Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1-2/2009

01-06-2009

Kinesin motor proteins as targets for cancer therapy

Authors: Dennis Huszar, Maria-Elena Theoclitou, Jeffrey Skolnik, Ronald Herbst

Published in: Cancer and Metastasis Reviews | Issue 1-2/2009

Login to get access

Abstract

The process of mitosis is a validated point of intervention in cancer therapy and a variety of anti-mitotic drugs are successfully being used in the clinic. To date, all approved antimitotics target the spindle microtubules, thus interfering with spindle dynamics, leading to mitotic arrest and apoptosis. While effective, these drugs are also associated with a variety of side effects, including neurotoxicity. In recent years, mitotic kinesins have attracted significant attention in the search for novel, alternative mitotic drug targets. Due to their specific function in mitosis, targeting these proteins creates an opportunity for the development of more selective antimitotics with an improved side effect profile. In addition, kinesin inhibitors may overcome resistance to microtubule targeting drugs. Drug discovery efforts in this area have initially focused on the plus-end directed kinesin spindle protein (KSP) and a variety of compounds are currently undergoing clinical testing.
Literature
1.
go back to reference Compton, D. A. (2000). Spindle assembly in animal cells. Annual Review of Biochemistry, 69, 95–114.PubMedCrossRef Compton, D. A. (2000). Spindle assembly in animal cells. Annual Review of Biochemistry, 69, 95–114.PubMedCrossRef
2.
go back to reference Cheesman, I. M., & Desai, A. (2008). Molecular architecture of the kinetochore-microtubule interphase. Nature Reviews Molecular and Cellular Biology, 9, 33–46.CrossRef Cheesman, I. M., & Desai, A. (2008). Molecular architecture of the kinetochore-microtubule interphase. Nature Reviews Molecular and Cellular Biology, 9, 33–46.CrossRef
3.
go back to reference Jordan, M. A., & Wilson, L. (2004). Microtubules as target for anticancer drugs. Nature Reviews Cancer, 4, 253–265.PubMedCrossRef Jordan, M. A., & Wilson, L. (2004). Microtubules as target for anticancer drugs. Nature Reviews Cancer, 4, 253–265.PubMedCrossRef
4.
go back to reference Wood, K. W., Cornwell, W. D., & Jackson, J. R. (2001). Past and future of the mitotic spindle as an oncology target. Current Opinion in Pharmacology, 1, 370–377.PubMedCrossRef Wood, K. W., Cornwell, W. D., & Jackson, J. R. (2001). Past and future of the mitotic spindle as an oncology target. Current Opinion in Pharmacology, 1, 370–377.PubMedCrossRef
5.
go back to reference Musacchio, A., & Hardwick, K. G. (2002). The spindle checkpoint: Structural insights into dynamic signalling. Nature Reviews Molecular and Cellular Biology, 3, 731–741.CrossRef Musacchio, A., & Hardwick, K. G. (2002). The spindle checkpoint: Structural insights into dynamic signalling. Nature Reviews Molecular and Cellular Biology, 3, 731–741.CrossRef
6.
go back to reference Miki, H., Okada, Y., & Hirokawa, N. (2005). Analysis of the kinesin superfamily: Insights into structure and function. Trends in Cell Biology, 15, 467–476.PubMedCrossRef Miki, H., Okada, Y., & Hirokawa, N. (2005). Analysis of the kinesin superfamily: Insights into structure and function. Trends in Cell Biology, 15, 467–476.PubMedCrossRef
7.
go back to reference Mountain, V., & Compton, D. A. (2000). Dissecting the role of molecular motors in the mitotic spindle. Anatomical Record (New Anat), 261, 14–24.CrossRef Mountain, V., & Compton, D. A. (2000). Dissecting the role of molecular motors in the mitotic spindle. Anatomical Record (New Anat), 261, 14–24.CrossRef
8.
go back to reference Hirokawa, N., & Takemura, R. (2004). Kinesin superfamily proteins and their various functions and dynamics. Experimental Cell Research, 301, 50–59.PubMedCrossRef Hirokawa, N., & Takemura, R. (2004). Kinesin superfamily proteins and their various functions and dynamics. Experimental Cell Research, 301, 50–59.PubMedCrossRef
9.
go back to reference Heck, M. M. S. (1999). Dr Dolittle and the making of the mitotic spindle. BioEssays, 21, 985–990.PubMedCrossRef Heck, M. M. S. (1999). Dr Dolittle and the making of the mitotic spindle. BioEssays, 21, 985–990.PubMedCrossRef
10.
go back to reference Zhu, C., Zhao, J., Bibikova, M., Leverson, J. D., Bossy-Wetzel, E., Fan, J-B., et al. (2005). Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Molecular Biology of the Cell, 16, 3187–3199.PubMedCrossRef Zhu, C., Zhao, J., Bibikova, M., Leverson, J. D., Bossy-Wetzel, E., Fan, J-B., et al. (2005). Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Molecular Biology of the Cell, 16, 3187–3199.PubMedCrossRef
11.
go back to reference Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L., & Mitchison, T. J. (1999). Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science, 286, 971–974.PubMedCrossRef Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L., & Mitchison, T. J. (1999). Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science, 286, 971–974.PubMedCrossRef
12.
go back to reference LeGuellec, R., Paris, J., Couturier, A., Roghi, C., & Philippe, M. (1991). Cloning by differential screening of a Xenopus cDNA that encodes a kinesin-related protein. Molecular and Cellular Biology, 11, 3395–3398. LeGuellec, R., Paris, J., Couturier, A., Roghi, C., & Philippe, M. (1991). Cloning by differential screening of a Xenopus cDNA that encodes a kinesin-related protein. Molecular and Cellular Biology, 11, 3395–3398.
13.
go back to reference Sawin, K. E., LeGuellec, K., Philippe, M., & Mitchison, T. J. (1992). Mitotic spindle organization by a plus-end-directed microtubule motor. Nature, 359, 540–543.PubMedCrossRef Sawin, K. E., LeGuellec, K., Philippe, M., & Mitchison, T. J. (1992). Mitotic spindle organization by a plus-end-directed microtubule motor. Nature, 359, 540–543.PubMedCrossRef
14.
15.
go back to reference Kapitein, L. C., Peterman, E. J. G., Kwok, B. H., Kim, J. H., Kapoor, T. M., & Schmidt, C. F. (2005). The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature, 435, 114–118.PubMedCrossRef Kapitein, L. C., Peterman, E. J. G., Kwok, B. H., Kim, J. H., Kapoor, T. M., & Schmidt, C. F. (2005). The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature, 435, 114–118.PubMedCrossRef
16.
go back to reference Heck, M. M. S., Pereira, A., Pesavento, P., Yannoni, Y., Spradling, A. C., & Goldstein, L. S. B. (1993). The kinesin-like protein KLP61F is essential for mitosis in Drosophila. Journal of Cell Biology, 123, 665–679.PubMedCrossRef Heck, M. M. S., Pereira, A., Pesavento, P., Yannoni, Y., Spradling, A. C., & Goldstein, L. S. B. (1993). The kinesin-like protein KLP61F is essential for mitosis in Drosophila. Journal of Cell Biology, 123, 665–679.PubMedCrossRef
17.
go back to reference Blangy, A., Lane, H. A., d’Herin, P., Harper, M., Kress, M., & Nigg, E. A. (1995). Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell, 83, 1159–1169.PubMedCrossRef Blangy, A., Lane, H. A., d’Herin, P., Harper, M., Kress, M., & Nigg, E. A. (1995). Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell, 83, 1159–1169.PubMedCrossRef
18.
go back to reference Castillo, A., Morse, H. C., Godfrey, V. L., Naeem, R., & Justice, M. J. (2007). Overexpression of Eg5 causes genomic instability and tumor formation in mice. Cancer Research, 67, 10138–10147.PubMedCrossRef Castillo, A., Morse, H. C., Godfrey, V. L., Naeem, R., & Justice, M. J. (2007). Overexpression of Eg5 causes genomic instability and tumor formation in mice. Cancer Research, 67, 10138–10147.PubMedCrossRef
19.
go back to reference Castillo, A., & Justice, M. J. (2007). The kinesin related motor protein, Eg5, is essential for maintenance of pre-implantation embryogenesis. Biochemical and Biophysical Research Communications, 357, 694–699.PubMedCrossRef Castillo, A., & Justice, M. J. (2007). The kinesin related motor protein, Eg5, is essential for maintenance of pre-implantation embryogenesis. Biochemical and Biophysical Research Communications, 357, 694–699.PubMedCrossRef
20.
go back to reference Chauviere, M., Kress, C., & Kress, M. (2008). Disruption of the mitotic kinesin Eg5 gene (Knsl1) results in early embryonic lethality. Biochemical and Biophysical Research Communications, 372, 513–519.PubMedCrossRef Chauviere, M., Kress, C., & Kress, M. (2008). Disruption of the mitotic kinesin Eg5 gene (Knsl1) results in early embryonic lethality. Biochemical and Biophysical Research Communications, 372, 513–519.PubMedCrossRef
21.
go back to reference Carter, B. Z., Mak, D. H., Shi, Y., Schoeber, W. D., Wang, R. Y., Konopleva, M., et al. (2006). Regulation and targeting of Eg5, a mitotic motor protein in blast crisis CML: Overcoming imatinib resistance. Cell Cycle, 5, 2223–2229.PubMed Carter, B. Z., Mak, D. H., Shi, Y., Schoeber, W. D., Wang, R. Y., Konopleva, M., et al. (2006). Regulation and targeting of Eg5, a mitotic motor protein in blast crisis CML: Overcoming imatinib resistance. Cell Cycle, 5, 2223–2229.PubMed
22.
go back to reference Hegde, P. S., Cogswell, J., Carrick, K., Jackson, J., Wood, K. W., Eng, W. K., et al. (2003). Differential gene expression analysis of kinesin spindle protein in human solid tumors. Proceedings of the American Society of Clinical Oncology, 22, abstract 535. Hegde, P. S., Cogswell, J., Carrick, K., Jackson, J., Wood, K. W., Eng, W. K., et al. (2003). Differential gene expression analysis of kinesin spindle protein in human solid tumors. Proceedings of the American Society of Clinical Oncology, 22, abstract 535.
23.
go back to reference Saijo, T., Ishii, G., Ochiai, A., Yoh, K., Goto, K., Nagai, K., et al. (2006). Eg5 expression is closely correlated with the response of advanced non-small cell lung cancer to antimititic agents combined with platinum chemotherapy. Lung Cancer, 54, 217–225.PubMedCrossRef Saijo, T., Ishii, G., Ochiai, A., Yoh, K., Goto, K., Nagai, K., et al. (2006). Eg5 expression is closely correlated with the response of advanced non-small cell lung cancer to antimititic agents combined with platinum chemotherapy. Lung Cancer, 54, 217–225.PubMedCrossRef
24.
go back to reference DeBonis, S., Skoufias, D. A., Lebeau, L., Lopez, R., Robin, G., Margolis, R. L., et al. (2004). In vitro screening for inhibitors of the human mitotic kinesin Eg5 with antimitotic and antitumor activities. Molecular Cancer Therapeutics, 3, 1079–1090.PubMed DeBonis, S., Skoufias, D. A., Lebeau, L., Lopez, R., Robin, G., Margolis, R. L., et al. (2004). In vitro screening for inhibitors of the human mitotic kinesin Eg5 with antimitotic and antitumor activities. Molecular Cancer Therapeutics, 3, 1079–1090.PubMed
25.
go back to reference Sakowicz, R., Finer, J. T., Beraud, C., Crompton, A., Lewis, E., Fritsch, A., et al. (2004). Antitumor activity of a kinesin inhibitor. Cancer Research, 64, 3276–3280.PubMedCrossRef Sakowicz, R., Finer, J. T., Beraud, C., Crompton, A., Lewis, E., Fritsch, A., et al. (2004). Antitumor activity of a kinesin inhibitor. Cancer Research, 64, 3276–3280.PubMedCrossRef
26.
go back to reference Marcus, A. I., Peters, U., Thomas, S. L., Garrett, S., Zelnak, A., Kapoor, T. M., et al. (2005). Mitotic kinesin inhibitors induce mitotic arrest and cell death in taxol-resistant and -sensitive cancer cells. Journal of Biological Chemistry, 280, 11569–11577.PubMedCrossRef Marcus, A. I., Peters, U., Thomas, S. L., Garrett, S., Zelnak, A., Kapoor, T. M., et al. (2005). Mitotic kinesin inhibitors induce mitotic arrest and cell death in taxol-resistant and -sensitive cancer cells. Journal of Biological Chemistry, 280, 11569–11577.PubMedCrossRef
27.
go back to reference Chin, G. M., & Herbst, R. (2006). Induction of apoptosis by monastrol, an inhibitor of the mitotic kinesin Eg5, is independent of the spindle checkpoint. Molecular Cancer Therapeutics, 5, 2580–2591.PubMedCrossRef Chin, G. M., & Herbst, R. (2006). Induction of apoptosis by monastrol, an inhibitor of the mitotic kinesin Eg5, is independent of the spindle checkpoint. Molecular Cancer Therapeutics, 5, 2580–2591.PubMedCrossRef
28.
go back to reference Lemieux, C., DeWolf, W., Voegtli, W., DeLisle, R. K., Laird, E., Wallace, E., et al. (2007). ARRY-520: A novel, highly selective KSP inhibitor with potent anti-proliferative activity. AACR Annual Meeting. Lemieux, C., DeWolf, W., Voegtli, W., DeLisle, R. K., Laird, E., Wallace, E., et al. (2007). ARRY-520: A novel, highly selective KSP inhibitor with potent anti-proliferative activity. AACR Annual Meeting.
29.
go back to reference Woessner, R., Corrette, C., Allen, S., Hans, J., Zhao, Q., Aicher, T., et al. (2007). ARRY-520: A KSP inhibitor with efficacy and pharmacodynamic activity in animal models of solid tumors. AACR Annual Meeting. Woessner, R., Corrette, C., Allen, S., Hans, J., Zhao, Q., Aicher, T., et al. (2007). ARRY-520: A KSP inhibitor with efficacy and pharmacodynamic activity in animal models of solid tumors. AACR Annual Meeting.
30.
go back to reference Weaver, B. A. A., & Cleveland, D. W. (2005). Decoding the links between mitosis, cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death. Cancer Cell, 8, 7–12.PubMedCrossRef Weaver, B. A. A., & Cleveland, D. W. (2005). Decoding the links between mitosis, cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death. Cancer Cell, 8, 7–12.PubMedCrossRef
31.
go back to reference Tao, W., South, V. J., Zhang, Y., Davide, J. P., Farrell, L., Kohl, N. E., et al. (2005). Induction of apoptosis by an inhibitor of the mitotic kinesin KSP requires both activation of the spindle assembly checkpoint and mitotic slippage. Cancer Cell, 8, 49–59.PubMedCrossRef Tao, W., South, V. J., Zhang, Y., Davide, J. P., Farrell, L., Kohl, N. E., et al. (2005). Induction of apoptosis by an inhibitor of the mitotic kinesin KSP requires both activation of the spindle assembly checkpoint and mitotic slippage. Cancer Cell, 8, 49–59.PubMedCrossRef
32.
go back to reference Tao, W., South, V. J., Diehl, R. E., Davide, J. P., Sepp-Lorenzino, L., Fraley, M. E., et al. (2007). An inhibitor of the kinesin spindle protein activates the intrinsic apoptotic pathway independently of p53 and de novo protein synthesis. Molecular and Cellular Biology, 27, 689–698.PubMedCrossRef Tao, W., South, V. J., Diehl, R. E., Davide, J. P., Sepp-Lorenzino, L., Fraley, M. E., et al. (2007). An inhibitor of the kinesin spindle protein activates the intrinsic apoptotic pathway independently of p53 and de novo protein synthesis. Molecular and Cellular Biology, 27, 689–698.PubMedCrossRef
33.
go back to reference Vijapurkar, U., Wang, W., & Herbst, R. (2007). Potentiation of kinesin spindle protein inhibitor-induced cell death by modulation of mitochondrial and death receptor apoptotic pathways. Cancer Research, 67, 237–245.PubMedCrossRef Vijapurkar, U., Wang, W., & Herbst, R. (2007). Potentiation of kinesin spindle protein inhibitor-induced cell death by modulation of mitochondrial and death receptor apoptotic pathways. Cancer Research, 67, 237–245.PubMedCrossRef
34.
go back to reference Shi, J., Orth, J. D., & Mitchison, T. (2008). Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5. Cancer Research, 68, 3269–3276.PubMedCrossRef Shi, J., Orth, J. D., & Mitchison, T. (2008). Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5. Cancer Research, 68, 3269–3276.PubMedCrossRef
35.
go back to reference Gascoigne, K. E., & Taylor, S. S. (2008). Cancer cells display profound intra-and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell, 14, 111–122.PubMedCrossRef Gascoigne, K. E., & Taylor, S. S. (2008). Cancer cells display profound intra-and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell, 14, 111–122.PubMedCrossRef
36.
go back to reference Kappe, C. O., Shishkin, O. V., Uray, G., & Verdino, P. (2000). X-Ray structure, conformational analysis, enantioseparation, and determination of absolute configuration of the mitotic kinesin Eg5 inhibitor monastrol. Tetrahedron, 56, 1859–1862.CrossRef Kappe, C. O., Shishkin, O. V., Uray, G., & Verdino, P. (2000). X-Ray structure, conformational analysis, enantioseparation, and determination of absolute configuration of the mitotic kinesin Eg5 inhibitor monastrol. Tetrahedron, 56, 1859–1862.CrossRef
37.
go back to reference Yan, Y., Sardana, V., Xu, B., Homnick, C., Halczenko, W., Buser, C. A., et al. (2004). Inhibition of a mitotic motor protein: Where, how and conformational changes. Journal of Molecular Biology, 335, 547–554.PubMedCrossRef Yan, Y., Sardana, V., Xu, B., Homnick, C., Halczenko, W., Buser, C. A., et al. (2004). Inhibition of a mitotic motor protein: Where, how and conformational changes. Journal of Molecular Biology, 335, 547–554.PubMedCrossRef
38.
39.
40.
go back to reference Leipzig University/Max-Planck Institute (2006). WO2006048308. Leipzig University/Max-Planck Institute (2006). WO2006048308.
41.
go back to reference Gartner, M., Sunder-Plassmann, N., Seiler, J., Utz, M., Vernos, I., Surrey, T., et al. (2005). Development and biological evaluation of potent and specific inhibitors of mitotic kinesin Eg5. ChemBioChem, 6, 1173–1177.PubMedCrossRef Gartner, M., Sunder-Plassmann, N., Seiler, J., Utz, M., Vernos, I., Surrey, T., et al. (2005). Development and biological evaluation of potent and specific inhibitors of mitotic kinesin Eg5. ChemBioChem, 6, 1173–1177.PubMedCrossRef
42.
go back to reference Sarli, V., Huemmer, S., Sunder-Plassmann, N., Mayer, T. U., & Giannis, A. (2005). Synthesis and biological evaluation of novel Eg5 inhibitors. ChemBioChem, 6, 2005–2013.PubMedCrossRef Sarli, V., Huemmer, S., Sunder-Plassmann, N., Mayer, T. U., & Giannis, A. (2005). Synthesis and biological evaluation of novel Eg5 inhibitors. ChemBioChem, 6, 2005–2013.PubMedCrossRef
43.
44.
go back to reference Sorbera, L. A., Bolos, J., Serradell, N., & Bayes, M. (2006). Ispinesib mesilate. Drugs Future, 31, 778–787.CrossRef Sorbera, L. A., Bolos, J., Serradell, N., & Bayes, M. (2006). Ispinesib mesilate. Drugs Future, 31, 778–787.CrossRef
45.
46.
47.
go back to reference Bergnes, G., Ha, E., Feng, B., Smith, W. W., Yao, B., Tochimoto, T., et al. (2002). Mitotic kinesin-targeted antitumor agents: Discovery, lead optimization and anti-tumor activity of a series of novel quinazolinones as inhibitors of kinesin spindle protein (KSP). Abstracts of Papers, 223rd ACS National Meeting, Orlando, FL, United States, MEDI-249. Bergnes, G., Ha, E., Feng, B., Smith, W. W., Yao, B., Tochimoto, T., et al. (2002). Mitotic kinesin-targeted antitumor agents: Discovery, lead optimization and anti-tumor activity of a series of novel quinazolinones as inhibitors of kinesin spindle protein (KSP). Abstracts of Papers, 223rd ACS National Meeting, Orlando, FL, United States, MEDI-249.
48.
49.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
64.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
82.
83.
84.
85.
86.
87.
88.
go back to reference Cox, C. D., Breslin, M. J., Mariano, B. J., Coleman, P. J., Buser, C. A., Walsh, E. S., et al. (2005). Kinesin spindle protein (KSP) inhibitors. Part 1: The discovery of 3,5-diaryl-4,5-dihydropyrazoles as potent and selective inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 15, 2041–2045.CrossRef Cox, C. D., Breslin, M. J., Mariano, B. J., Coleman, P. J., Buser, C. A., Walsh, E. S., et al. (2005). Kinesin spindle protein (KSP) inhibitors. Part 1: The discovery of 3,5-diaryl-4,5-dihydropyrazoles as potent and selective inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 15, 2041–2045.CrossRef
89.
go back to reference Fraley, M. E., Garbaccio, R. M., Arrington, K. L., Hoffman, W. F., Tasber, E. S., Coleman, P. J., et al. (2006). Kinesin spindle protein (KSP) inhibitors. Part 2: The design, synthesis, and characterization of 2,4-diaryl-2,5-dihydropyrrole inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 16, 1775–1779.CrossRef Fraley, M. E., Garbaccio, R. M., Arrington, K. L., Hoffman, W. F., Tasber, E. S., Coleman, P. J., et al. (2006). Kinesin spindle protein (KSP) inhibitors. Part 2: The design, synthesis, and characterization of 2,4-diaryl-2,5-dihydropyrrole inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 16, 1775–1779.CrossRef
90.
go back to reference Garbaccio, R. M., Fraley, M. E., Tasber, E. S., Olson, C. M., Hoffman, W. F., Arrington, K. L., et al. (2006). Kinesin spindle protein (KSP) inhibitors. Part 3: Synthesis and evaluation of phenolic 2,4-diaryl-2,5-dihydropyrroles with reduced hERG binding and employment of a phosphate prodrug strategy for aqueous solubility. Bioorganic & Medicinal Chemistry Letters, 16, 1780–1783.CrossRef Garbaccio, R. M., Fraley, M. E., Tasber, E. S., Olson, C. M., Hoffman, W. F., Arrington, K. L., et al. (2006). Kinesin spindle protein (KSP) inhibitors. Part 3: Synthesis and evaluation of phenolic 2,4-diaryl-2,5-dihydropyrroles with reduced hERG binding and employment of a phosphate prodrug strategy for aqueous solubility. Bioorganic & Medicinal Chemistry Letters, 16, 1780–1783.CrossRef
91.
go back to reference Cox, C. D., Torrent, M., Breslin, M. J., Mariano, B. J., Whitman, D. B., Coleman, P. J., et al. (2006). Kinesin spindle protein (KSP) inhibitors. Structure-based design of 5-alkylamino-3,5-diaryl-4,5-dihydropyrazoles as potent, water-soluble inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 16, 3175–3179.CrossRef Cox, C. D., Torrent, M., Breslin, M. J., Mariano, B. J., Whitman, D. B., Coleman, P. J., et al. (2006). Kinesin spindle protein (KSP) inhibitors. Structure-based design of 5-alkylamino-3,5-diaryl-4,5-dihydropyrazoles as potent, water-soluble inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 16, 3175–3179.CrossRef
92.
go back to reference Cox, C. D., Breslin, M. J., Whitman, D. B., Coleman, P. J., Garbaccio, R. M., Fraley, M. E., et al. (2007). Kinesin spindle protein (KSP) inhibitors. Discovery of 2-propylamino-2,4-diaryl-2,5-dihydropyrroles as potent, water-soluble KSP inhibitors, and modulation of their basicity by β -fluorination to overcome cellular efflux by P-glycoprotein. Bioorganic & Medicinal Chemistry Letters, 17, 2697–2702.CrossRef Cox, C. D., Breslin, M. J., Whitman, D. B., Coleman, P. J., Garbaccio, R. M., Fraley, M. E., et al. (2007). Kinesin spindle protein (KSP) inhibitors. Discovery of 2-propylamino-2,4-diaryl-2,5-dihydropyrroles as potent, water-soluble KSP inhibitors, and modulation of their basicity by β -fluorination to overcome cellular efflux by P-glycoprotein. Bioorganic & Medicinal Chemistry Letters, 17, 2697–2702.CrossRef
93.
go back to reference Coleman, P. J., Schreier, J. D., Cox, C. D., Fraley, M. E., Garbaccio, R. M., Buser, C. A., et al. (2007). Kinesin spindle protein (KSP) inhibitors. Part 6: Design and synthesis of 3,5-diaryl-4,5-dihydropyrazole amides as potent inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 17, 5390–5395.CrossRef Coleman, P. J., Schreier, J. D., Cox, C. D., Fraley, M. E., Garbaccio, R. M., Buser, C. A., et al. (2007). Kinesin spindle protein (KSP) inhibitors. Part 6: Design and synthesis of 3,5-diaryl-4,5-dihydropyrazole amides as potent inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 17, 5390–5395.CrossRef
94.
go back to reference Garbaccio, R. M., Tasber, E. S., Neilson, L. A., Coleman, P. J., Fraley, M. E., Olson, C., et al. (2007). Kinesin spindle protein (KSP) inhibitors. Part 7: Design and synthesis of 3,3-disubstituted dihydropyrazolobenzoxazines as potent inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 17, 5671–5676.CrossRef Garbaccio, R. M., Tasber, E. S., Neilson, L. A., Coleman, P. J., Fraley, M. E., Olson, C., et al. (2007). Kinesin spindle protein (KSP) inhibitors. Part 7: Design and synthesis of 3,3-disubstituted dihydropyrazolobenzoxazines as potent inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 17, 5671–5676.CrossRef
95.
go back to reference Roecker, A. J., Coleman, P. J., Mercer, S. P., Schreier, J. D., Buser, C. A., Walsh, E. S., et al. (2007). Kinesin spindle protein (KSP) inhibitors. Part 8: Design and synthesis of 1,4-diaryl-4,5-dihydropyrazoles as potent inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 17, 5677–5682.CrossRef Roecker, A. J., Coleman, P. J., Mercer, S. P., Schreier, J. D., Buser, C. A., Walsh, E. S., et al. (2007). Kinesin spindle protein (KSP) inhibitors. Part 8: Design and synthesis of 1,4-diaryl-4,5-dihydropyrazoles as potent inhibitors of the mitotic kinesin KSP. Bioorganic & Medicinal Chemistry Letters, 17, 5677–5682.CrossRef
96.
go back to reference Cox, C. D., Coleman, P. J., Breslin, M. J., Whitman, D. B., Garbaccio, R. M., Fraley, M. E., et al. (2008). Kinesin Spindle Protein (KSP) Inhibitors. 9. Discovery of (2S)-4-(2,5-Difluorophenyl)-N-[(3R,4S)-3-fluoro-1-methylpiperidin-4-yl]-2-(hydroxymethyl)-N-methyl-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide (MK-0731) for the Treatment of Taxane-Refractory Cancer. Journal of Medicinal Chemistry, 51, 4239–4252.PubMedCrossRef Cox, C. D., Coleman, P. J., Breslin, M. J., Whitman, D. B., Garbaccio, R. M., Fraley, M. E., et al. (2008). Kinesin Spindle Protein (KSP) Inhibitors. 9. Discovery of (2S)-4-(2,5-Difluorophenyl)-N-[(3R,4S)-3-fluoro-1-methylpiperidin-4-yl]-2-(hydroxymethyl)-N-methyl-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide (MK-0731) for the Treatment of Taxane-Refractory Cancer. Journal of Medicinal Chemistry, 51, 4239–4252.PubMedCrossRef
97.
go back to reference Kyowa Hakko/Fuji Film (2005). WO2005035512. Kyowa Hakko/Fuji Film (2005). WO2005035512.
98.
go back to reference Kyowa Hakko/Fuji Film (2005). JP2005232016. Kyowa Hakko/Fuji Film (2005). JP2005232016.
99.
go back to reference Kyowa Hakko/Fuji Film (2006). WO2006101102. Kyowa Hakko/Fuji Film (2006). WO2006101102.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
go back to reference Sunder-Plassmann, N., Sarli, V., Gartner, M., Utz, M., Seiler, J., Huemmer, S., et al. (2005). Synthesis and biological evaluation of new tetrahydro-β -carbolines as inhibitors of the mitotic kinesin Eg5. Bioorganic & Medicinal Chemistry, 13, 6094–6111.CrossRef Sunder-Plassmann, N., Sarli, V., Gartner, M., Utz, M., Seiler, J., Huemmer, S., et al. (2005). Synthesis and biological evaluation of new tetrahydro-β -carbolines as inhibitors of the mitotic kinesin Eg5. Bioorganic & Medicinal Chemistry, 13, 6094–6111.CrossRef
110.
go back to reference Nakazawa, J., Yajima, J., Usui, T., Ueki, M., Takatsuki, A., Imoto, M., et al. (2003). A novel action of terpendole E on the motor activity of mitotic kinesin Eg5. Chemistry & Biology, 10, 131–137.CrossRef Nakazawa, J., Yajima, J., Usui, T., Ueki, M., Takatsuki, A., Imoto, M., et al. (2003). A novel action of terpendole E on the motor activity of mitotic kinesin Eg5. Chemistry & Biology, 10, 131–137.CrossRef
111.
112.
go back to reference Okumura, H., Nakazawa, J., Tsuganezawa, K., Usui, T., Osada, H., Matsumoto, T., et al. (2006). Phenothiazine and carbazole-related compounds inhibit mitotic kinesin Eg5 and trigger apoptosis in transformed culture cells. Toxicology Letters, 166, 44–52.PubMedCrossRef Okumura, H., Nakazawa, J., Tsuganezawa, K., Usui, T., Osada, H., Matsumoto, T., et al. (2006). Phenothiazine and carbazole-related compounds inhibit mitotic kinesin Eg5 and trigger apoptosis in transformed culture cells. Toxicology Letters, 166, 44–52.PubMedCrossRef
113.
114.
116.
117.
118.
119.
120.
go back to reference Brier, S., Lemaire, D., DeBonis, S., Forest, E., & Kozielski, F. (2006). Molecular dissection of the inhibitor binding pocket of mitotic kinesin Eg5 reveals mutants that confer resistance to antimitotic agents. Journal of Molecular Biology, 360, 360–376.PubMedCrossRef Brier, S., Lemaire, D., DeBonis, S., Forest, E., & Kozielski, F. (2006). Molecular dissection of the inhibitor binding pocket of mitotic kinesin Eg5 reveals mutants that confer resistance to antimitotic agents. Journal of Molecular Biology, 360, 360–376.PubMedCrossRef
121.
go back to reference Maliga, Z., & Mitchison, T. J. (2006). Small-molecule and mutational analysis of allosteric Eg5 inhibition by monastrol. BMC Chemical & Biology, 6, 2.CrossRef Maliga, Z., & Mitchison, T. J. (2006). Small-molecule and mutational analysis of allosteric Eg5 inhibition by monastrol. BMC Chemical & Biology, 6, 2.CrossRef
122.
go back to reference Rickert, K. W., Schaber, M., Torrent, M., Neilson, L. A., Tasber, E. S., Garbaccio, R., et al. (2008). Discovery and biochemical characterization of selective ATP competitive inhibitors of the human mitotic kinesin KSP. Archives of Biochemistry and Biophysics, 469, 220–231.PubMedCrossRef Rickert, K. W., Schaber, M., Torrent, M., Neilson, L. A., Tasber, E. S., Garbaccio, R., et al. (2008). Discovery and biochemical characterization of selective ATP competitive inhibitors of the human mitotic kinesin KSP. Archives of Biochemistry and Biophysics, 469, 220–231.PubMedCrossRef
123.
go back to reference Parrish, C. A., Adams, N. D., Auger, K. R., Burgess, J. L., Carson, J. D., Chaudhari, A. M., et al. (2007). Novel ATP-competitive kinesin spindle protein inhibitors. Journal of Medicinal Chemistry, 50, 4939–4952.PubMedCrossRef Parrish, C. A., Adams, N. D., Auger, K. R., Burgess, J. L., Carson, J. D., Chaudhari, A. M., et al. (2007). Novel ATP-competitive kinesin spindle protein inhibitors. Journal of Medicinal Chemistry, 50, 4939–4952.PubMedCrossRef
124.
go back to reference Luo, L., Parrish, C. A., Nevins, N., McNulty, D. E., Chaudhari, A. M., Carson, J. D., et al. (2007). ATP-competitive inhibitors of the mitotic kinesin KSP that function via an allosteric mechanism. Nature Chemical Biology, 3, 722–726.PubMedCrossRef Luo, L., Parrish, C. A., Nevins, N., McNulty, D. E., Chaudhari, A. M., Carson, J. D., et al. (2007). ATP-competitive inhibitors of the mitotic kinesin KSP that function via an allosteric mechanism. Nature Chemical Biology, 3, 722–726.PubMedCrossRef
125.
go back to reference Jones, S. F., Plummer, E. R., Burris, H. A., Razak, A. R., Meluch, A. A., Bowen, C. J., et al. (2006). Phase I study of ispinesib in combination with carboplatin in patients with advanced solid tumors. Proceedings of the American Society of Clinical Oncology, 24, 2027. Jones, S. F., Plummer, E. R., Burris, H. A., Razak, A. R., Meluch, A. A., Bowen, C. J., et al. (2006). Phase I study of ispinesib in combination with carboplatin in patients with advanced solid tumors. Proceedings of the American Society of Clinical Oncology, 24, 2027.
126.
go back to reference Rodon, J., Till, E., Patnaik, A., Takimoto, C., Beeram, M., Williams, D., et al. (2006). Phase I study of ispinesib (SB-715992), a kinesin spindle protein inhibitor, in combination with capecitabine in patients with advanced solid tumors. European Journal of Cancer, Supplement, 4, 193.CrossRef Rodon, J., Till, E., Patnaik, A., Takimoto, C., Beeram, M., Williams, D., et al. (2006). Phase I study of ispinesib (SB-715992), a kinesin spindle protein inhibitor, in combination with capecitabine in patients with advanced solid tumors. European Journal of Cancer, Supplement, 4, 193.CrossRef
127.
go back to reference Blagden, S. P., Molife, L. R., Seebaran, A., Payne, M., Reid, A. H. M., Protheroe, A. S., et al. (2008). A phase I trial of ispinesib, a kinesin spidle protein inhibitor, with docetaxel in patients with advanced solid tumors. British Journal of Cancer, 98, 894–899.PubMedCrossRef Blagden, S. P., Molife, L. R., Seebaran, A., Payne, M., Reid, A. H. M., Protheroe, A. S., et al. (2008). A phase I trial of ispinesib, a kinesin spidle protein inhibitor, with docetaxel in patients with advanced solid tumors. British Journal of Cancer, 98, 894–899.PubMedCrossRef
128.
go back to reference Souid, A., Dubowy, R. L., Greenwald Triplett, D., Ingle, A. M., Sun, J., Blaney, S. M., et al. (2008). Pediatric phase I trial and pharmacokinetic (PK) study of ispinesib (SB715992): A children’s oncology group phase I consortium study. Proceedings of the American Society of Clinical Oncology, 26, 10014. Souid, A., Dubowy, R. L., Greenwald Triplett, D., Ingle, A. M., Sun, J., Blaney, S. M., et al. (2008). Pediatric phase I trial and pharmacokinetic (PK) study of ispinesib (SB715992): A children’s oncology group phase I consortium study. Proceedings of the American Society of Clinical Oncology, 26, 10014.
129.
go back to reference Lee, R. T., Beekman, K. E., Hussain, M., Davis, N. B., Clark, J. I., Thomas, S. P., et al. (2008). A University of Chicago consortium phase II trial of SB-715992 in advanced renal cell cancer. Clin Genitourin Cancer, 6, 21–24.PubMedCrossRef Lee, R. T., Beekman, K. E., Hussain, M., Davis, N. B., Clark, J. I., Thomas, S. P., et al. (2008). A University of Chicago consortium phase II trial of SB-715992 in advanced renal cell cancer. Clin Genitourin Cancer, 6, 21–24.PubMedCrossRef
130.
go back to reference Miller, K., Ng, C., Ang, P., Brufsky, A. M., Lee, S. C., Dees, E. C., et al. (2005). Phase II, open label study of ispinesib in Patients with locally advanced or metastatic breast cancer. San Antonio Breast Cancer Symposium, 1089. Miller, K., Ng, C., Ang, P., Brufsky, A. M., Lee, S. C., Dees, E. C., et al. (2005). Phase II, open label study of ispinesib in Patients with locally advanced or metastatic breast cancer. San Antonio Breast Cancer Symposium, 1089.
131.
go back to reference Shahin, M. S., Braly, P., Rose, P., Malpass, T., Bailey, H., Alvarez, R. D., et al. (2007). A phase II, open-label study of ispinesib (SB-715992) in patients with platimun/taxane refractory or resistant relapsed ovarian cancer. Proceedings of the American Society of Clinical Oncology, 25, 5562. Shahin, M. S., Braly, P., Rose, P., Malpass, T., Bailey, H., Alvarez, R. D., et al. (2007). A phase II, open-label study of ispinesib (SB-715992) in patients with platimun/taxane refractory or resistant relapsed ovarian cancer. Proceedings of the American Society of Clinical Oncology, 25, 5562.
132.
go back to reference Holen, K. D., Belani, C. P., Wilding, G., Ramalingam, S., Heideman, J. L., Ramanathan, R. K., et al. (2006). Phase I study to determine tolerability and pharmacokinetics (PK) of SB-743921, a novel kinesin spindle protein (KSP) inhibitor. Proceedings of the American Society of Clinical Oncology, 24, 2000. Holen, K. D., Belani, C. P., Wilding, G., Ramalingam, S., Heideman, J. L., Ramanathan, R. K., et al. (2006). Phase I study to determine tolerability and pharmacokinetics (PK) of SB-743921, a novel kinesin spindle protein (KSP) inhibitor. Proceedings of the American Society of Clinical Oncology, 24, 2000.
133.
go back to reference O’Connor, O. A., Goy, A., Orlowski, R., Hainsworth, J. D., Leonard, J. P., Afanasyev, B., et al. (2008). A phase I-II trial of the kinesin spindle protein (KSP) inhibitor SB-743921 on day 1 and 15 every 28 days in non-Hodgkin or Hodgkin lymphoma. Proceedings of the American Society of Clinical Oncology, 26, 8539. O’Connor, O. A., Goy, A., Orlowski, R., Hainsworth, J. D., Leonard, J. P., Afanasyev, B., et al. (2008). A phase I-II trial of the kinesin spindle protein (KSP) inhibitor SB-743921 on day 1 and 15 every 28 days in non-Hodgkin or Hodgkin lymphoma. Proceedings of the American Society of Clinical Oncology, 26, 8539.
134.
go back to reference Stephenson, J. J., Lewis, N., Martin, J. C., Ho, A., Li, J., Wu, K., et al. (2008). Phase I multicenter study to assess the safety, tolerability, and pharmacokinetics of AZD4877 administered twice weekly in adult patients with advanced solid malignancies. Proceedings of the American Society of Clinical Oncology, 26, 2516. Stephenson, J. J., Lewis, N., Martin, J. C., Ho, A., Li, J., Wu, K., et al. (2008). Phase I multicenter study to assess the safety, tolerability, and pharmacokinetics of AZD4877 administered twice weekly in adult patients with advanced solid malignancies. Proceedings of the American Society of Clinical Oncology, 26, 2516.
135.
go back to reference Heath, E. I., Alousi, A., Eder, J. P., Valdivieso, M., Vasist, L. S., Appleman, L., et al. (2006). A phase I dose escalation trial of ispinesib (SB-715992) administered days 1-3 of a 21-day cycle in patients with advanced solid tumors. Proceedings of the American Society of Clinical Oncology, 24, 2026. Heath, E. I., Alousi, A., Eder, J. P., Valdivieso, M., Vasist, L. S., Appleman, L., et al. (2006). A phase I dose escalation trial of ispinesib (SB-715992) administered days 1-3 of a 21-day cycle in patients with advanced solid tumors. Proceedings of the American Society of Clinical Oncology, 24, 2026.
136.
go back to reference Wood, K. W., Sakowicz, R., Goldstein, L. S. B., & Cleveland, D. W. (1997). CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell, 91, 357–366.PubMedCrossRef Wood, K. W., Sakowicz, R., Goldstein, L. S. B., & Cleveland, D. W. (1997). CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell, 91, 357–366.PubMedCrossRef
137.
go back to reference Kapoor, T. M., Lampson, M. A., Hergert, P., Cameron, L., Cimini, D., Salmon, E. D., et al. (2006). Chromosomes can congress to the metaphase plate before biorientation. Science, 311, 388–391.PubMedCrossRef Kapoor, T. M., Lampson, M. A., Hergert, P., Cameron, L., Cimini, D., Salmon, E. D., et al. (2006). Chromosomes can congress to the metaphase plate before biorientation. Science, 311, 388–391.PubMedCrossRef
138.
go back to reference Schaar, B. T., Chan, G. K., Maddox, P., Salmon, E. D., & Yen, T. J. (1997). CENP-E function at kinetochores is essential for chromosome alignment. Journal of Cell Biology, 139, 1373–1382.PubMedCrossRef Schaar, B. T., Chan, G. K., Maddox, P., Salmon, E. D., & Yen, T. J. (1997). CENP-E function at kinetochores is essential for chromosome alignment. Journal of Cell Biology, 139, 1373–1382.PubMedCrossRef
139.
go back to reference Yao, X., Abrieu, A., Zheng, Y., Sullivan, K. F., & Cleveland, D. W. (2000). CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nature Cell Biology, 2, 484–491.PubMedCrossRef Yao, X., Abrieu, A., Zheng, Y., Sullivan, K. F., & Cleveland, D. W. (2000). CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nature Cell Biology, 2, 484–491.PubMedCrossRef
140.
go back to reference Mao, Y., Abrieu, A., & Cleveland, D. W. (2003). Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1. Cell, 114, 87–98.PubMedCrossRef Mao, Y., Abrieu, A., & Cleveland, D. W. (2003). Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1. Cell, 114, 87–98.PubMedCrossRef
141.
go back to reference Yinghui, M., Ariane, A., & Cleveland, D. W. (2003). Activating and Silencing the Mitotic Checkpoint through CENP-E-Dependent Activation/Inactivation of BubR1. Cell, 114, 87–98.CrossRef Yinghui, M., Ariane, A., & Cleveland, D. W. (2003). Activating and Silencing the Mitotic Checkpoint through CENP-E-Dependent Activation/Inactivation of BubR1. Cell, 114, 87–98.CrossRef
142.
go back to reference McEwen, B. F., Chan, G. K., Zubrowski, B., Savoian, M. S., Sauer, M. T., & Yen, T. J. (2001). CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Molecular Biology of the Cell, 12, 2776–2789.PubMed McEwen, B. F., Chan, G. K., Zubrowski, B., Savoian, M. S., Sauer, M. T., & Yen, T. J. (2001). CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Molecular Biology of the Cell, 12, 2776–2789.PubMed
143.
go back to reference Putkey, F. R., Cramer, T., Morphew, M. K., Silk, A. D., Johnson, R. S., McIntosh, J. R., et al. (2002). Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Dev. Cell, 3, 351–365. Putkey, F. R., Cramer, T., Morphew, M. K., Silk, A. D., Johnson, R. S., McIntosh, J. R., et al. (2002). Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Dev. Cell, 3, 351–365.
144.
go back to reference Weaver, B. A., Bonday, Z. Q., Putkey, F. R., Kops, G. J., Silk, A. D., & Cleveland, D. W. (2003). Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. Journal of Cell Biology, 162, 551–563.PubMedCrossRef Weaver, B. A., Bonday, Z. Q., Putkey, F. R., Kops, G. J., Silk, A. D., & Cleveland, D. W. (2003). Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. Journal of Cell Biology, 162, 551–563.PubMedCrossRef
145.
go back to reference Weaver, B. A. A., Silk, A. D., Montagna, C., Pascal Verdier-Pinard, C. P., & Cleveland, D. W. (2007). Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell, 11, 25–36.PubMedCrossRef Weaver, B. A. A., Silk, A. D., Montagna, C., Pascal Verdier-Pinard, C. P., & Cleveland, D. W. (2007). Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell, 11, 25–36.PubMedCrossRef
146.
go back to reference Chua, P. R., Desai, R., Schauer, S. P., Cornwell, W., Gilmartin, A., Sutton, D., et al. (2007). Differential response of tumor cell lines to inhibition of the mitotic checkpoint regulator and mitotic kinesin, CENP-E. AACR-NCI-EORTC-2007. Chua, P. R., Desai, R., Schauer, S. P., Cornwell, W., Gilmartin, A., Sutton, D., et al. (2007). Differential response of tumor cell lines to inhibition of the mitotic checkpoint regulator and mitotic kinesin, CENP-E. AACR-NCI-EORTC-2007.
147.
go back to reference Sutton, D., Gilmartin, A. G., Kusnierz, A. M., Sung, C-M., Luo, L., Carson, J. D., et al. (2007). A potent and selective inhibitor of the mitotic kinesin CENP-E (GSK923295A) demonstrates a novel mechanism of inhibiting tumor cell proliferation and shows activity against a broad panel of human tumor cell lines in vitro. AACR-NCI-EORTC_2007. Sutton, D., Gilmartin, A. G., Kusnierz, A. M., Sung, C-M., Luo, L., Carson, J. D., et al. (2007). A potent and selective inhibitor of the mitotic kinesin CENP-E (GSK923295A) demonstrates a novel mechanism of inhibiting tumor cell proliferation and shows activity against a broad panel of human tumor cell lines in vitro. AACR-NCI-EORTC_2007.
148.
go back to reference Sutton, D., Diamond, M., Faucette, L., Giardiniere, M., Zhang, S. Y., Vidal, J., et al. (2007). GSK-923295, a potent and selective CENP-E inhibitor, has broad spectrum activity against human tumor xenografts in nude mice. AACR 2007. Sutton, D., Diamond, M., Faucette, L., Giardiniere, M., Zhang, S. Y., Vidal, J., et al. (2007). GSK-923295, a potent and selective CENP-E inhibitor, has broad spectrum activity against human tumor xenografts in nude mice. AACR 2007.
149.
go back to reference Schafer-Hales, K., Iaconelli, J., Snyder, J. P., Prussia, A., Nettles, J. H., El-Naggar, A., et al. (2007). Farnesyl transferase inhibitors impair chromosomal maintenance in cell lines and human tumors by compromising CENP-E and CENP-F function. Molecular Cancer Therapeutics, 6, 1317–1328.PubMedCrossRef Schafer-Hales, K., Iaconelli, J., Snyder, J. P., Prussia, A., Nettles, J. H., El-Naggar, A., et al. (2007). Farnesyl transferase inhibitors impair chromosomal maintenance in cell lines and human tumors by compromising CENP-E and CENP-F function. Molecular Cancer Therapeutics, 6, 1317–1328.PubMedCrossRef
150.
go back to reference Ashar, H. R., James, L., Gray, K., Carr, D., Black, S., Armstrong, L., et al. (2000). Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. Journal of Biological Chemistry, 275, 30451–30457.PubMedCrossRef Ashar, H. R., James, L., Gray, K., Carr, D., Black, S., Armstrong, L., et al. (2000). Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. Journal of Biological Chemistry, 275, 30451–30457.PubMedCrossRef
151.
go back to reference Corson, T. W., Huang, A., Tsao, M. S., & Gallie, B. L. (2005). KIF14 is a candidate oncogene in the 1q minimal region of genomic gain in multiple cancers. Oncogene, 24, 4741–4753.PubMedCrossRef Corson, T. W., Huang, A., Tsao, M. S., & Gallie, B. L. (2005). KIF14 is a candidate oncogene in the 1q minimal region of genomic gain in multiple cancers. Oncogene, 24, 4741–4753.PubMedCrossRef
152.
go back to reference Corson, T. W., & Gallie, B. L. (2006). KIF14 mRNA expression is a predictor of grade and outcome in breast cancer. International Journal of Cancer, 119, 1088–1094.CrossRef Corson, T. W., & Gallie, B. L. (2006). KIF14 mRNA expression is a predictor of grade and outcome in breast cancer. International Journal of Cancer, 119, 1088–1094.CrossRef
153.
go back to reference Corson, T. W., Zhu, C. Q., Lau, S. K., Shepherd, F. A., Tsao, M. S., & Gallie, B. L. (2007). KIF14 messenger RNA expression is independently prognostic for outcome in lung cancer. Clinical Cancer Research, 13, 3229–3234.PubMedCrossRef Corson, T. W., Zhu, C. Q., Lau, S. K., Shepherd, F. A., Tsao, M. S., & Gallie, B. L. (2007). KIF14 messenger RNA expression is independently prognostic for outcome in lung cancer. Clinical Cancer Research, 13, 3229–3234.PubMedCrossRef
154.
go back to reference Carleton, M., Mao, M., Biery, M., Warrener, P., Kim, S., Buser, C., et al. (2006). RNA interference-mediated silencing of mitotic kinesin KIF14 disrupts cell cycle progression and induces cytokinesis failure. Molecular and Cellular Biology, 26, 3853–3863.PubMedCrossRef Carleton, M., Mao, M., Biery, M., Warrener, P., Kim, S., Buser, C., et al. (2006). RNA interference-mediated silencing of mitotic kinesin KIF14 disrupts cell cycle progression and induces cytokinesis failure. Molecular and Cellular Biology, 26, 3853–3863.PubMedCrossRef
155.
go back to reference Gruneberg, U., Neef, R., Li, X., Chan, E. H., Chalamalasetty, R. B., Nigg, E. A., et al. (2006). KIF14 and citron kinase act together to promote efficient cytokinesis. Journal of Cell Biology, 172, 363–372.PubMedCrossRef Gruneberg, U., Neef, R., Li, X., Chan, E. H., Chalamalasetty, R. B., Nigg, E. A., et al. (2006). KIF14 and citron kinase act together to promote efficient cytokinesis. Journal of Cell Biology, 172, 363–372.PubMedCrossRef
156.
go back to reference Kwon, M., Godinho, S. A., Chandhok, N. S., Ganem, N. J., Azioune, A., Thery, M., et al. (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes & Development, 22, 2189–2203.CrossRef Kwon, M., Godinho, S. A., Chandhok, N. S., Ganem, N. J., Azioune, A., Thery, M., et al. (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes & Development, 22, 2189–2203.CrossRef
157.
go back to reference Mayr, I. M., Hummer, S., Bormann, J., Gruner, T., Adio, S., Woehlke, G., et al. (2007). The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Current Biology, 17, 488–498.PubMedCrossRef Mayr, I. M., Hummer, S., Bormann, J., Gruner, T., Adio, S., Woehlke, G., et al. (2007). The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Current Biology, 17, 488–498.PubMedCrossRef
158.
go back to reference Stumpf, J., von Dassow, G., Wagenbach, M., Asbury, C., & Wordeman, L. (2008). The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Developments in Cell, 14, 252–262.CrossRef Stumpf, J., von Dassow, G., Wagenbach, M., Asbury, C., & Wordeman, L. (2008). The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Developments in Cell, 14, 252–262.CrossRef
Metadata
Title
Kinesin motor proteins as targets for cancer therapy
Authors
Dennis Huszar
Maria-Elena Theoclitou
Jeffrey Skolnik
Ronald Herbst
Publication date
01-06-2009
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1-2/2009
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-009-9185-8

Other articles of this Issue 1-2/2009

Cancer and Metastasis Reviews 1-2/2009 Go to the issue

EditorialNotes

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine