its high expression promotes cell proliferation and invasion and reduces apoptosis. These findings may provide new biomarkers and therapeutic targets for OSCC diagnosis and clinical treatment.
Literature
1.
2.
go back to reference Sathiyasekar AC, Chandrasekar P, Pakash A, Kumar KU, Jaishlal MS. Overview of immunology of oral squamous cell carcinoma. J Pharm Bioallied Sci. 2016;8(Suppl 1):S8–s12.PubMedPubMedCentral Sathiyasekar AC, Chandrasekar P, Pakash A, Kumar KU, Jaishlal MS. Overview of immunology of oral squamous cell carcinoma. J Pharm Bioallied Sci. 2016;8(Suppl 1):S8–s12.PubMedPubMedCentral
3.
go back to reference Kimple AJ, Welch CM, Zevallos JP, Patel SN. Oral cavity squamous cell carcinoma—an overview. Oral Health Dental Manag. 2014;13(3):877–82. Kimple AJ, Welch CM, Zevallos JP, Patel SN. Oral cavity squamous cell carcinoma—an overview. Oral Health Dental Manag. 2014;13(3):877–82.
4.
go back to reference Prince A, Aguirre-Ghizo J, Genden E, Posner M, Sikora A. Head and neck squamous cell carcinoma: new translational therapies. Mount Sinai J Med New York. 2010;77(6):684–99.CrossRef Prince A, Aguirre-Ghizo J, Genden E, Posner M, Sikora A. Head and neck squamous cell carcinoma: new translational therapies. Mount Sinai J Med New York. 2010;77(6):684–99.CrossRef
5.
go back to reference Cheriyath V, Leaman DW, Borden EC. Emerging roles of FAM14 family members (G1P3/ISG 6-16 and ISG12/IFI27) in innate immunity and cancer. J Interf Cytokine Res. 2011;31(1):173–81.CrossRef Cheriyath V, Leaman DW, Borden EC. Emerging roles of FAM14 family members (G1P3/ISG 6-16 and ISG12/IFI27) in innate immunity and cancer. J Interf Cytokine Res. 2011;31(1):173–81.CrossRef
6.
go back to reference Rosebeck S, Leaman DW. Mitochondrial localization and pro-apoptotic effects of the interferon-inducible protein ISG12a. Apoptosis. 2008;13(4):562–72.CrossRefPubMed Rosebeck S, Leaman DW. Mitochondrial localization and pro-apoptotic effects of the interferon-inducible protein ISG12a. Apoptosis. 2008;13(4):562–72.CrossRefPubMed
7.
go back to reference Mihalich A, Vigano P, Gentilini D, Borghi MO, Vignali M, Busacca M, Di Blasio A. Interferon-inducible genes, TNF-related apoptosis-inducing ligand (TRAIL) and interferon inducible protein 27 (IFI27) are negatively regulated in leiomyomas: implications for a role of the interferon pathway in leiomyoma development. Gynecol Endocrinol. 2012;28(3):216–9.CrossRefPubMed Mihalich A, Vigano P, Gentilini D, Borghi MO, Vignali M, Busacca M, Di Blasio A. Interferon-inducible genes, TNF-related apoptosis-inducing ligand (TRAIL) and interferon inducible protein 27 (IFI27) are negatively regulated in leiomyomas: implications for a role of the interferon pathway in leiomyoma development. Gynecol Endocrinol. 2012;28(3):216–9.CrossRefPubMed
8.
go back to reference Hsieh WL, Huang YH, Wang TM, Ming YC, Tsai CN, Pang JH. IFI27, a novel epidermal growth factor-stabilized protein, is functionally involved in proliferation and cell cycling of human epidermal keratinocytes. Cell Prolif. 2015;48(2):187–97.CrossRefPubMed Hsieh WL, Huang YH, Wang TM, Ming YC, Tsai CN, Pang JH. IFI27, a novel epidermal growth factor-stabilized protein, is functionally involved in proliferation and cell cycling of human epidermal keratinocytes. Cell Prolif. 2015;48(2):187–97.CrossRefPubMed
9.
go back to reference Li S, Xie Y, Zhang W, Gao J, Wang M, Zheng G, Yin X, Xia H, Tao X. Interferon alpha-inducible protein 27 promotes epithelial-mesenchymal transition and induces ovarian tumorigenicity and stemness. J Surg Res. 2015;193(1):255–64.CrossRefPubMed Li S, Xie Y, Zhang W, Gao J, Wang M, Zheng G, Yin X, Xia H, Tao X. Interferon alpha-inducible protein 27 promotes epithelial-mesenchymal transition and induces ovarian tumorigenicity and stemness. J Surg Res. 2015;193(1):255–64.CrossRefPubMed
10.
go back to reference Suomela S, Cao L, Bowcock A, Saarialho-Kere U. Interferon alpha-inducible protein 27 (IFI27) is upregulated in psoriatic skin and certain epithelial cancers. J Invest Dermatol. 2004;122(3):717–21.CrossRefPubMed Suomela S, Cao L, Bowcock A, Saarialho-Kere U. Interferon alpha-inducible protein 27 (IFI27) is upregulated in psoriatic skin and certain epithelial cancers. J Invest Dermatol. 2004;122(3):717–21.CrossRefPubMed
11.
go back to reference Skov V, Larsen TS, Thomassen M, Riley CH, Jensen MK, Bjerrum OW, Kruse TA, Hasselbalch HC. Whole-blood transcriptional profiling of interferon-inducible genes identifies highly upregulated IFI27 in primary myelofibrosis. Eur J Haematol. 2011;87(1):54–60.CrossRefPubMed Skov V, Larsen TS, Thomassen M, Riley CH, Jensen MK, Bjerrum OW, Kruse TA, Hasselbalch HC. Whole-blood transcriptional profiling of interferon-inducible genes identifies highly upregulated IFI27 in primary myelofibrosis. Eur J Haematol. 2011;87(1):54–60.CrossRefPubMed
12.
go back to reference Liu N, Zuo C, Wang X, Chen T, Yang D, Wang J, Zhu H. miR-942 decreases TRAIL-induced apoptosis through ISG12a downregulation and is regulated by AKT. Oncotarget. 2014;5(13):4959–71.PubMedPubMedCentral Liu N, Zuo C, Wang X, Chen T, Yang D, Wang J, Zhu H. miR-942 decreases TRAIL-induced apoptosis through ISG12a downregulation and is regulated by AKT. Oncotarget. 2014;5(13):4959–71.PubMedPubMedCentral
13.
go back to reference Ni YH, Ding L, Hu QG, Hua ZC. Potential biomarkers for oral squamous cell carcinoma: proteomics discovery and clinical validation. Proteomics Clin Appl. 2015;9(1–2):86–97.CrossRefPubMed Ni YH, Ding L, Hu QG, Hua ZC. Potential biomarkers for oral squamous cell carcinoma: proteomics discovery and clinical validation. Proteomics Clin Appl. 2015;9(1–2):86–97.CrossRefPubMed
14.
go back to reference Bello IO, Soini Y, Salo T. Prognostic evaluation of oral tongue cancer: means, markers and perspectives (I). Oral Oncol. 2010;46(9):630–5.CrossRefPubMed Bello IO, Soini Y, Salo T. Prognostic evaluation of oral tongue cancer: means, markers and perspectives (I). Oral Oncol. 2010;46(9):630–5.CrossRefPubMed
15.
go back to reference Bello IO, Soini Y, Salo T. Prognostic evaluation of oral tongue cancer: means, markers and perspectives (II). Oral Oncol. 2010;46(9):636–43.CrossRefPubMed Bello IO, Soini Y, Salo T. Prognostic evaluation of oral tongue cancer: means, markers and perspectives (II). Oral Oncol. 2010;46(9):636–43.CrossRefPubMed
16.
go back to reference Xu S, Ma D, Zhuang R, Sun W, Liu Y, Wen J, Cui L. DJ-1 is upregulated in oral squamous cell carcinoma and promotes oral cancer cell proliferation and invasion. J Cancer. 2016;7(8):1020–8.CrossRefPubMedPubMedCentral Xu S, Ma D, Zhuang R, Sun W, Liu Y, Wen J, Cui L. DJ-1 is upregulated in oral squamous cell carcinoma and promotes oral cancer cell proliferation and invasion. J Cancer. 2016;7(8):1020–8.CrossRefPubMedPubMedCentral
17.
go back to reference Xue M, Zhu F-Y, Chen L, Wang K. HoxB9 promotes the migration and invasion via TGF-β1/Smad2/Slug signaling pathway in oral squamous cell carcinoma. Am J Transl Res. 2017;(3):1151-61. Xue M, Zhu F-Y, Chen L, Wang K. HoxB9 promotes the migration and invasion via TGF-β1/Smad2/Slug signaling pathway in oral squamous cell carcinoma. Am J Transl Res. 2017;(3):1151-61.
18.
go back to reference Bowcock AM, Shannon W, Du F, Duncan J, Cao K, Aftergut K, Catier J, Fernandez-Vina MA, Menter A. Insights into psoriasis and other inflammatory diseases from large-scale gene expression studies. Hum Mol Genet. 2001;10(17):1793–805.CrossRefPubMed Bowcock AM, Shannon W, Du F, Duncan J, Cao K, Aftergut K, Catier J, Fernandez-Vina MA, Menter A. Insights into psoriasis and other inflammatory diseases from large-scale gene expression studies. Hum Mol Genet. 2001;10(17):1793–805.CrossRefPubMed
19.
go back to reference Ariazi EA, Taylor JC, Black MA, Nicolas E, Slifker MJ, Azzam DJ, Boyd J. A new role for ERalpha: silencing via DNA methylation of basal, stem cell, and EMT genes. Mol Cancer Res. 2017;15(2):152–64.CrossRefPubMed Ariazi EA, Taylor JC, Black MA, Nicolas E, Slifker MJ, Azzam DJ, Boyd J. A new role for ERalpha: silencing via DNA methylation of basal, stem cell, and EMT genes. Mol Cancer Res. 2017;15(2):152–64.CrossRefPubMed
20.
21.
go back to reference Boldrup L, Gu X, Coates PJ, Norberg-Spaak L, Fahraeus R, Laurell G, Wilms T, Nylander K. Gene expression changes in tumor free tongue tissue adjacent to tongue squamous cell carcinoma. Oncotarget. 2017;8(12):19389–402.CrossRefPubMed Boldrup L, Gu X, Coates PJ, Norberg-Spaak L, Fahraeus R, Laurell G, Wilms T, Nylander K. Gene expression changes in tumor free tongue tissue adjacent to tongue squamous cell carcinoma. Oncotarget. 2017;8(12):19389–402.CrossRefPubMed
Metadata
Title
Knockdown of IFI27 inhibits cell proliferation and invasion in oral squamous cell carcinoma
Authors
Hong Wang
Xunding Qiu
Shigeng Lin
Xubin Chen
Tao Wang
Tianan Liao
Publication date
01-12-2018
Publisher
BioMed Central
Published in
World Journal of Surgical Oncology / Issue 1/2018
Electronic ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-018-1371-0

Other articles of this Issue 1/2018

World Journal of Surgical Oncology 1/2018 Go to the issue