Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | Kidney Cancer | Research

Immune regulation and prognosis indicating ability of a newly constructed multi-genes containing signature in clear cell renal cell carcinoma

Authors: Ziwei Gui, Juan Du, Nan Wu, Ningning Shen, Zhiqing Yang, Huijun Yang, Xuzhi Wang, Na Zhao, Zixin Zeng, Rong Wei, Wenxia Ma, Chen Wang

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Background

Clear cell renal cell carcinoma (ccRCC) is the most common renal malignancy, although newly developing targeted therapy and immunotherapy have been showing promising effects in clinical treatment, the effective biomarkers for immune response prediction are still lacking. The study is to construct a gene signature according to ccRCC immune cells infiltration landscape, thus aiding clinical prediction of patients response to immunotherapy.

Methods

Firstly, ccRCC transcriptome expression profiles from Gene Expression Omnibus (GEO) database as well as immune related genes information from IMMPORT database were combine applied to identify the differently expressed meanwhile immune related candidate genes in ccRCC comparing to normal control samples. Then, based on protein–protein interaction network (PPI) and following module analysis of the candidate genes, a hub gene cluster was further identified for survival analysis. Further, LASSO analysis was applied to construct a signature which was in succession assessed with Kaplan–Meier survival, Cox regression and ROC curve analysis. Moreover, ccRCC patients were divided as high and low-risk groups based on the gene signature followed by the difference estimation of immune treatment response and exploration of related immune cells infiltration by TIDE and Cibersort analysis respectively among the two groups of patients.

Results

Based on GEO and IMMPORT databases, a total of 269 differently expressed meanwhile immune related genes in ccRCC were identified, further PPI network and module analysis of the 269 genes highlighted a 46 genes cluster. Next step, Kaplan–Meier and Cox regression analysis of the 46 genes identified 4 genes that were supported to be independent prognosis indicators, and a gene signature was constructed based on the 4 genes. Furthermore, after assessing its prognosis indicating ability by both Kaplan–Meier and Cox regression analysis, immune relation of the signature was evaluated including its association with environment immune score, Immune checkpoint inhibitors expression as well as immune cells infiltration. Together, immune predicting ability of the signature was preliminary explored.

Conclusions

Based on ccRCC genes expression profiles and multiple bioinformatic analysis, a 4 genes containing signature was constructed and the immune regulation of the signature was preliminary explored. Although more detailed experiments and clinical trials are needed before potential clinical use of the signature, the results shall provide meaningful insight into further ccRCC immune researches.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wu J, Xu WH, Wei Y, Qu YY, Zhang HL, Ye DW. An integrated score and nomogram combining clinical and immunohistochemistry factors to predict high isup grade clear cell renal cell carcinoma. Front Oncol. 2018;8:634.CrossRefPubMedPubMedCentral Wu J, Xu WH, Wei Y, Qu YY, Zhang HL, Ye DW. An integrated score and nomogram combining clinical and immunohistochemistry factors to predict high isup grade clear cell renal cell carcinoma. Front Oncol. 2018;8:634.CrossRefPubMedPubMedCentral
2.
go back to reference Browning L, Colling R, Verrill C. WHO/ISUP grading of clear cell renal cell carcinoma and papillary renal cell carcinoma; validation of grading on the digital pathology platform and perspectives on reproducibility of grade. Diagn Pathol. 2021;16(1):75.CrossRefPubMedPubMedCentral Browning L, Colling R, Verrill C. WHO/ISUP grading of clear cell renal cell carcinoma and papillary renal cell carcinoma; validation of grading on the digital pathology platform and perspectives on reproducibility of grade. Diagn Pathol. 2021;16(1):75.CrossRefPubMedPubMedCentral
3.
go back to reference Stone L. Kidney cancer: activation of oncogenes driven by VHL loss in ccRCC. Nat Rev Urol. 2017;14(11):637.CrossRefPubMed Stone L. Kidney cancer: activation of oncogenes driven by VHL loss in ccRCC. Nat Rev Urol. 2017;14(11):637.CrossRefPubMed
4.
go back to reference Expert Group of G, Urological Pathology CSoP. [Recent advances and expert consensus on molecular pathology of renal cell carcinomas (2020 version)]. Zhonghua Bing Li Xue Za Zhi. 2020;49(12):1232–41. Expert Group of G, Urological Pathology CSoP. [Recent advances and expert consensus on molecular pathology of renal cell carcinomas (2020 version)]. Zhonghua Bing Li Xue Za Zhi. 2020;49(12):1232–41.
5.
go back to reference Williamson SR, Gill AJ, Argani P, Chen YB, Egevad L, Kristiansen G, Grignon DJ, Hes O. Report from the International Society of Urological Pathology (ISUP) consultation conference on molecular pathology of urogenital cancers: III: molecular pathology of kidney cancer. Am J Surg Pathol. 2020;44(7):e47–65.CrossRefPubMedPubMedCentral Williamson SR, Gill AJ, Argani P, Chen YB, Egevad L, Kristiansen G, Grignon DJ, Hes O. Report from the International Society of Urological Pathology (ISUP) consultation conference on molecular pathology of urogenital cancers: III: molecular pathology of kidney cancer. Am J Surg Pathol. 2020;44(7):e47–65.CrossRefPubMedPubMedCentral
6.
go back to reference Ibragimova I, Maradeo ME, Dulaimi E, Cairns P. Aberrant promoter hypermethylation of PBRM1, BAP1, SETD2, KDM6A and other chromatin-modifying genes is absent or rare in clear cell RCC. Epigenetics. 2013;8(5):486–93.CrossRefPubMedPubMedCentral Ibragimova I, Maradeo ME, Dulaimi E, Cairns P. Aberrant promoter hypermethylation of PBRM1, BAP1, SETD2, KDM6A and other chromatin-modifying genes is absent or rare in clear cell RCC. Epigenetics. 2013;8(5):486–93.CrossRefPubMedPubMedCentral
7.
go back to reference Wi YC, Moon A, Jung MJ, Kim Y, Bang SS, Jang K, Paik SS, Shin SJ. Loss of nuclear BAP1 expression is associated with high WHO/ISUP grade in clear cell renal cell carcinoma. J Pathol Transl Med. 2018;52(6):378–85.CrossRefPubMedPubMedCentral Wi YC, Moon A, Jung MJ, Kim Y, Bang SS, Jang K, Paik SS, Shin SJ. Loss of nuclear BAP1 expression is associated with high WHO/ISUP grade in clear cell renal cell carcinoma. J Pathol Transl Med. 2018;52(6):378–85.CrossRefPubMedPubMedCentral
8.
go back to reference Wang Y, Guo X, Bray MJ, Ding Z, Zhao Z. An integrative genomics approach for identifying novel functional consequences of PBRM1 truncated mutations in clear cell renal cell carcinoma (ccRCC). BMC Genomics. 2016;17(Suppl 7):515.CrossRefPubMedPubMedCentral Wang Y, Guo X, Bray MJ, Ding Z, Zhao Z. An integrative genomics approach for identifying novel functional consequences of PBRM1 truncated mutations in clear cell renal cell carcinoma (ccRCC). BMC Genomics. 2016;17(Suppl 7):515.CrossRefPubMedPubMedCentral
9.
go back to reference Srivastava A, Doppalapudi SK, Patel HV, Srinivasan R, Singer EA. The roaring 2020s: a new decade of systemic therapy for renal cell carcinoma. Curr Opin Oncol. 2022;34(3):234–42.CrossRefPubMedPubMedCentral Srivastava A, Doppalapudi SK, Patel HV, Srinivasan R, Singer EA. The roaring 2020s: a new decade of systemic therapy for renal cell carcinoma. Curr Opin Oncol. 2022;34(3):234–42.CrossRefPubMedPubMedCentral
11.
go back to reference Doppalapudi SK, Leopold ZR, Thaper A, Kaldany A, Chua K, Patel HV, Srivastava A, Singer EA. Clearing up clear cell: clarifying the immuno-oncology treatment landscape for metastatic clear cell RCC. Cancers (Basel). 2021;13(16):4140.CrossRefPubMed Doppalapudi SK, Leopold ZR, Thaper A, Kaldany A, Chua K, Patel HV, Srivastava A, Singer EA. Clearing up clear cell: clarifying the immuno-oncology treatment landscape for metastatic clear cell RCC. Cancers (Basel). 2021;13(16):4140.CrossRefPubMed
12.
go back to reference Rini BI, Pal SK, Escudier BJ, Atkins MB, Hutson TE, Porta C, Verzoni E, Needle MN, McDermott DF. Tivozanib versus sorafenib in patients with advanced renal cell carcinoma (TIVO-3): a phase 3, multicentre, randomised, controlled, open-label study. Lancet Oncol. 2020;21(1):95–104.CrossRefPubMed Rini BI, Pal SK, Escudier BJ, Atkins MB, Hutson TE, Porta C, Verzoni E, Needle MN, McDermott DF. Tivozanib versus sorafenib in patients with advanced renal cell carcinoma (TIVO-3): a phase 3, multicentre, randomised, controlled, open-label study. Lancet Oncol. 2020;21(1):95–104.CrossRefPubMed
13.
go back to reference Schmidt AL, Tabakin AL, Singer EA, Choueiri TK, McKay RR. Next steps: sequencing therapies in metastatic kidney cancer in the contemporary era. Am Soc Clin Oncol Educ Book. 2021;41:1–11.PubMed Schmidt AL, Tabakin AL, Singer EA, Choueiri TK, McKay RR. Next steps: sequencing therapies in metastatic kidney cancer in the contemporary era. Am Soc Clin Oncol Educ Book. 2021;41:1–11.PubMed
14.
go back to reference Zhu J, Armstrong AJ, Friedlander TW, Kim W, Pal SK, George DJ, Zhang T. Biomarkers of immunotherapy in urothelial and renal cell carcinoma: PD-L1, tumor mutational burden, and beyond. J Immunother Cancer. 2018;6(1):4.CrossRefPubMedPubMedCentral Zhu J, Armstrong AJ, Friedlander TW, Kim W, Pal SK, George DJ, Zhang T. Biomarkers of immunotherapy in urothelial and renal cell carcinoma: PD-L1, tumor mutational burden, and beyond. J Immunother Cancer. 2018;6(1):4.CrossRefPubMedPubMedCentral
15.
go back to reference Dumitru A, Dobrica EC, Croitoru A, Cretoiu SM, Gaspar BS. Focus on PD-1/PD-L1 as a therapeutic target in ovarian cancer. Int J Mol Sci. 2022;23(20):12067.CrossRefPubMedPubMedCentral Dumitru A, Dobrica EC, Croitoru A, Cretoiu SM, Gaspar BS. Focus on PD-1/PD-L1 as a therapeutic target in ovarian cancer. Int J Mol Sci. 2022;23(20):12067.CrossRefPubMedPubMedCentral
16.
go back to reference Nunez Abad M, Calabuig-Farinas S, de Lobo Mena M, Torres-Martinez S, Garcia Gonzalez C, Garcia Garcia JA, Iranzo Gonzalez-Cruz V, Camps Herrero C. Programmed death-ligand 1 (PD-L1) as immunotherapy biomarker in breast cancer. Cancers (Basel). 2022;14(2):307.CrossRefPubMed Nunez Abad M, Calabuig-Farinas S, de Lobo Mena M, Torres-Martinez S, Garcia Gonzalez C, Garcia Garcia JA, Iranzo Gonzalez-Cruz V, Camps Herrero C. Programmed death-ligand 1 (PD-L1) as immunotherapy biomarker in breast cancer. Cancers (Basel). 2022;14(2):307.CrossRefPubMed
17.
go back to reference Deng H, Zhao Y, Cai X, Chen H, Cheng B, Zhong R, Li F, Xiong S, Li J, Liu J, et al. PD-L1 expression and Tumor mutation burden as Pathological response biomarkers of Neoadjuvant immunotherapy for early-stage non-small cell lung cancer: a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2022;170:103582.CrossRefPubMed Deng H, Zhao Y, Cai X, Chen H, Cheng B, Zhong R, Li F, Xiong S, Li J, Liu J, et al. PD-L1 expression and Tumor mutation burden as Pathological response biomarkers of Neoadjuvant immunotherapy for early-stage non-small cell lung cancer: a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2022;170:103582.CrossRefPubMed
18.
go back to reference Motzer RJ, Escudier B, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Plimack ER, Procopio G, McDermott DF, et al. Nivolumab versus everolimus in patients with advanced renal cell carcinoma: updated results with long-term follow-up of the randomized, open-label, phase 3 checkmate 025 trial. Cancer. 2020;126(18):4156–67.CrossRefPubMed Motzer RJ, Escudier B, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Plimack ER, Procopio G, McDermott DF, et al. Nivolumab versus everolimus in patients with advanced renal cell carcinoma: updated results with long-term follow-up of the randomized, open-label, phase 3 checkmate 025 trial. Cancer. 2020;126(18):4156–67.CrossRefPubMed
19.
go back to reference Tomita Y, Fukasawa S, Shinohara N, Kitamura H, Oya M, Eto M, Tanabe K, Saito M, Kimura G, Yonese J, et al. Nivolumab versus everolimus in advanced renal cell carcinoma: Japanese subgroup 3-year follow-up analysis from the phase III checkmate 025 study. Jpn J Clin Oncol. 2019;49(6):506–14.CrossRefPubMed Tomita Y, Fukasawa S, Shinohara N, Kitamura H, Oya M, Eto M, Tanabe K, Saito M, Kimura G, Yonese J, et al. Nivolumab versus everolimus in advanced renal cell carcinoma: Japanese subgroup 3-year follow-up analysis from the phase III checkmate 025 study. Jpn J Clin Oncol. 2019;49(6):506–14.CrossRefPubMed
20.
go back to reference Motzer RJ, Choueiri TK, McDermott DF, Powles T, Vano YA, Gupta S, Yao J, Han C, Ammar R, Papillon-Cavanagh S, et al. Biomarker analysis from CheckMate 214: nivolumab plus ipilimumab versus sunitinib in renal cell carcinoma. J Immunother Cancer. 2022;10(3):e004316. https://doi.org/10.1136/jitc-2021-004316. Motzer RJ, Choueiri TK, McDermott DF, Powles T, Vano YA, Gupta S, Yao J, Han C, Ammar R, Papillon-Cavanagh S, et al. Biomarker analysis from CheckMate 214: nivolumab plus ipilimumab versus sunitinib in renal cell carcinoma. J Immunother Cancer. 2022;10(3):e004316. https://​doi.​org/​10.​1136/​jitc-2021-004316.
22.
go back to reference Powles T, Plimack ER, Soulieres D, Waddell T, Stus V, Gafanov R, Nosov D, Pouliot F, Melichar B, Vynnychenko I, et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): extended follow-up from a randomised, open-label, phase 3 trial. Lancet Oncol. 2020;21(12):1563–73.CrossRefPubMed Powles T, Plimack ER, Soulieres D, Waddell T, Stus V, Gafanov R, Nosov D, Pouliot F, Melichar B, Vynnychenko I, et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): extended follow-up from a randomised, open-label, phase 3 trial. Lancet Oncol. 2020;21(12):1563–73.CrossRefPubMed
23.
go back to reference Bedke J, Stuhler V. KEYNOTE-426: axitinib plus pembrolizumab vs sunitinib in the first-line treatment of metastatic renal cell carcinoma. Urologe A. 2020;59(7):841–2.CrossRefPubMed Bedke J, Stuhler V. KEYNOTE-426: axitinib plus pembrolizumab vs sunitinib in the first-line treatment of metastatic renal cell carcinoma. Urologe A. 2020;59(7):841–2.CrossRefPubMed
24.
go back to reference Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, Barron DA, Zehir A, Jordan EJ, Omuro A, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019;51(2):202–6.CrossRefPubMedPubMedCentral Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, Barron DA, Zehir A, Jordan EJ, Omuro A, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019;51(2):202–6.CrossRefPubMedPubMedCentral
25.
go back to reference Raimondi A, Sepe P, Zattarin E, Mennitto A, Stellato M, Claps M, Guadalupi V, Verzoni E, de Braud F, Procopio G. Predictive biomarkers of response to immunotherapy in metastatic renal cell cancer. Front Oncol. 2020;10:1644.CrossRefPubMedPubMedCentral Raimondi A, Sepe P, Zattarin E, Mennitto A, Stellato M, Claps M, Guadalupi V, Verzoni E, de Braud F, Procopio G. Predictive biomarkers of response to immunotherapy in metastatic renal cell cancer. Front Oncol. 2020;10:1644.CrossRefPubMedPubMedCentral
41.
go back to reference Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587–92.CrossRefPubMed Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587–92.CrossRefPubMed
43.
go back to reference Wang X, Wu S, Liu F, Ke D, Wang X, Pan D, Xu W, Zhou L, He W. An immunogenic cell death-related classification predicts prognosis and response to immunotherapy in head and neck squamous cell carcinoma. Front Immunol. 2021;12:781466.CrossRefPubMedPubMedCentral Wang X, Wu S, Liu F, Ke D, Wang X, Pan D, Xu W, Zhou L, He W. An immunogenic cell death-related classification predicts prognosis and response to immunotherapy in head and neck squamous cell carcinoma. Front Immunol. 2021;12:781466.CrossRefPubMedPubMedCentral
45.
go back to reference Labriola MK, Zhu J, Gupta RT, McCall S, Jackson J, Kong EF, White JR, Cerqueira G, Gerding K, Simmons JK, et al. Characterization of tumor mutation burden, PD-L1 and DNA repair genes to assess relationship to immune checkpoint inhibitors response in metastatic renal cell carcinoma. J Immunother Cancer. 2020;8(1):e000319.CrossRefPubMedPubMedCentral Labriola MK, Zhu J, Gupta RT, McCall S, Jackson J, Kong EF, White JR, Cerqueira G, Gerding K, Simmons JK, et al. Characterization of tumor mutation burden, PD-L1 and DNA repair genes to assess relationship to immune checkpoint inhibitors response in metastatic renal cell carcinoma. J Immunother Cancer. 2020;8(1):e000319.CrossRefPubMedPubMedCentral
46.
go back to reference Kotecha RR, Motzer RJ, Voss MH. Towards individualized therapy for metastatic renal cell carcinoma. Nat Rev Clin Oncol. 2019;16(10):621–33.CrossRefPubMed Kotecha RR, Motzer RJ, Voss MH. Towards individualized therapy for metastatic renal cell carcinoma. Nat Rev Clin Oncol. 2019;16(10):621–33.CrossRefPubMed
47.
go back to reference Long J, Wang A, Bai Y, Lin J, Yang X, Wang D, Yang X, Jiang Y, Zhao H. Development and validation of a TP53-associated immune prognostic model for hepatocellular carcinoma. EBioMedicine. 2019;42:363–74.CrossRefPubMedPubMedCentral Long J, Wang A, Bai Y, Lin J, Yang X, Wang D, Yang X, Jiang Y, Zhao H. Development and validation of a TP53-associated immune prognostic model for hepatocellular carcinoma. EBioMedicine. 2019;42:363–74.CrossRefPubMedPubMedCentral
48.
go back to reference Mei W, Jin L, Zhang B, Sun X, Yang G, Li S, Ye L. Computer classification and construction of a novel prognostic signature based on moonlighting genes in prostate cancer. Front Oncol. 2022;12:982267.CrossRefPubMedPubMedCentral Mei W, Jin L, Zhang B, Sun X, Yang G, Li S, Ye L. Computer classification and construction of a novel prognostic signature based on moonlighting genes in prostate cancer. Front Oncol. 2022;12:982267.CrossRefPubMedPubMedCentral
49.
go back to reference Yin Y, Li S, Liang X, Li K, Xie M, Hu B. Construction and validation of an oxaliplatin-resistant gene signature in colorectal cancer patients who underwent chemotherapy. Pharmaceuticals (Basel). 2022;15(9):1139.CrossRefPubMed Yin Y, Li S, Liang X, Li K, Xie M, Hu B. Construction and validation of an oxaliplatin-resistant gene signature in colorectal cancer patients who underwent chemotherapy. Pharmaceuticals (Basel). 2022;15(9):1139.CrossRefPubMed
50.
go back to reference Gao J, Huo S, Zhang Y, Zhao Z, Pan H, Liu X. Construction of ovarian metastasis-related immune signature predicting prognosis of gastric cancer patients. Cancer Med. 2022;12(1):913–29.CrossRefPubMedPubMedCentral Gao J, Huo S, Zhang Y, Zhao Z, Pan H, Liu X. Construction of ovarian metastasis-related immune signature predicting prognosis of gastric cancer patients. Cancer Med. 2022;12(1):913–29.CrossRefPubMedPubMedCentral
51.
go back to reference Zhang X, Wang Z, Zeng Z, Shen N, Wang B, Zhang Y, Shen H, Lu W, Wei R, Ma W, et al. Bioinformatic analysis identifying FGF1 gene as a new prognostic indicator in clear cell renal cell carcinoma. Cancer Cell Int. 2021;21(1):222.CrossRefPubMedPubMedCentral Zhang X, Wang Z, Zeng Z, Shen N, Wang B, Zhang Y, Shen H, Lu W, Wei R, Ma W, et al. Bioinformatic analysis identifying FGF1 gene as a new prognostic indicator in clear cell renal cell carcinoma. Cancer Cell Int. 2021;21(1):222.CrossRefPubMedPubMedCentral
52.
go back to reference Wei R, Qi G, Zeng Z, Shen N, Wang Z, Shen H, Gao L, Song C, Ma W, Wang C. IMUP and GPRC5A: two newly identified risk score indicators in pancreatic ductal adenocarcinoma. Cancer Cell Int. 2021;21(1):620.CrossRefPubMedPubMedCentral Wei R, Qi G, Zeng Z, Shen N, Wang Z, Shen H, Gao L, Song C, Ma W, Wang C. IMUP and GPRC5A: two newly identified risk score indicators in pancreatic ductal adenocarcinoma. Cancer Cell Int. 2021;21(1):620.CrossRefPubMedPubMedCentral
53.
go back to reference Ma W, Wang B, Zhang Y, Wang Z, Niu D, Chen S, Zhang Z, Shen N, Han W, Zhang X, et al. Prognostic significance of TOP2A in non-small cell lung cancer revealed by bioinformatic analysis. Cancer Cell Int. 2019;19:239.CrossRefPubMedPubMedCentral Ma W, Wang B, Zhang Y, Wang Z, Niu D, Chen S, Zhang Z, Shen N, Han W, Zhang X, et al. Prognostic significance of TOP2A in non-small cell lung cancer revealed by bioinformatic analysis. Cancer Cell Int. 2019;19:239.CrossRefPubMedPubMedCentral
54.
go back to reference Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8.CrossRefPubMed Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8.CrossRefPubMed
55.
go back to reference Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70.
56.
57.
go back to reference Li Y, Li F, Jiang F, Lv X, Zhang R, Lu A, Zhang G. A mini-review for cancer immunotherapy: molecular understanding of PD-1/PD-L1 pathway & translational blockade of immune checkpoints. Int J Mol Sci. 2016;17(7):1151.CrossRefPubMedPubMedCentral Li Y, Li F, Jiang F, Lv X, Zhang R, Lu A, Zhang G. A mini-review for cancer immunotherapy: molecular understanding of PD-1/PD-L1 pathway & translational blockade of immune checkpoints. Int J Mol Sci. 2016;17(7):1151.CrossRefPubMedPubMedCentral
59.
go back to reference Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008;8(6):467–77.CrossRefPubMed Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008;8(6):467–77.CrossRefPubMed
60.
61.
62.
go back to reference Kalkusova K, Smite S, Darras E, Taborska P, Stakheev D, Vannucci L, Bartunkova J, Smrz D. Mast cells and dendritic cells as cellular immune checkpoints in immunotherapy of solid tumors. Int J Mol Sci. 2022;23(19):11080.CrossRefPubMedPubMedCentral Kalkusova K, Smite S, Darras E, Taborska P, Stakheev D, Vannucci L, Bartunkova J, Smrz D. Mast cells and dendritic cells as cellular immune checkpoints in immunotherapy of solid tumors. Int J Mol Sci. 2022;23(19):11080.CrossRefPubMedPubMedCentral
63.
Metadata
Title
Immune regulation and prognosis indicating ability of a newly constructed multi-genes containing signature in clear cell renal cell carcinoma
Authors
Ziwei Gui
Juan Du
Nan Wu
Ningning Shen
Zhiqing Yang
Huijun Yang
Xuzhi Wang
Na Zhao
Zixin Zeng
Rong Wei
Wenxia Ma
Chen Wang
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11150-4

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine