Skip to main content
Top
Published in: Cancer Cell International 1/2022

Open Access 01-12-2022 | Kidney Cancer | Review

Clinical potential of PD-1/PD-L1 blockade therapy for renal cell carcinoma (RCC): a rapidly evolving strategy

Authors: Mohammadsaleh Jahangir, Omid Yazdani, Mohammad Saeed Kahrizi, Sara Soltanzadeh, Hamidreza Javididashtbayaz, Azam Mivefroshan, Saba Ilkhani, Romina Esbati

Published in: Cancer Cell International | Issue 1/2022

Login to get access

Abstract

Programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade therapy has become a game-changing therapeutic approach revolutionizing the treatment setting of human malignancies, such as renal cell carcinoma (RCC). Despite the remarkable clinical activity of anti-PD-1 or anti-PD-L1 monoclonal antibodies, only a small portion of patients exhibit a positive response to PD-1/PD-L1 blockade therapy, and the primary or acquired resistance might ultimately favor cancer development in patients with clinical responses. In light of this, recent reports have signified that the addition of other therapeutic modalities to PD-1/PD-L1 blockade therapy might improve clinical responses in advanced RCC patients. Until, combination therapy with PD-1/PD-L1 blockade therapy plus cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitor (ipilimumab) or various vascular endothelial growth factor receptors (VEGFRs) inhibitors axitinib, such as axitinib and cabozantinib, has been approved by the United States Food and Drug Administration (FDA) as first-line treatment for metastatic RCC. In the present review, we have focused on the therapeutic benefits of the PD-1/PD-L1 blockade therapy as a single agent or in combination with other conventional or innovative targeted therapies in RCC patients. We also offer a glimpse into the well-determined prognostic factor associated with the clinical response of RCC patients to PD-1/PD-L1 blockade therapy.
Literature
1.
go back to reference Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, Heng DY, et al. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3(1):1–19.CrossRef Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, Heng DY, et al. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3(1):1–19.CrossRef
2.
go back to reference Turco F, Tucci M, Di Stefano RF, Samuelly A, Bungaro M, Audisio M, Pisano C, et al. Renal cell carcinoma (RCC): fatter is better? A review on the role of obesity in RCC. Endocr Relat Cancer. 2021;28(7):R207–16.CrossRef Turco F, Tucci M, Di Stefano RF, Samuelly A, Bungaro M, Audisio M, Pisano C, et al. Renal cell carcinoma (RCC): fatter is better? A review on the role of obesity in RCC. Endocr Relat Cancer. 2021;28(7):R207–16.CrossRef
3.
go back to reference Fottner A, Szalantzy M, Wirthmann L, Stähler M, Baur-Melnyk A, Jansson V, Dürr HR. Bone metastases from renal cell carcinoma: patient survival after surgical treatment. BMC Musculoskelet Disord. 2010;11(1):1–6.CrossRef Fottner A, Szalantzy M, Wirthmann L, Stähler M, Baur-Melnyk A, Jansson V, Dürr HR. Bone metastases from renal cell carcinoma: patient survival after surgical treatment. BMC Musculoskelet Disord. 2010;11(1):1–6.CrossRef
4.
go back to reference Jackson RJ, Gokaslan ZL, Arvinloh S-C. Metastatic renal cell carcinoma of the spine: surgical treatment and results. J Neurosurg Spine. 2001;94(1):18–24.CrossRef Jackson RJ, Gokaslan ZL, Arvinloh S-C. Metastatic renal cell carcinoma of the spine: surgical treatment and results. J Neurosurg Spine. 2001;94(1):18–24.CrossRef
5.
go back to reference Fogli S, Porta C, Del Re M, Crucitta S, Gianfilippo G, Danesi R, Rini BI, et al. Optimizing treatment of renal cell carcinoma with VEGFR-TKIs: a comparison of clinical pharmacology and drug-drug interactions of anti-angiogenic drugs. Cancer Treat Rev. 2020;84: 101966.CrossRef Fogli S, Porta C, Del Re M, Crucitta S, Gianfilippo G, Danesi R, Rini BI, et al. Optimizing treatment of renal cell carcinoma with VEGFR-TKIs: a comparison of clinical pharmacology and drug-drug interactions of anti-angiogenic drugs. Cancer Treat Rev. 2020;84: 101966.CrossRef
6.
go back to reference Brighi N, Farolfi A, Conteduca V, Gurioli G, Gargiulo S, Gallà V, Schepisi G, et al. The interplay between inflammation, anti-angiogenic agents, and immune checkpoint inhibitors: perspectives for renal cell cancer treatment. Cancers. 2019;11(12):1935.CrossRef Brighi N, Farolfi A, Conteduca V, Gurioli G, Gargiulo S, Gallà V, Schepisi G, et al. The interplay between inflammation, anti-angiogenic agents, and immune checkpoint inhibitors: perspectives for renal cell cancer treatment. Cancers. 2019;11(12):1935.CrossRef
7.
go back to reference Virumbrales-Muñoz M, Ayuso JM, Loken JR, Denecke KM, Rehman S, Skala MC, Abel EJ, et al. Microphysiological model of renal cell carcinoma to inform anti-angiogenic therapy. Biomaterials. 2022;283: 121454.CrossRef Virumbrales-Muñoz M, Ayuso JM, Loken JR, Denecke KM, Rehman S, Skala MC, Abel EJ, et al. Microphysiological model of renal cell carcinoma to inform anti-angiogenic therapy. Biomaterials. 2022;283: 121454.CrossRef
8.
go back to reference Massari F, Rizzo A, Mollica V, Rosellini M, Marchetti A, Ardizzoni A, Santoni M. Immune-based combinations for the treatment of metastatic renal cell carcinoma: a meta-analysis of randomised clinical trials. Eur J Cancer. 2021;154:120–7.CrossRef Massari F, Rizzo A, Mollica V, Rosellini M, Marchetti A, Ardizzoni A, Santoni M. Immune-based combinations for the treatment of metastatic renal cell carcinoma: a meta-analysis of randomised clinical trials. Eur J Cancer. 2021;154:120–7.CrossRef
9.
go back to reference Şenbabaoğlu Y, Gejman RS, Winer AG, Liu M, Van Allen EM, de Velasco G, Miao D, et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 2016;17(1):231.CrossRef Şenbabaoğlu Y, Gejman RS, Winer AG, Liu M, Van Allen EM, de Velasco G, Miao D, et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 2016;17(1):231.CrossRef
10.
go back to reference Geissler K, Fornara P, Lautenschläger C, Holzhausen HJ, Seliger B, Riemann D. Immune signature of tumor infiltrating immune cells in renal cancer. Oncoimmunology. 2015;4(1): e985082.CrossRef Geissler K, Fornara P, Lautenschläger C, Holzhausen HJ, Seliger B, Riemann D. Immune signature of tumor infiltrating immune cells in renal cancer. Oncoimmunology. 2015;4(1): e985082.CrossRef
11.
go back to reference Toor SM, Nair VS, Decock J, Elkord E. Immune checkpoints in the tumor microenvironment. Seminars Cancer Biol. 2020;65:1.CrossRef Toor SM, Nair VS, Decock J, Elkord E. Immune checkpoints in the tumor microenvironment. Seminars Cancer Biol. 2020;65:1.CrossRef
12.
go back to reference Toor SM, Murshed K, Al-Dhaheri M, Khawar M, Abu Nada M, Elkord E. Immune checkpoints in circulating and tumor-infiltrating CD4+ T cell subsets in colorectal cancer patients. Front Immunol. 2019;10:2936.CrossRef Toor SM, Murshed K, Al-Dhaheri M, Khawar M, Abu Nada M, Elkord E. Immune checkpoints in circulating and tumor-infiltrating CD4+ T cell subsets in colorectal cancer patients. Front Immunol. 2019;10:2936.CrossRef
13.
go back to reference Vafaei S, Zekiy AO, Khanamir RA, Zaman BA, Ghayourvahdat A, Azimizonuzi H, Zamani M. Combination therapy with immune checkpoint inhibitors (ICIs); a new frontier. Cancer Cell Int. 2022;22(1):2.CrossRef Vafaei S, Zekiy AO, Khanamir RA, Zaman BA, Ghayourvahdat A, Azimizonuzi H, Zamani M. Combination therapy with immune checkpoint inhibitors (ICIs); a new frontier. Cancer Cell Int. 2022;22(1):2.CrossRef
14.
go back to reference Naimi A, Mohammed RN, Raji A, Chupradit S, Yumashev AV, Suksatan W, Shalaby MN, et al. Tumor immunotherapies by immune checkpoint inhibitors (ICIs); the pros and cons. Cell Commun Signal. 2022;20(1):44.CrossRef Naimi A, Mohammed RN, Raji A, Chupradit S, Yumashev AV, Suksatan W, Shalaby MN, et al. Tumor immunotherapies by immune checkpoint inhibitors (ICIs); the pros and cons. Cell Commun Signal. 2022;20(1):44.CrossRef
15.
go back to reference Atkins M, Clark J, Quinn D. Immune checkpoint inhibitors in advanced renal cell carcinoma: experience to date and future directions. Ann Oncol. 2017;28(7):1484–94.CrossRef Atkins M, Clark J, Quinn D. Immune checkpoint inhibitors in advanced renal cell carcinoma: experience to date and future directions. Ann Oncol. 2017;28(7):1484–94.CrossRef
16.
go back to reference Albiges L, Powles T, Staehler M, Bensalah K, Giles RH, Hora M, Kuczyk MA, et al. Updated European Association of Urology guidelines on renal cell carcinoma: immune checkpoint inhibition is the new backbone in first-line treatment of metastatic clear-cell renal cell carcinoma. Eur Urol. 2019;76(2):151–6.CrossRef Albiges L, Powles T, Staehler M, Bensalah K, Giles RH, Hora M, Kuczyk MA, et al. Updated European Association of Urology guidelines on renal cell carcinoma: immune checkpoint inhibition is the new backbone in first-line treatment of metastatic clear-cell renal cell carcinoma. Eur Urol. 2019;76(2):151–6.CrossRef
17.
go back to reference Brinkmann O, Bruns F, Prott F, Hertle L. Possible synergy of radiotherapy and chemo-immunotherapy in metastatic renal cell carcinoma (RCC). Anticancer Res. 1999;19(2C):1583–7. Brinkmann O, Bruns F, Prott F, Hertle L. Possible synergy of radiotherapy and chemo-immunotherapy in metastatic renal cell carcinoma (RCC). Anticancer Res. 1999;19(2C):1583–7.
18.
go back to reference De Riese W, Goldenberg K, Allhoff E, Stief C, Schlick R, Liedke S, Jonas U. Metastatic renal cell carcinoma (RCC): spontaneous regression, long-term survival and late recurrence. Int Urol Nephrol. 1991;23(1):13–25.CrossRef De Riese W, Goldenberg K, Allhoff E, Stief C, Schlick R, Liedke S, Jonas U. Metastatic renal cell carcinoma (RCC): spontaneous regression, long-term survival and late recurrence. Int Urol Nephrol. 1991;23(1):13–25.CrossRef
19.
go back to reference Braun DA, Ishii Y, Walsh AM, Van Allen EM, Wu CJ, Shukla SA, Choueiri TK. Clinical validation of PBRM1 alterations as a marker of immune checkpoint inhibitor response in renal cell carcinoma. JAMA Oncol. 2019;5(11):1631–3.CrossRef Braun DA, Ishii Y, Walsh AM, Van Allen EM, Wu CJ, Shukla SA, Choueiri TK. Clinical validation of PBRM1 alterations as a marker of immune checkpoint inhibitor response in renal cell carcinoma. JAMA Oncol. 2019;5(11):1631–3.CrossRef
20.
go back to reference Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol. 2018;62:29–39.CrossRef Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol. 2018;62:29–39.CrossRef
21.
go back to reference Incorvaia L, Madonia G, Corsini LR, Cucinella A, Brando C, Gagliardo C, Santoni M, et al. Challenges and advances for the treatment of renal cancer patients with brain metastases: from immunological background to upcoming clinical evidence on immune-checkpoint inhibitors. Crit Rev Oncol Hematol. 2021;163: 103390.CrossRef Incorvaia L, Madonia G, Corsini LR, Cucinella A, Brando C, Gagliardo C, Santoni M, et al. Challenges and advances for the treatment of renal cancer patients with brain metastases: from immunological background to upcoming clinical evidence on immune-checkpoint inhibitors. Crit Rev Oncol Hematol. 2021;163: 103390.CrossRef
22.
go back to reference Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13.CrossRef Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13.CrossRef
23.
go back to reference Kuusk T, Albiges L, Escudier B, Grivas N, Haanen J, Powles T, Bex A. Antiangiogenic therapy combined with immune checkpoint blockade in renal cancer. Angiogenesis. 2017;20(2):205–15.CrossRef Kuusk T, Albiges L, Escudier B, Grivas N, Haanen J, Powles T, Bex A. Antiangiogenic therapy combined with immune checkpoint blockade in renal cancer. Angiogenesis. 2017;20(2):205–15.CrossRef
24.
go back to reference Hamilton G. Avelumab: search for combinations of immune checkpoint inhibition with chemotherapy. Expert Opin Biol Ther. 2021;21(3):311–22.CrossRef Hamilton G. Avelumab: search for combinations of immune checkpoint inhibition with chemotherapy. Expert Opin Biol Ther. 2021;21(3):311–22.CrossRef
25.
go back to reference Diegmann J, Junker K, Loncarevic IF, Michel S, Schimmel B, von Eagelinq F. Immune escape for renal cell carcinoma: CD70 mediates apoptosis in lymphocytes. Neoplasia. 2006;8(11):933–8.CrossRef Diegmann J, Junker K, Loncarevic IF, Michel S, Schimmel B, von Eagelinq F. Immune escape for renal cell carcinoma: CD70 mediates apoptosis in lymphocytes. Neoplasia. 2006;8(11):933–8.CrossRef
26.
go back to reference Atkins D, Ferrone S, Schmahl GE, Störkel S, Seliger B. Down-regulation of HLA class I antigen processing molecules: an immune escape mechanism of renal cell carcinoma? J Urol. 2004;171(2):885–9.CrossRef Atkins D, Ferrone S, Schmahl GE, Störkel S, Seliger B. Down-regulation of HLA class I antigen processing molecules: an immune escape mechanism of renal cell carcinoma? J Urol. 2004;171(2):885–9.CrossRef
27.
go back to reference Fu Q, Xu L, Wang Y, Jiang Q, Liu Z, Zhang J, Zhou Q, et al. Tumor-associated macrophage-derived interleukin-23 interlinks kidney cancer glutamine addiction with immune evasion. Eur Urol. 2019;75(5):752–63.CrossRef Fu Q, Xu L, Wang Y, Jiang Q, Liu Z, Zhang J, Zhou Q, et al. Tumor-associated macrophage-derived interleukin-23 interlinks kidney cancer glutamine addiction with immune evasion. Eur Urol. 2019;75(5):752–63.CrossRef
28.
go back to reference Kwaśniak K, Czarnik-Kwaśniak J, Maziarz A, Aebisher D, Zielińska K, Karczmarek-Borowska B, Tabarkiewicz J. Scientific reports concerning the impact of interleukin 4, interleukin 10 and transforming growth factor β on cancer cells. Central-Eur J Immunol. 2019;44(2):190.CrossRef Kwaśniak K, Czarnik-Kwaśniak J, Maziarz A, Aebisher D, Zielińska K, Karczmarek-Borowska B, Tabarkiewicz J. Scientific reports concerning the impact of interleukin 4, interleukin 10 and transforming growth factor β on cancer cells. Central-Eur J Immunol. 2019;44(2):190.CrossRef
29.
go back to reference Salazar-Onfray F, López MN, Mendoza-Naranjo A. Paradoxical effects of cytokines in tumor immune surveillance and tumor immune escape. Cytokine Growth Factor Rev. 2007;18(1–2):171–82.CrossRef Salazar-Onfray F, López MN, Mendoza-Naranjo A. Paradoxical effects of cytokines in tumor immune surveillance and tumor immune escape. Cytokine Growth Factor Rev. 2007;18(1–2):171–82.CrossRef
30.
go back to reference Dong P, Xiong Y, Yue J, Hanley SJ, Watari H. Tumor-intrinsic PD-L1 signaling in cancer initiation, development and treatment: beyond immune evasion. Front Oncol. 2018;8:386.CrossRef Dong P, Xiong Y, Yue J, Hanley SJ, Watari H. Tumor-intrinsic PD-L1 signaling in cancer initiation, development and treatment: beyond immune evasion. Front Oncol. 2018;8:386.CrossRef
31.
go back to reference Ryan AE, Shanahan F, O’Connell J, Houston AM. Addressing the “Fas counterattack” controversy: blocking fas ligand expression suppresses tumor immune evasion of colon cancer in vivo. Can Res. 2005;65(21):9817–23.CrossRef Ryan AE, Shanahan F, O’Connell J, Houston AM. Addressing the “Fas counterattack” controversy: blocking fas ligand expression suppresses tumor immune evasion of colon cancer in vivo. Can Res. 2005;65(21):9817–23.CrossRef
32.
go back to reference Liu Y, Cao X. The origin and function of tumor-associated macrophages. Cell Mol Immunol. 2015;12(1):1–4.CrossRef Liu Y, Cao X. The origin and function of tumor-associated macrophages. Cell Mol Immunol. 2015;12(1):1–4.CrossRef
33.
go back to reference Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10.CrossRef Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10.CrossRef
34.
go back to reference Nagorsen D, Scheibenbogen C, Marincola FM, Letsch A, Keilholz U. Natural T cell immunity against cancer. Clin Cancer Res. 2003;9(12):4296–303. Nagorsen D, Scheibenbogen C, Marincola FM, Letsch A, Keilholz U. Natural T cell immunity against cancer. Clin Cancer Res. 2003;9(12):4296–303.
35.
go back to reference Liu X, Hogg GD, DeNardo DG. Rethinking immune checkpoint blockade: ‘Beyond the T cell.’ J Immuno Ther Cancer. 2021;9(1):e001460.CrossRef Liu X, Hogg GD, DeNardo DG. Rethinking immune checkpoint blockade: ‘Beyond the T cell.’ J Immuno Ther Cancer. 2021;9(1):e001460.CrossRef
36.
go back to reference Tsai H-F, Hsu P-N. Cancer immunotherapy by targeting immune checkpoints: mechanism of T cell dysfunction in cancer immunity and new therapeutic targets. J Biomed Sci. 2017;24(1):1–8.CrossRef Tsai H-F, Hsu P-N. Cancer immunotherapy by targeting immune checkpoints: mechanism of T cell dysfunction in cancer immunity and new therapeutic targets. J Biomed Sci. 2017;24(1):1–8.CrossRef
37.
go back to reference Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med. 2018;50(12):1–11.CrossRef Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med. 2018;50(12):1–11.CrossRef
38.
go back to reference Kong X. Discovery of new immune checkpoints: family grows up. Regulation of Cancer Immune Checkpoints. 2020:61–82. Kong X. Discovery of new immune checkpoints: family grows up. Regulation of Cancer Immune Checkpoints. 2020:61–82.
39.
go back to reference Bour-Jordan H, Bluestone JA. Regulating the regulators: costimulatory signals control the homeostasis and function of regulatory T cells. Immunol Rev. 2009;229(1):41–66.CrossRef Bour-Jordan H, Bluestone JA. Regulating the regulators: costimulatory signals control the homeostasis and function of regulatory T cells. Immunol Rev. 2009;229(1):41–66.CrossRef
40.
go back to reference Liu Y, Chen P, Wang H, Wu S, Zhao S, He Y, Zhou C, et al. The landscape of immune checkpoints expression in non-small cell lung cancer: a narrative review. Transl Lung Cancer Res. 2021;10(2):1029–38.CrossRef Liu Y, Chen P, Wang H, Wu S, Zhao S, He Y, Zhou C, et al. The landscape of immune checkpoints expression in non-small cell lung cancer: a narrative review. Transl Lung Cancer Res. 2021;10(2):1029–38.CrossRef
41.
go back to reference Zhang T, Austin RG, Park SE, Runyambo D, Boominathan R, Rao C, Bronson E, et al. Expression of immune checkpoints (ICs) on circulating tumor cells (CTCs) in men with metastatic prostate cancer (mPC). American Society of Clinical Oncology; 2018. Zhang T, Austin RG, Park SE, Runyambo D, Boominathan R, Rao C, Bronson E, et al. Expression of immune checkpoints (ICs) on circulating tumor cells (CTCs) in men with metastatic prostate cancer (mPC). American Society of Clinical Oncology; 2018.
43.
go back to reference Lee DY, Im E, Yoon D, Lee Y-S, Kim G-S, Kim D, Kim S-H, editors. Pivotal role of PD-1/PD-L1 immune checkpoints in immune escape and cancer progression: Their interplay with platelets and FOXP3+ Tregs related molecules, clinical implications and combinational potential with phytochemicals. Seminars in Cancer Biology; 2020: Elsevier. Lee DY, Im E, Yoon D, Lee Y-S, Kim G-S, Kim D, Kim S-H, editors. Pivotal role of PD-1/PD-L1 immune checkpoints in immune escape and cancer progression: Their interplay with platelets and FOXP3+ Tregs related molecules, clinical implications and combinational potential with phytochemicals. Seminars in Cancer Biology; 2020: Elsevier.
44.
go back to reference Gao X, McDermott DF. Ipilimumab in combination with nivolumab for the treatment of renal cell carcinoma. Expert Opin Biol Ther. 2018;18(9):947–57.CrossRef Gao X, McDermott DF. Ipilimumab in combination with nivolumab for the treatment of renal cell carcinoma. Expert Opin Biol Ther. 2018;18(9):947–57.CrossRef
45.
go back to reference Motzer RJ, Tannir NM, McDermott DF, Frontera OA, Melichar B, Choueiri TK, Plimack ER, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378(14):1277–90.CrossRef Motzer RJ, Tannir NM, McDermott DF, Frontera OA, Melichar B, Choueiri TK, Plimack ER, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378(14):1277–90.CrossRef
46.
go back to reference Chulpanova DS, Kitaeva KV, Green AR, Rizvanov AA, Solovyeva VV. Molecular aspects and future perspectives of cytokine-based anti-cancer immunotherapy. Front Cell Dev Biol. 2020;8:402.CrossRef Chulpanova DS, Kitaeva KV, Green AR, Rizvanov AA, Solovyeva VV. Molecular aspects and future perspectives of cytokine-based anti-cancer immunotherapy. Front Cell Dev Biol. 2020;8:402.CrossRef
47.
go back to reference Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, Rodríguez-Ruiz ME, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer. 2019;120(1):6–15.CrossRef Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, Rodríguez-Ruiz ME, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer. 2019;120(1):6–15.CrossRef
48.
go back to reference West W. Continuous infusion recombinant interleukin-2 (rIL-2) in adoptive cellular therapy of renal carcinoma and other malignancies. Cancer Treat Rev. 1989;16:83–9.CrossRef West W. Continuous infusion recombinant interleukin-2 (rIL-2) in adoptive cellular therapy of renal carcinoma and other malignancies. Cancer Treat Rev. 1989;16:83–9.CrossRef
49.
go back to reference Spolski R, Li P, Leonard WJ. Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat Rev Immunol. 2018;18(10):648–59.CrossRef Spolski R, Li P, Leonard WJ. Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat Rev Immunol. 2018;18(10):648–59.CrossRef
50.
go back to reference Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol. 2014;192(12):5451–8.CrossRef Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol. 2014;192(12):5451–8.CrossRef
51.
go back to reference Mortara L, Balza E, Bruno A, Poggi A, Orecchia P, Carnemolla B. Anti-cancer therapies employing IL-2 cytokine tumor targeting: contribution of innate, adaptive and immunosuppressive cells in the anti-tumor efficacy. Front Immunol. 2018;9:2905.CrossRef Mortara L, Balza E, Bruno A, Poggi A, Orecchia P, Carnemolla B. Anti-cancer therapies employing IL-2 cytokine tumor targeting: contribution of innate, adaptive and immunosuppressive cells in the anti-tumor efficacy. Front Immunol. 2018;9:2905.CrossRef
52.
go back to reference Alva A, Daniels GA, Wong MKK, Kaufman HL, Morse MA, McDermott DF, Clark JI, et al. Contemporary experience with high-dose interleukin-2 therapy and impact on survival in patients with metastatic melanoma and metastatic renal cell carcinoma. Cancer Immunol Immunother. 2016;65(12):1533–44.CrossRef Alva A, Daniels GA, Wong MKK, Kaufman HL, Morse MA, McDermott DF, Clark JI, et al. Contemporary experience with high-dose interleukin-2 therapy and impact on survival in patients with metastatic melanoma and metastatic renal cell carcinoma. Cancer Immunol Immunother. 2016;65(12):1533–44.CrossRef
53.
go back to reference Fyfe G, Fisher RI, Rosenberg SA, Sznol M, Parkinson DR, Louie AC. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J Clin Oncol. 1995;13(3):688–96.CrossRef Fyfe G, Fisher RI, Rosenberg SA, Sznol M, Parkinson DR, Louie AC. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J Clin Oncol. 1995;13(3):688–96.CrossRef
54.
go back to reference Achkar T, Arjunan A, Wang H, Saul M, Davar D, Appleman LJ, Friedland D, et al. High-dose interleukin 2 in patients with metastatic renal cell carcinoma with sarcomatoid features. PLoS ONE. 2017;12(12): e0190084.CrossRef Achkar T, Arjunan A, Wang H, Saul M, Davar D, Appleman LJ, Friedland D, et al. High-dose interleukin 2 in patients with metastatic renal cell carcinoma with sarcomatoid features. PLoS ONE. 2017;12(12): e0190084.CrossRef
55.
go back to reference Huland E, Heinzer H, Huland H, Yung R. Overview of interleukin-2 inhalation therapy. Cancer J Sci Am. 2000;6:S104–12. Huland E, Heinzer H, Huland H, Yung R. Overview of interleukin-2 inhalation therapy. Cancer J Sci Am. 2000;6:S104–12.
56.
go back to reference Choudhry H, Helmi N, Abdulaal WH, Zeyadi M, Zamzami MA, Wu W, Mahmoud MM, et al. Prospects of IL-2 in cancer immunotherapy. BioMed Res Int. 2018;2018:9056173.CrossRef Choudhry H, Helmi N, Abdulaal WH, Zeyadi M, Zamzami MA, Wu W, Mahmoud MM, et al. Prospects of IL-2 in cancer immunotherapy. BioMed Res Int. 2018;2018:9056173.CrossRef
57.
go back to reference Cerbone L, Cattrini C, Vallome G, Latocca MM, Boccardo F, Zanardi E. Combination therapy in metastatic renal cell carcinoma: back to the future? Semin Oncol. 2020;47(6):361–6.CrossRef Cerbone L, Cattrini C, Vallome G, Latocca MM, Boccardo F, Zanardi E. Combination therapy in metastatic renal cell carcinoma: back to the future? Semin Oncol. 2020;47(6):361–6.CrossRef
58.
go back to reference Passalacqua R, Caminiti C, Buti S, Porta C, Camisa R, Braglia L, Tomasello G, et al. Adjuvant low-dose interleukin-2 (IL-2) plus interferon-α (IFN-α) in operable renal cell carcinoma (RCC): a phase III, randomized, multicentre trial of the Italian Oncology Group for Clinical Research (GOIRC). J Immunother. 2014;37(9):440–7.CrossRef Passalacqua R, Caminiti C, Buti S, Porta C, Camisa R, Braglia L, Tomasello G, et al. Adjuvant low-dose interleukin-2 (IL-2) plus interferon-α (IFN-α) in operable renal cell carcinoma (RCC): a phase III, randomized, multicentre trial of the Italian Oncology Group for Clinical Research (GOIRC). J Immunother. 2014;37(9):440–7.CrossRef
59.
go back to reference Westermann J, Reich G, Kopp J, Haus U, Dörken B, Pezzutto A. Granulocyte/macrophage-colony-stimulating-factor plus interleukin-2 plus interferon alpha in the treatment of metastatic renal cell carcinoma: a pilot study. Cancer Immunol Immunother. 2001;49(11):613–20.CrossRef Westermann J, Reich G, Kopp J, Haus U, Dörken B, Pezzutto A. Granulocyte/macrophage-colony-stimulating-factor plus interleukin-2 plus interferon alpha in the treatment of metastatic renal cell carcinoma: a pilot study. Cancer Immunol Immunother. 2001;49(11):613–20.CrossRef
60.
go back to reference Smith IJ, Kurt RA, Baher AG, Denman S, Justice L, Doran T, Gilbert M, et al. Immune effects of escalating doses of granulocyte-macrophage colony-stimulating factor added to a fixed, low-dose, inpatient interleukin-2 regimen: a randomized phase I trial in patients with metastatic melanoma and renal cell carcinoma. J Immunother. 2003;26(2):130–8.CrossRef Smith IJ, Kurt RA, Baher AG, Denman S, Justice L, Doran T, Gilbert M, et al. Immune effects of escalating doses of granulocyte-macrophage colony-stimulating factor added to a fixed, low-dose, inpatient interleukin-2 regimen: a randomized phase I trial in patients with metastatic melanoma and renal cell carcinoma. J Immunother. 2003;26(2):130–8.CrossRef
61.
go back to reference Hannan R, Mohamad O, Diaz de Leon A, Manna S, Pop LM, Zhang Z, Mannala S, et al. Outcome and immune correlates of a Phase II trial of high-dose interleukin-2 and stereotactic ablative radiotherapy for metastatic renal cell carcinoma. Clin Cancer Res. 2021;27(24):6716–25.CrossRef Hannan R, Mohamad O, Diaz de Leon A, Manna S, Pop LM, Zhang Z, Mannala S, et al. Outcome and immune correlates of a Phase II trial of high-dose interleukin-2 and stereotactic ablative radiotherapy for metastatic renal cell carcinoma. Clin Cancer Res. 2021;27(24):6716–25.CrossRef
62.
go back to reference Göhring B, Riemann D, Rebmann U, Heynemann H, Schabel J, Langner J. Prognostic value of the immunomonitoring of patients with renal cell carcinoma under therapy with IL-2/IFN-alpha-2 in combination with 5-FU. Urol Res. 1996;24(5):297–303.CrossRef Göhring B, Riemann D, Rebmann U, Heynemann H, Schabel J, Langner J. Prognostic value of the immunomonitoring of patients with renal cell carcinoma under therapy with IL-2/IFN-alpha-2 in combination with 5-FU. Urol Res. 1996;24(5):297–303.CrossRef
63.
go back to reference Vergati M, Intrivici C, Huen N-Y, Schlom J, Tsang KY. Strategies for cancer vaccine development. J Biomed Biotechnol. 2010;2010:596432.CrossRef Vergati M, Intrivici C, Huen N-Y, Schlom J, Tsang KY. Strategies for cancer vaccine development. J Biomed Biotechnol. 2010;2010:596432.CrossRef
64.
go back to reference Zhang Y, Ma S, Liu X, Xu Y, Zhao J, Si X, Li H, et al. Supramolecular assembled programmable nanomedicine as in situ cancer vaccine for cancer immunotherapy. Adv Mater. 2021;33(7):2007293.CrossRef Zhang Y, Ma S, Liu X, Xu Y, Zhao J, Si X, Li H, et al. Supramolecular assembled programmable nanomedicine as in situ cancer vaccine for cancer immunotherapy. Adv Mater. 2021;33(7):2007293.CrossRef
65.
go back to reference Qin H, Zhao R, Qin Y, Zhu J, Chen L, Di C, Han X, et al. Development of a cancer vaccine using in vivo click-chemistry-mediated active lymph node accumulation for improved immunotherapy. Adv Mater. 2021;33(20):2006007.CrossRef Qin H, Zhao R, Qin Y, Zhu J, Chen L, Di C, Han X, et al. Development of a cancer vaccine using in vivo click-chemistry-mediated active lymph node accumulation for improved immunotherapy. Adv Mater. 2021;33(20):2006007.CrossRef
66.
go back to reference Tanyi JL, Chiang CL-L, Chiffelle J, Thierry A-C, Baumgartener P, Huber F, Goepfert C, et al. Personalized cancer vaccine strategy elicits polyfunctional T cells and demonstrates clinical benefits in ovarian cancer. NPJ Caccines. 2021;6(1):1–14. Tanyi JL, Chiang CL-L, Chiffelle J, Thierry A-C, Baumgartener P, Huber F, Goepfert C, et al. Personalized cancer vaccine strategy elicits polyfunctional T cells and demonstrates clinical benefits in ovarian cancer. NPJ Caccines. 2021;6(1):1–14.
67.
go back to reference Wang T, Wang D, Yu H, Feng B, Zhou F, Zhang H, Zhou L, et al. A cancer vaccine-mediated postoperative immunotherapy for recurrent and metastatic tumors. Nat Commun. 2018;9(1):1–12. Wang T, Wang D, Yu H, Feng B, Zhou F, Zhang H, Zhou L, et al. A cancer vaccine-mediated postoperative immunotherapy for recurrent and metastatic tumors. Nat Commun. 2018;9(1):1–12.
68.
go back to reference Goldman B, DeFrancesco L. The cancer vaccine roller coaster. Nat Biotechnol. 2009;27(2):129–39.CrossRef Goldman B, DeFrancesco L. The cancer vaccine roller coaster. Nat Biotechnol. 2009;27(2):129–39.CrossRef
69.
go back to reference Hammerstrom AE, Cauley DH, Atkinson BJ, Sharma P. Cancer immunotherapy: sipuleucel-T and beyond. Pharmacotherapy. 2011;31(8):813–28.CrossRef Hammerstrom AE, Cauley DH, Atkinson BJ, Sharma P. Cancer immunotherapy: sipuleucel-T and beyond. Pharmacotherapy. 2011;31(8):813–28.CrossRef
70.
go back to reference Pal SK, Hu A, Figlin RA. A new age for vaccine therapy in renal cell carcinoma. Cancer J. 2013;19(4):365–70.CrossRef Pal SK, Hu A, Figlin RA. A new age for vaccine therapy in renal cell carcinoma. Cancer J. 2013;19(4):365–70.CrossRef
71.
go back to reference Jian Y, Yang K, Sun X, Zhao J, Huang K, Aldanakh A, Xu Z, et al. Current advance of immune evasion mechanisms and emerging immunotherapies in renal cell carcinoma. Front Immunol. 2021;12:502.CrossRef Jian Y, Yang K, Sun X, Zhao J, Huang K, Aldanakh A, Xu Z, et al. Current advance of immune evasion mechanisms and emerging immunotherapies in renal cell carcinoma. Front Immunol. 2021;12:502.CrossRef
72.
go back to reference Amin A, Dudek AZ, Logan TF, Lance RS, Holzbeierlein JM, Knox JJ, Master VA, et al. Survival with AGS-003, an autologous dendritic cell–based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): phase 2 study results. J Immunother Cancer. 2015;3(1):1–13.CrossRef Amin A, Dudek AZ, Logan TF, Lance RS, Holzbeierlein JM, Knox JJ, Master VA, et al. Survival with AGS-003, an autologous dendritic cell–based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): phase 2 study results. J Immunother Cancer. 2015;3(1):1–13.CrossRef
73.
go back to reference Figlin R, Nicolette C, Tannir N, Tykodi S, Chen D, Master V, Lane B, et al. Interim analysis of the phase 3 ADAPT trial evaluating rocapuldencel-T (AGS-003), an individualized immunotherapy for the treatment of newly-diagnosed patients with metastatic renal cell carcinoma (mRCC). Ann Oncol. 2017;28: v404.CrossRef Figlin R, Nicolette C, Tannir N, Tykodi S, Chen D, Master V, Lane B, et al. Interim analysis of the phase 3 ADAPT trial evaluating rocapuldencel-T (AGS-003), an individualized immunotherapy for the treatment of newly-diagnosed patients with metastatic renal cell carcinoma (mRCC). Ann Oncol. 2017;28: v404.CrossRef
74.
go back to reference Figlin R, Sternberg C, Wood CG. Novel agents and approaches for advanced renal cell carcinoma. J Urol. 2012;188(3):707–15.CrossRef Figlin R, Sternberg C, Wood CG. Novel agents and approaches for advanced renal cell carcinoma. J Urol. 2012;188(3):707–15.CrossRef
75.
go back to reference Kirner A, Mayer-Mokler A, Reinhardt C. IMA901: a multi-peptide cancer vaccine for treatment of renal cell cancer. Hum Vaccin Immunother. 2014;10(11):3179–89.CrossRef Kirner A, Mayer-Mokler A, Reinhardt C. IMA901: a multi-peptide cancer vaccine for treatment of renal cell cancer. Hum Vaccin Immunother. 2014;10(11):3179–89.CrossRef
76.
go back to reference Rausch S, Kruck S, Stenzl A, Bedke J. IMA901 for metastatic renal cell carcinoma in the context of new approaches to immunotherapy. Future Oncol. 2014;10(6):937–48.CrossRef Rausch S, Kruck S, Stenzl A, Bedke J. IMA901 for metastatic renal cell carcinoma in the context of new approaches to immunotherapy. Future Oncol. 2014;10(6):937–48.CrossRef
77.
go back to reference Rini BI, Stenzl A, Zdrojowy R, Kogan M, Shkolnik M, Oudard S, Weikert S, et al. IMA901, a multipeptide cancer vaccine, plus sunitinib versus sunitinib alone, as first-line therapy for advanced or metastatic renal cell carcinoma (IMPRINT): a multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2016;17(11):1599–611.CrossRef Rini BI, Stenzl A, Zdrojowy R, Kogan M, Shkolnik M, Oudard S, Weikert S, et al. IMA901, a multipeptide cancer vaccine, plus sunitinib versus sunitinib alone, as first-line therapy for advanced or metastatic renal cell carcinoma (IMPRINT): a multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2016;17(11):1599–611.CrossRef
78.
go back to reference Birkhäuser FD, Koya RC, Neufeld C, Rampersaud EN, Lu X, Micewicz ED, Chodon T, et al. Dendritic cell-based immunotherapy in prevention and treatment of renal cell carcinoma: efficacy, safety, and activity of Ad-GM·CAIX in immunocompetent mouse models. J Immunother. 2013;36(2):102–11.CrossRef Birkhäuser FD, Koya RC, Neufeld C, Rampersaud EN, Lu X, Micewicz ED, Chodon T, et al. Dendritic cell-based immunotherapy in prevention and treatment of renal cell carcinoma: efficacy, safety, and activity of Ad-GM·CAIX in immunocompetent mouse models. J Immunother. 2013;36(2):102–11.CrossRef
79.
go back to reference Faiena I, Comin-Anduix B, Berent-Maoz B, Bot A, Zomorodian N, Sachdeva A, Said J, et al. A Phase I, open-label, dose-escalation, and cohort expansion study to evaluate the safety and immune response to autologous dendritic cells transduced with AdGMCA9 (DC-AdGMCAIX) in patients with metastatic renal cell carcinoma. J Immunother. 2020;43(9):273–82.CrossRef Faiena I, Comin-Anduix B, Berent-Maoz B, Bot A, Zomorodian N, Sachdeva A, Said J, et al. A Phase I, open-label, dose-escalation, and cohort expansion study to evaluate the safety and immune response to autologous dendritic cells transduced with AdGMCA9 (DC-AdGMCAIX) in patients with metastatic renal cell carcinoma. J Immunother. 2020;43(9):273–82.CrossRef
80.
go back to reference Baek S, Kim CS, Kim SB, Kim YM, Kwon SW, Kim Y, Kim H, et al. Combination therapy of renal cell carcinoma or breast cancer patients with dendritic cell vaccine and IL-2: results from a phase I/II trial. J Transl Med. 2011;9:178.CrossRef Baek S, Kim CS, Kim SB, Kim YM, Kwon SW, Kim Y, Kim H, et al. Combination therapy of renal cell carcinoma or breast cancer patients with dendritic cell vaccine and IL-2: results from a phase I/II trial. J Transl Med. 2011;9:178.CrossRef
81.
go back to reference Amato RJ, Shetty A, Lu Y, Ellis PR, Mohlere V, Carnahan N, Low PS. A Phase I/Ib study of folate immune (EC90 vaccine administered with GPI-0100 adjuvant followed by EC17) with interferon-α and interleukin-2 in patients with renal cell carcinoma. J Immunother. 2014;37(4):237–44.CrossRef Amato RJ, Shetty A, Lu Y, Ellis PR, Mohlere V, Carnahan N, Low PS. A Phase I/Ib study of folate immune (EC90 vaccine administered with GPI-0100 adjuvant followed by EC17) with interferon-α and interleukin-2 in patients with renal cell carcinoma. J Immunother. 2014;37(4):237–44.CrossRef
82.
go back to reference Capitini CM, Fry TJ, Mackall CL. Cytokines as adjuvants for vaccine and cellular therapies for cancer. Am J Immunol. 2009;5(3):65–83.CrossRef Capitini CM, Fry TJ, Mackall CL. Cytokines as adjuvants for vaccine and cellular therapies for cancer. Am J Immunol. 2009;5(3):65–83.CrossRef
83.
go back to reference Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, et al. Trial watch: adoptive cell transfer immunotherapy. Oncoimmunology. 2012;1(3):306–15.CrossRef Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, et al. Trial watch: adoptive cell transfer immunotherapy. Oncoimmunology. 2012;1(3):306–15.CrossRef
84.
go back to reference Ma C, Cheung AF, Chodon T, Koya RC, Wu Z, Ng C, Avramis E, et al. Multifunctional T-cell analyses to study response and progression in adoptive cell transfer immunotherapy. Cancer Discov. 2013;3(4):418–29.CrossRef Ma C, Cheung AF, Chodon T, Koya RC, Wu Z, Ng C, Avramis E, et al. Multifunctional T-cell analyses to study response and progression in adoptive cell transfer immunotherapy. Cancer Discov. 2013;3(4):418–29.CrossRef
85.
go back to reference Roncati L, Palmieri B. Adoptive cell transfer (ACT) of autologous tumor-infiltrating lymphocytes (TILs) to treat malignant melanoma: the dawn of a chimeric antigen receptor T (CAR-T) cell therapy from autologous donor. Int J Dermatol. 2020;59(7):763–9.CrossRef Roncati L, Palmieri B. Adoptive cell transfer (ACT) of autologous tumor-infiltrating lymphocytes (TILs) to treat malignant melanoma: the dawn of a chimeric antigen receptor T (CAR-T) cell therapy from autologous donor. Int J Dermatol. 2020;59(7):763–9.CrossRef
86.
go back to reference Daher M, Rezvani K. Outlook for new CAR-based therapies with a focus on CAR NK cells: what lies beyond CAR-engineered T cells in the race against cancer. Cancer Discov. 2021;11(1):45–58.CrossRef Daher M, Rezvani K. Outlook for new CAR-based therapies with a focus on CAR NK cells: what lies beyond CAR-engineered T cells in the race against cancer. Cancer Discov. 2021;11(1):45–58.CrossRef
87.
go back to reference Bachiller M, Perez-Amill L, Battram AM, Carné SC, Najjar A, Verhoeyen E, Juan M, et al. NK cells enhance CAR-T cell antitumor efficacy by enhancing immune/tumor cells cluster formation and improving CAR-T cell fitness. J Immunother Cancer. 2021;9(8):e002866.CrossRef Bachiller M, Perez-Amill L, Battram AM, Carné SC, Najjar A, Verhoeyen E, Juan M, et al. NK cells enhance CAR-T cell antitumor efficacy by enhancing immune/tumor cells cluster formation and improving CAR-T cell fitness. J Immunother Cancer. 2021;9(8):e002866.CrossRef
88.
go back to reference Nguyen LT, Yen PH, Nie J, Liadis N, Ghazarian D, Al-Habeeb A, Easson A, et al. Expansion and characterization of human melanoma tumor-infiltrating lymphocytes (TILs). PLoS ONE. 2010;5(11): e13940.CrossRef Nguyen LT, Yen PH, Nie J, Liadis N, Ghazarian D, Al-Habeeb A, Easson A, et al. Expansion and characterization of human melanoma tumor-infiltrating lymphocytes (TILs). PLoS ONE. 2010;5(11): e13940.CrossRef
89.
go back to reference Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, Citrin DE, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550–7.CrossRef Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, Citrin DE, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550–7.CrossRef
90.
go back to reference Lorentzen C, Straten P. CD 19-chimeric antigen receptor T cells for treatment of chronic lymphocytic leukaemia and acute lymphoblastic leukaemia. Scand J Immunol. 2015;82(4):307–19.CrossRef Lorentzen C, Straten P. CD 19-chimeric antigen receptor T cells for treatment of chronic lymphocytic leukaemia and acute lymphoblastic leukaemia. Scand J Immunol. 2015;82(4):307–19.CrossRef
91.
go back to reference Bear AS, Fraietta JA, Narayan VK, O’Hara M, Haas NB. Adoptive cellular therapy for solid tumors. Am Soc Clin Oncol Educ Book. 2021;41:57–65.CrossRef Bear AS, Fraietta JA, Narayan VK, O’Hara M, Haas NB. Adoptive cellular therapy for solid tumors. Am Soc Clin Oncol Educ Book. 2021;41:57–65.CrossRef
92.
go back to reference Andersen R, Westergaard MCW, Kjeldsen JW, Müller A, Pedersen NW, Hadrup SR, Met Ö, et al. T-cell responses in the microenvironment of primary renal cell carcinoma—implications for adoptive cell therapy. Cancer Immunol Res. 2018;6(2):222–35.CrossRef Andersen R, Westergaard MCW, Kjeldsen JW, Müller A, Pedersen NW, Hadrup SR, Met Ö, et al. T-cell responses in the microenvironment of primary renal cell carcinoma—implications for adoptive cell therapy. Cancer Immunol Res. 2018;6(2):222–35.CrossRef
93.
go back to reference Figlin RA, Thompson JA, Bukowski RM, Vogelzang NJ, Novick AC, Lange P, Steinberg GD, et al. Multicenter, randomized, phase III trial of CD8+ tumor-infiltrating lymphocytes in combination with recombinant interleukin-2 in metastatic renal cell carcinoma. J Clin Oncol. 1999;17(8):2521.CrossRef Figlin RA, Thompson JA, Bukowski RM, Vogelzang NJ, Novick AC, Lange P, Steinberg GD, et al. Multicenter, randomized, phase III trial of CD8+ tumor-infiltrating lymphocytes in combination with recombinant interleukin-2 in metastatic renal cell carcinoma. J Clin Oncol. 1999;17(8):2521.CrossRef
94.
go back to reference Lamers CH, Klaver Y, Gratama JW, Sleijfer S, Debets R. Treatment of metastatic renal cell carcinoma (mRCC) with CAIX CAR-engineered T-cells–a completed study overview. Biochem Soc Trans. 2016;44(3):951–9.CrossRef Lamers CH, Klaver Y, Gratama JW, Sleijfer S, Debets R. Treatment of metastatic renal cell carcinoma (mRCC) with CAIX CAR-engineered T-cells–a completed study overview. Biochem Soc Trans. 2016;44(3):951–9.CrossRef
95.
go back to reference Lamers CH, Sleijfer S, Van Steenbergen S, Van Elzakker P, Van Krimpen B, Groot C, Vulto A, et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther. 2013;21(4):904–12.CrossRef Lamers CH, Sleijfer S, Van Steenbergen S, Van Elzakker P, Van Krimpen B, Groot C, Vulto A, et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther. 2013;21(4):904–12.CrossRef
96.
go back to reference Panowski SH, Srinivasan S, Tan N, Tacheva-Grigorova SK, Smith B, Mak YS, Ning H, et al. Preclinical development and evaluation of allogeneic CAR T cells targeting CD70 for the treatment of renal cell carcinoma. Cancer Res. 2022:OF1-OF15. Panowski SH, Srinivasan S, Tan N, Tacheva-Grigorova SK, Smith B, Mak YS, Ning H, et al. Preclinical development and evaluation of allogeneic CAR T cells targeting CD70 for the treatment of renal cell carcinoma. Cancer Res. 2022:OF1-OF15.
97.
go back to reference Mori J, Adachi K, Sakoda Y, Sasaki T, Goto S, Matsumoto H, Nagashima Y, et al. Anti-tumor efficacy of human anti-c-met CAR-T cells against papillary renal cell carcinoma in an orthotopic model. Cancer Sci. 2021;112(4):1417.CrossRef Mori J, Adachi K, Sakoda Y, Sasaki T, Goto S, Matsumoto H, Nagashima Y, et al. Anti-tumor efficacy of human anti-c-met CAR-T cells against papillary renal cell carcinoma in an orthotopic model. Cancer Sci. 2021;112(4):1417.CrossRef
98.
go back to reference Escudier B. Emerging immunotherapies for renal cell carcinoma. Ann Oncol. 2012;23:viii35–40.CrossRef Escudier B. Emerging immunotherapies for renal cell carcinoma. Ann Oncol. 2012;23:viii35–40.CrossRef
99.
go back to reference Moreira M, Pobel C, Epaillard N, Simonaggio A, Oudard S, Vano Y-A. Resistance to cancer immunotherapy in metastatic renal cell carcinoma. Cancer Drug Resist. 2020;3(3):454–71. Moreira M, Pobel C, Epaillard N, Simonaggio A, Oudard S, Vano Y-A. Resistance to cancer immunotherapy in metastatic renal cell carcinoma. Cancer Drug Resist. 2020;3(3):454–71.
100.
go back to reference Bai D, Feng H, Yang J, Yin A, Qian A, Sugiyama H. Landscape of immune cell infiltration in clear cell renal cell carcinoma to aid immunotherapy. Cancer Sci. 2021;112(6):2126.CrossRef Bai D, Feng H, Yang J, Yin A, Qian A, Sugiyama H. Landscape of immune cell infiltration in clear cell renal cell carcinoma to aid immunotherapy. Cancer Sci. 2021;112(6):2126.CrossRef
101.
go back to reference Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. Embo j. 1992;11(11):3887–95.CrossRef Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. Embo j. 1992;11(11):3887–95.CrossRef
102.
go back to reference Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11(2):141–51.CrossRef Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11(2):141–51.CrossRef
103.
go back to reference Fan P, Li X, Feng Y, Cai H, Dong D, Peng Y, Yao X, et al. PD-1 expression status on CD8+ tumour infiltrating lymphocytes associates with survival in cervical cancer. Front Oncol. 2021;11:2077.CrossRef Fan P, Li X, Feng Y, Cai H, Dong D, Peng Y, Yao X, et al. PD-1 expression status on CD8+ tumour infiltrating lymphocytes associates with survival in cervical cancer. Front Oncol. 2021;11:2077.CrossRef
104.
go back to reference Davis Z, Felices M, Lenvik T, Badal S, Walker JT, Hinderlie P, Riley JL, et al. Low-density PD-1 expression on resting human natural killer cells is functional and upregulated after transplantation. Blood Adv. 2021;5(4):1069–80.CrossRef Davis Z, Felices M, Lenvik T, Badal S, Walker JT, Hinderlie P, Riley JL, et al. Low-density PD-1 expression on resting human natural killer cells is functional and upregulated after transplantation. Blood Adv. 2021;5(4):1069–80.CrossRef
105.
go back to reference Judge SJ, Dunai C, Aguilar EG, Vick SC, Sturgill IR, Khuat LT, Stoffel KM, et al. Minimal PD-1 expression in mouse and human NK cells under diverse conditions. J Clin Investig. 2020;130(6):3051–68.CrossRef Judge SJ, Dunai C, Aguilar EG, Vick SC, Sturgill IR, Khuat LT, Stoffel KM, et al. Minimal PD-1 expression in mouse and human NK cells under diverse conditions. J Clin Investig. 2020;130(6):3051–68.CrossRef
106.
go back to reference Lim TS, Chew V, Sieow JL, Goh S, Yeong JP-S, Soon AL, Ricciardi-Castagnoli P. PD-1 expression on dendritic cells suppresses CD8+ T cell function and antitumor immunity. Oncoimmunology. 2016;5(3):e1085146.CrossRef Lim TS, Chew V, Sieow JL, Goh S, Yeong JP-S, Soon AL, Ricciardi-Castagnoli P. PD-1 expression on dendritic cells suppresses CD8+ T cell function and antitumor immunity. Oncoimmunology. 2016;5(3):e1085146.CrossRef
107.
go back to reference Kuipers H, Muskens F, Willart M, Hijdra D, van Assema FB, Coyle AJ, Hoogsteden HC, et al. Contribution of the PD-1 ligands/PD-1 signaling pathway to dendritic cell-mediated CD4+ T cell activation. Eur J Immunol. 2006;36(9):2472–82.CrossRef Kuipers H, Muskens F, Willart M, Hijdra D, van Assema FB, Coyle AJ, Hoogsteden HC, et al. Contribution of the PD-1 ligands/PD-1 signaling pathway to dendritic cell-mediated CD4+ T cell activation. Eur J Immunol. 2006;36(9):2472–82.CrossRef
108.
go back to reference Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020;10(3):727. Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020;10(3):727.
109.
go back to reference Patsoukis N, Duke-Cohan JS, Chaudhri A, Aksoylar H-I, Wang Q, Council A, Berg A, et al. Interaction of SHP-2 SH2 domains with PD-1 ITSM induces PD-1 dimerization and SHP-2 activation. Commun Biol. 2020;3(1):1–13.CrossRef Patsoukis N, Duke-Cohan JS, Chaudhri A, Aksoylar H-I, Wang Q, Council A, Berg A, et al. Interaction of SHP-2 SH2 domains with PD-1 ITSM induces PD-1 dimerization and SHP-2 activation. Commun Biol. 2020;3(1):1–13.CrossRef
110.
go back to reference Veluswamy P, Wacker M, Scherner M, Wippermann J. Delicate role of PD-L1/PD-1 axis in blood vessel inflammatory diseases: current insight and future significance. Int J Mol Sci. 2020;21(21):8159.CrossRef Veluswamy P, Wacker M, Scherner M, Wippermann J. Delicate role of PD-L1/PD-1 axis in blood vessel inflammatory diseases: current insight and future significance. Int J Mol Sci. 2020;21(21):8159.CrossRef
111.
go back to reference Cretella D, Digiacomo G, Giovannetti E, Cavazzoni A. PTEN alterations as a potential mechanism for tumor cell escape from PD-1/PD-L1 inhibition. Cancers. 2019;11(9):1318.CrossRef Cretella D, Digiacomo G, Giovannetti E, Cavazzoni A. PTEN alterations as a potential mechanism for tumor cell escape from PD-1/PD-L1 inhibition. Cancers. 2019;11(9):1318.CrossRef
112.
go back to reference Zitvogel L, Kroemer G. Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology. 2012;1(8):1223–5.CrossRef Zitvogel L, Kroemer G. Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology. 2012;1(8):1223–5.CrossRef
113.
go back to reference Good-Jacobson KL, Szumilas CG, Chen L, Sharpe AH, Tomayko MM, Shlomchik MJ. PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. Nat Immunol. 2010;11(6):535–42.CrossRef Good-Jacobson KL, Szumilas CG, Chen L, Sharpe AH, Tomayko MM, Shlomchik MJ. PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. Nat Immunol. 2010;11(6):535–42.CrossRef
114.
go back to reference Hudson K, Cross N, Jordan-Mahy N, Leyland R. The extrinsic and intrinsic roles of PD-L1 and its receptor PD-1: implications for immunotherapy treatment. Front Immunol. 2020;11:2362.CrossRef Hudson K, Cross N, Jordan-Mahy N, Leyland R. The extrinsic and intrinsic roles of PD-L1 and its receptor PD-1: implications for immunotherapy treatment. Front Immunol. 2020;11:2362.CrossRef
115.
go back to reference Chiu Y-M, Tsai C-L, Kao J-T, Hsieh C-T, Shieh D-C, Lee Y-J, Tsay GJ, et al. PD-1 and PD-L1 up-regulation promotes T-cell apoptosis in gastric adenocarcinoma. Anticancer Res. 2018;38(4):2069–78. Chiu Y-M, Tsai C-L, Kao J-T, Hsieh C-T, Shieh D-C, Lee Y-J, Tsay GJ, et al. PD-1 and PD-L1 up-regulation promotes T-cell apoptosis in gastric adenocarcinoma. Anticancer Res. 2018;38(4):2069–78.
116.
go back to reference Zheng H, Ning Y, Zhan Y, Liu S, Wen Q, Fan S. New insights into the important roles of tumor cell-intrinsic PD-1. Int J Biol Sci. 2021;17(10):2537.CrossRef Zheng H, Ning Y, Zhan Y, Liu S, Wen Q, Fan S. New insights into the important roles of tumor cell-intrinsic PD-1. Int J Biol Sci. 2021;17(10):2537.CrossRef
117.
go back to reference Iacovelli R, Nolè F, Verri E, Renne G, Paglino C, Santoni M, Cossu Rocca M, et al. Prognostic role of PD-L1 expression in renal cell carcinoma. A systematic review and meta-analysis. Target Oncol. 2016;11(2):143–8.CrossRef Iacovelli R, Nolè F, Verri E, Renne G, Paglino C, Santoni M, Cossu Rocca M, et al. Prognostic role of PD-L1 expression in renal cell carcinoma. A systematic review and meta-analysis. Target Oncol. 2016;11(2):143–8.CrossRef
118.
go back to reference Shen M, Chen G, Xie Q, Li X, Xu H, Wang H, Zhao S. Association between PD-L1 expression and the prognosis and clinicopathologic features of renal cell carcinoma: a systematic review and meta-analysis. Urol Int. 2020;104(7–8):533–41.CrossRef Shen M, Chen G, Xie Q, Li X, Xu H, Wang H, Zhao S. Association between PD-L1 expression and the prognosis and clinicopathologic features of renal cell carcinoma: a systematic review and meta-analysis. Urol Int. 2020;104(7–8):533–41.CrossRef
119.
go back to reference Kumar A, Chamoto K. Immune metabolism in PD-1 blockade-based cancer immunotherapy. Int Immunol. 2021;33(1):17–26.CrossRef Kumar A, Chamoto K. Immune metabolism in PD-1 blockade-based cancer immunotherapy. Int Immunol. 2021;33(1):17–26.CrossRef
120.
go back to reference Sun L, Zhang L, Yu J, Zhang Y, Pang X, Ma C, Shen M, et al. Clinical efficacy and safety of anti-PD-1/PD-L1 inhibitors for the treatment of advanced or metastatic cancer: a systematic review and meta-analysis. Sci Rep. 2020;10(1):1–13. Sun L, Zhang L, Yu J, Zhang Y, Pang X, Ma C, Shen M, et al. Clinical efficacy and safety of anti-PD-1/PD-L1 inhibitors for the treatment of advanced or metastatic cancer: a systematic review and meta-analysis. Sci Rep. 2020;10(1):1–13.
121.
go back to reference Ancevski Hunter K, Socinski MA, Villaruz LC. PD-L1 testing in guiding patient selection for PD-1/PD-L1 inhibitor therapy in lung cancer. Mol Diagn Ther. 2018;22(1):1–10.CrossRef Ancevski Hunter K, Socinski MA, Villaruz LC. PD-L1 testing in guiding patient selection for PD-1/PD-L1 inhibitor therapy in lung cancer. Mol Diagn Ther. 2018;22(1):1–10.CrossRef
122.
go back to reference Gunturi A, McDermott DF. Nivolumab for the treatment of cancer. Expert Opin Investig Drugs. 2015;24(2):253–60.CrossRef Gunturi A, McDermott DF. Nivolumab for the treatment of cancer. Expert Opin Investig Drugs. 2015;24(2):253–60.CrossRef
123.
go back to reference Mazza C, Escudier B, Albiges L. Nivolumab in renal cell carcinoma: latest evidence and clinical potential. Ther Adv Med Oncol. 2017;9(3):171–81.CrossRef Mazza C, Escudier B, Albiges L. Nivolumab in renal cell carcinoma: latest evidence and clinical potential. Ther Adv Med Oncol. 2017;9(3):171–81.CrossRef
124.
go back to reference Choueiri TK, Powles T, Burotto M, Escudier B, Bourlon MT, Zurawski B, Oyervides Juárez VM, et al. Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2021;384(9):829–41.CrossRef Choueiri TK, Powles T, Burotto M, Escudier B, Bourlon MT, Zurawski B, Oyervides Juárez VM, et al. Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2021;384(9):829–41.CrossRef
125.
go back to reference Tannir NM, Signoretti S, Choueiri TK, McDermott DF, Motzer RJ, Flaifel A, Pignon J-C, et al. Efficacy and safety of nivolumab plus ipilimumab versus sunitinib in first-line treatment of patients with advanced sarcomatoid renal cell carcinoma. Clin Cancer Res. 2021;27(1):78–86.CrossRef Tannir NM, Signoretti S, Choueiri TK, McDermott DF, Motzer RJ, Flaifel A, Pignon J-C, et al. Efficacy and safety of nivolumab plus ipilimumab versus sunitinib in first-line treatment of patients with advanced sarcomatoid renal cell carcinoma. Clin Cancer Res. 2021;27(1):78–86.CrossRef
126.
go back to reference Weight C. Nivolumab versus everolimus in advanced renal cell carcinoma. 50 Studies Every Urologist Should Know. 2021:123. Weight C. Nivolumab versus everolimus in advanced renal cell carcinoma. 50 Studies Every Urologist Should Know. 2021:123.
127.
go back to reference Escudier B, Sharma P, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, et al. CheckMate 025 randomized phase 3 study: outcomes by key baseline factors and prior therapy for nivolumab versus everolimus in advanced renal cell carcinoma. Eur Urol. 2017;72(6):962–71.CrossRef Escudier B, Sharma P, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, et al. CheckMate 025 randomized phase 3 study: outcomes by key baseline factors and prior therapy for nivolumab versus everolimus in advanced renal cell carcinoma. Eur Urol. 2017;72(6):962–71.CrossRef
128.
go back to reference Escudier B, Motzer RJ, Sharma P, Wagstaff J, Plimack ER, Hammers HJ, Donskov F, et al. Treatment beyond progression in patients with advanced renal cell carcinoma treated with nivolumab in CheckMate 025. Eur Urol. 2017;72(3):368–76.CrossRef Escudier B, Motzer RJ, Sharma P, Wagstaff J, Plimack ER, Hammers HJ, Donskov F, et al. Treatment beyond progression in patients with advanced renal cell carcinoma treated with nivolumab in CheckMate 025. Eur Urol. 2017;72(3):368–76.CrossRef
129.
go back to reference Motzer RJ, Escudier B, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, et al. Nivolumab versus everolimus in patients with advanced renal cell carcinoma: updated results with long-term follow-up of the randomized, open-label, phase 3 CheckMate 025 trial. Cancer. 2020;126(18):4156–67.CrossRef Motzer RJ, Escudier B, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, et al. Nivolumab versus everolimus in patients with advanced renal cell carcinoma: updated results with long-term follow-up of the randomized, open-label, phase 3 CheckMate 025 trial. Cancer. 2020;126(18):4156–67.CrossRef
130.
go back to reference Mollica V, Rizzo A, Tassinari E, Giunchi F, Schiavina R, Fiorentino M, Brunocilla E, et al. Prognostic and predictive factors to nivolumab in patients with metastatic renal cell carcinoma: a single center study. Anticancer Drugs. 2021;32(1):74–81.CrossRef Mollica V, Rizzo A, Tassinari E, Giunchi F, Schiavina R, Fiorentino M, Brunocilla E, et al. Prognostic and predictive factors to nivolumab in patients with metastatic renal cell carcinoma: a single center study. Anticancer Drugs. 2021;32(1):74–81.CrossRef
131.
go back to reference McFarlane JJ, Kochenderfer MD, Olsen MR, Bauer TM, Molina A, Hauke RJ, Reeves JA, et al. Safety and efficacy of nivolumab in patients with advanced clear cell renal cell carcinoma: results from the phase IIIb/IV CheckMate 374 study. Clin Genitourinary Cancer. 2020;18(6):469–76.CrossRef McFarlane JJ, Kochenderfer MD, Olsen MR, Bauer TM, Molina A, Hauke RJ, Reeves JA, et al. Safety and efficacy of nivolumab in patients with advanced clear cell renal cell carcinoma: results from the phase IIIb/IV CheckMate 374 study. Clin Genitourinary Cancer. 2020;18(6):469–76.CrossRef
132.
go back to reference Suzuki K, Terakawa T, Furukawa J, Harada K, Hinata N, Nakano Y, Fujisawa M. Clinical outcomes of second-line treatment following prior targeted therapy in patients with metastatic renal cell carcinoma: a comparison of axitinib and nivolumab. Int J Clin Oncol. 2020;25(9):1678–86.CrossRef Suzuki K, Terakawa T, Furukawa J, Harada K, Hinata N, Nakano Y, Fujisawa M. Clinical outcomes of second-line treatment following prior targeted therapy in patients with metastatic renal cell carcinoma: a comparison of axitinib and nivolumab. Int J Clin Oncol. 2020;25(9):1678–86.CrossRef
133.
go back to reference Albiges L, Tannir NM, Burotto M, McDermott D, Plimack ER, Barthélémy P, Porta C, et al. Nivolumab plus ipilimumab versus sunitinib for first-line treatment of advanced renal cell carcinoma: extended 4-year follow-up of the phase III CheckMate 214 trial. ESMO open. 2020;5(6): e001079.CrossRef Albiges L, Tannir NM, Burotto M, McDermott D, Plimack ER, Barthélémy P, Porta C, et al. Nivolumab plus ipilimumab versus sunitinib for first-line treatment of advanced renal cell carcinoma: extended 4-year follow-up of the phase III CheckMate 214 trial. ESMO open. 2020;5(6): e001079.CrossRef
134.
go back to reference Hammers HJ, Plimack ER, Infante JR, Rini BI, McDermott DF, Lewis LD, Voss MH, et al. Safety and efficacy of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma: the CheckMate 016 study. J Clin Oncol. 2017;35(34):3851.CrossRef Hammers HJ, Plimack ER, Infante JR, Rini BI, McDermott DF, Lewis LD, Voss MH, et al. Safety and efficacy of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma: the CheckMate 016 study. J Clin Oncol. 2017;35(34):3851.CrossRef
135.
go back to reference Choueiri TK, Apolo AB, Powles T, Escudier B, Aren OR, Shah A, Kessler ER, et al. A phase 3, randomized, open-label study of nivolumab combined with cabozantinib vs sunitinib in patients with previously untreated advanced or metastatic renal cell carcinoma (RCC; CheckMate 9ER). Am Soc Clin Oncol. 2018. Choueiri TK, Apolo AB, Powles T, Escudier B, Aren OR, Shah A, Kessler ER, et al. A phase 3, randomized, open-label study of nivolumab combined with cabozantinib vs sunitinib in patients with previously untreated advanced or metastatic renal cell carcinoma (RCC; CheckMate 9ER). Am Soc Clin Oncol. 2018.
136.
go back to reference Kfoury M, Oing C. ESMO20 YO for YO: highlights on metastatic renal cell carcinoma—the CheckMate-9ER trial. ESMO Open. 2021;6(1):100025.CrossRef Kfoury M, Oing C. ESMO20 YO for YO: highlights on metastatic renal cell carcinoma—the CheckMate-9ER trial. ESMO Open. 2021;6(1):100025.CrossRef
137.
go back to reference Khalil N, Sarkis J, Abi Tayeh G. Use of immunotherapy with programmed cell death 1 vs programmed cell death ligand 1 in renal cell carcinoma: lessons from CheckMate 9ER and IMmotion 151. SAGE Publications Sage UK: London, England; 2021. p. 266–7. Khalil N, Sarkis J, Abi Tayeh G. Use of immunotherapy with programmed cell death 1 vs programmed cell death ligand 1 in renal cell carcinoma: lessons from CheckMate 9ER and IMmotion 151. SAGE Publications Sage UK: London, England; 2021. p. 266–7.
138.
go back to reference Amin A, Plimack ER, Ernstoff MS, Lewis LD, Bauer TM, McDermott DF, Carducci M, et al. Safety and efficacy of nivolumab in combination with sunitinib or pazopanib in advanced or metastatic renal cell carcinoma: the CheckMate 016 study. J Immunother Cancer. 2018;6(1):1–12.CrossRef Amin A, Plimack ER, Ernstoff MS, Lewis LD, Bauer TM, McDermott DF, Carducci M, et al. Safety and efficacy of nivolumab in combination with sunitinib or pazopanib in advanced or metastatic renal cell carcinoma: the CheckMate 016 study. J Immunother Cancer. 2018;6(1):1–12.CrossRef
139.
go back to reference Choueiri TK, Atkins MB, Rose TL, Alter RS, Ju Y, Niland K, Wang Y, et al. A phase 1b trial of the CXCR4 inhibitor mavorixafor and nivolumab in advanced renal cell carcinoma patients with no prior response to nivolumab monotherapy. Invest New Drugs. 2021;39(4):1019–27.CrossRef Choueiri TK, Atkins MB, Rose TL, Alter RS, Ju Y, Niland K, Wang Y, et al. A phase 1b trial of the CXCR4 inhibitor mavorixafor and nivolumab in advanced renal cell carcinoma patients with no prior response to nivolumab monotherapy. Invest New Drugs. 2021;39(4):1019–27.CrossRef
140.
go back to reference Diab A, Tannir NM, Bentebibel S-E, Hwu P, Papadimitrakopoulou V, Haymaker C, Kluger HM, et al. Bempegaldesleukin (NKTR-214) plus nivolumab in patients with advanced solid tumors: phase I dose-escalation study of safety, efficacy, and immune activation (PIVOT-02). Cancer Discov. 2020;10(8):1158–73.CrossRef Diab A, Tannir NM, Bentebibel S-E, Hwu P, Papadimitrakopoulou V, Haymaker C, Kluger HM, et al. Bempegaldesleukin (NKTR-214) plus nivolumab in patients with advanced solid tumors: phase I dose-escalation study of safety, efficacy, and immune activation (PIVOT-02). Cancer Discov. 2020;10(8):1158–73.CrossRef
141.
go back to reference Dizman N, Meza L, Bergerot P, Alcantara M, Dorff T, Lyou Y, Frankel P, et al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. Nat Med. 2022;28(4):704–12.CrossRef Dizman N, Meza L, Bergerot P, Alcantara M, Dorff T, Lyou Y, Frankel P, et al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. Nat Med. 2022;28(4):704–12.CrossRef
142.
go back to reference Meza LA, Dizman N, Bergerot PG, Dorff TB, Lyou Y, Frankel PH, Mira V, et al. First results of a randomized phase IB study comparing nivolumab/ipilimumab with or without CBM-588 in patients with metastatic renal cell carcinoma. J Clin Oncol. 2021;39:4513.CrossRef Meza LA, Dizman N, Bergerot PG, Dorff TB, Lyou Y, Frankel PH, Mira V, et al. First results of a randomized phase IB study comparing nivolumab/ipilimumab with or without CBM-588 in patients with metastatic renal cell carcinoma. J Clin Oncol. 2021;39:4513.CrossRef
143.
go back to reference Sharma M, Khong H, Fa’ak F, Bentebibel S-E, Janssen LM, Chesson BC, Creasy CA, et al. Bempegaldesleukin selectively depletes intratumoral Tregs and potentiates T cell-mediated cancer therapy. Nat Commun. 2020;11(1):1–11.CrossRef Sharma M, Khong H, Fa’ak F, Bentebibel S-E, Janssen LM, Chesson BC, Creasy CA, et al. Bempegaldesleukin selectively depletes intratumoral Tregs and potentiates T cell-mediated cancer therapy. Nat Commun. 2020;11(1):1–11.CrossRef
144.
go back to reference Khoja L, Butler MO, Kang SP, Ebbinghaus S, Joshua AM. Pembrolizumab. J Immunother Cancer. 2015;3(1):1–13.CrossRef Khoja L, Butler MO, Kang SP, Ebbinghaus S, Joshua AM. Pembrolizumab. J Immunother Cancer. 2015;3(1):1–13.CrossRef
145.
go back to reference Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D, Pouliot F, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380(12):1116–27.CrossRef Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D, Pouliot F, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380(12):1116–27.CrossRef
146.
go back to reference Motzer R, Alekseev B, Rha S-Y, Porta C, Eto M, Powles T, Grünwald V, et al. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N Engl J Med. 2021;384(14):1289–300.CrossRef Motzer R, Alekseev B, Rha S-Y, Porta C, Eto M, Powles T, Grünwald V, et al. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N Engl J Med. 2021;384(14):1289–300.CrossRef
147.
go back to reference Choueiri TK, Quinn DI, Zhang T, Gurney H, Doshi GK, Cobb PW, Parnis F, et al. KEYNOTE-564: A phase 3, randomized, double blind, trial of pembrolizumab in the adjuvant treatment of renal cell carcinoma. American Society of Clinical Oncology; 2018. Choueiri TK, Quinn DI, Zhang T, Gurney H, Doshi GK, Cobb PW, Parnis F, et al. KEYNOTE-564: A phase 3, randomized, double blind, trial of pembrolizumab in the adjuvant treatment of renal cell carcinoma. American Society of Clinical Oncology; 2018.
148.
go back to reference Choueiri TK, Tomczak P, Park SH, Venugopal B, Ferguson T, Chang Y-H, Hajek J, et al. Pembrolizumab versus placebo as post-nephrectomy adjuvant therapy for patients with renal cell carcinoma: Randomized, double-blind, phase III KEYNOTE-564 study. Am Soc Clin Oncol. 2021. Choueiri TK, Tomczak P, Park SH, Venugopal B, Ferguson T, Chang Y-H, Hajek J, et al. Pembrolizumab versus placebo as post-nephrectomy adjuvant therapy for patients with renal cell carcinoma: Randomized, double-blind, phase III KEYNOTE-564 study. Am Soc Clin Oncol. 2021.
149.
go back to reference Quinn DI, Zhang T, Gurney H, Doshi GK, Cobb PW, Parnis F, Lee J-L, et al. Phase 3, randomized, double-blind trial of pembrolizumab in the adjuvant treatment of renal cell carcinoma (RCC): KEYNOTE-564. Am Soc Clin Oncol; 2018. Quinn DI, Zhang T, Gurney H, Doshi GK, Cobb PW, Parnis F, Lee J-L, et al. Phase 3, randomized, double-blind trial of pembrolizumab in the adjuvant treatment of renal cell carcinoma (RCC): KEYNOTE-564. Am Soc Clin Oncol; 2018.
150.
go back to reference Choueiri TK, Tomczak P, Park SH, Venugopal B, Ferguson T, Chang Y-H, Hajek J, et al. Adjuvant pembrolizumab after nephrectomy in renal-cell carcinoma. N Engl J Med. 2021;385(8):683–94.CrossRef Choueiri TK, Tomczak P, Park SH, Venugopal B, Ferguson T, Chang Y-H, Hajek J, et al. Adjuvant pembrolizumab after nephrectomy in renal-cell carcinoma. N Engl J Med. 2021;385(8):683–94.CrossRef
151.
go back to reference McDermott DF, Lee JL, Bjarnason GA, Larkin JM, Gafanov RA, Kochenderfer MD, Jensen NV, et al. Open-label, single-arm phase II study of pembrolizumab monotherapy as first-line therapy in patients with advanced clear cell renal cell carcinoma. J Clin Oncol. 2021;39(9):1020–8.CrossRef McDermott DF, Lee JL, Bjarnason GA, Larkin JM, Gafanov RA, Kochenderfer MD, Jensen NV, et al. Open-label, single-arm phase II study of pembrolizumab monotherapy as first-line therapy in patients with advanced clear cell renal cell carcinoma. J Clin Oncol. 2021;39(9):1020–8.CrossRef
152.
go back to reference McDermott DF, Lee J-L, Ziobro M, Suárez Rodríguez C, Langiewicz P, Matveev VB. Open-label, single-arm, phase II study of pembrolizumab monotherapy as first-line therapy in patients with advanced non–clear cell renal cell carcinoma. Am Soc Clin Oncol. 2021;39:1039. McDermott DF, Lee J-L, Ziobro M, Suárez Rodríguez C, Langiewicz P, Matveev VB. Open-label, single-arm, phase II study of pembrolizumab monotherapy as first-line therapy in patients with advanced non–clear cell renal cell carcinoma. Am Soc Clin Oncol. 2021;39:1039.
153.
go back to reference Grünwald V, Powles T, Choueiri TK, Hutson TE, Porta C, Eto M, Sternberg CN, et al. Lenvatinib plus everolimus or pembrolizumab versus sunitinib in advanced renal cell carcinoma: study design and rationale. Future Oncol. 2019;15(9):929–41.CrossRef Grünwald V, Powles T, Choueiri TK, Hutson TE, Porta C, Eto M, Sternberg CN, et al. Lenvatinib plus everolimus or pembrolizumab versus sunitinib in advanced renal cell carcinoma: study design and rationale. Future Oncol. 2019;15(9):929–41.CrossRef
154.
go back to reference Chau V, Bilusic M. Pembrolizumab in combination with axitinib as first-line treatment for patients with renal cell carcinoma (RCC): evidence to date. Cancer Manag Res. 2020;12:7321.CrossRef Chau V, Bilusic M. Pembrolizumab in combination with axitinib as first-line treatment for patients with renal cell carcinoma (RCC): evidence to date. Cancer Manag Res. 2020;12:7321.CrossRef
155.
go back to reference Powles T, Plimack ER, Soulières D, Waddell T, Stus V, Gafanov R, Nosov D, et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): extended follow-up from a randomised, open-label, phase 3 trial. Lancet Oncol. 2020;21(12):1563–73.CrossRef Powles T, Plimack ER, Soulières D, Waddell T, Stus V, Gafanov R, Nosov D, et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): extended follow-up from a randomised, open-label, phase 3 trial. Lancet Oncol. 2020;21(12):1563–73.CrossRef
156.
go back to reference Atkins MB, Plimack ER, Puzanov I, Fishman MN, McDermott DF, Cho DC, Vaishampayan U, et al. Axitinib in combination with pembrolizumab in patients with advanced renal cell cancer: a non-randomised, open-label, dose-finding, and dose-expansion phase 1b trial. Lancet Oncol. 2018;19(3):405–15.CrossRef Atkins MB, Plimack ER, Puzanov I, Fishman MN, McDermott DF, Cho DC, Vaishampayan U, et al. Axitinib in combination with pembrolizumab in patients with advanced renal cell cancer: a non-randomised, open-label, dose-finding, and dose-expansion phase 1b trial. Lancet Oncol. 2018;19(3):405–15.CrossRef
157.
go back to reference Zhu J, Zhang T, Wan N, Liang Z, Li J, Chen X, Liang W, et al. Cost–effectiveness of pembrolizumab plus axitinib as first-line therapy for advanced renal cell carcinoma. Immunotherapy. 2020;12(17):1237–46.CrossRef Zhu J, Zhang T, Wan N, Liang Z, Li J, Chen X, Liang W, et al. Cost–effectiveness of pembrolizumab plus axitinib as first-line therapy for advanced renal cell carcinoma. Immunotherapy. 2020;12(17):1237–46.CrossRef
158.
go back to reference Colombo N, Lorusso D, Herráez AC, Santin A, Colomba E, Miller D, Fujiwara K, et al. 726MO Outcomes by histology and prior therapy with lenvatinib plus pembrolizumab vs treatment of physician’s choice in patients with advanced endometrial cancer (Study 309/KEYNOTE-775). Ann Oncol. 2021;32:S729–30.CrossRef Colombo N, Lorusso D, Herráez AC, Santin A, Colomba E, Miller D, Fujiwara K, et al. 726MO Outcomes by histology and prior therapy with lenvatinib plus pembrolizumab vs treatment of physician’s choice in patients with advanced endometrial cancer (Study 309/KEYNOTE-775). Ann Oncol. 2021;32:S729–30.CrossRef
159.
go back to reference Chowdhury S, Infante JR, Hawkins R, Voss MH, Perini R, Arkenau T, Voskoboynik M, et al. A Phase I/II Study to Assess the safety and efficacy of pazopanib and pembrolizumab combination therapy in patients with advanced renal cell carcinoma. Clin Genitourin Cancer. 2021;19(5):434–46.CrossRef Chowdhury S, Infante JR, Hawkins R, Voss MH, Perini R, Arkenau T, Voskoboynik M, et al. A Phase I/II Study to Assess the safety and efficacy of pazopanib and pembrolizumab combination therapy in patients with advanced renal cell carcinoma. Clin Genitourin Cancer. 2021;19(5):434–46.CrossRef
160.
go back to reference Naing A, Wong DJ, Infante JR, Korn WM, Aljumaily R, Papadopoulos KP, Autio KA, et al. Pegilodecakin combined with pembrolizumab or nivolumab for patients with advanced solid tumours (IVY): a multicentre, multicohort, open-label, phase 1b trial. Lancet Oncol. 2019;20(11):1544–55.CrossRef Naing A, Wong DJ, Infante JR, Korn WM, Aljumaily R, Papadopoulos KP, Autio KA, et al. Pegilodecakin combined with pembrolizumab or nivolumab for patients with advanced solid tumours (IVY): a multicentre, multicohort, open-label, phase 1b trial. Lancet Oncol. 2019;20(11):1544–55.CrossRef
161.
go back to reference Atkins MB, Hodi FS, Thompson JA, McDermott DF, Hwu WJ, Lawrence DP, Dawson NA, et al. Pembrolizumab plus pegylated interferon alfa-2b or ipilimumab for advanced melanoma or renal cell carcinoma: dose-finding results from the phase Ib KEYNOTE-029 Study. Clin Cancer Res. 2018;24(8):1805–15.CrossRef Atkins MB, Hodi FS, Thompson JA, McDermott DF, Hwu WJ, Lawrence DP, Dawson NA, et al. Pembrolizumab plus pegylated interferon alfa-2b or ipilimumab for advanced melanoma or renal cell carcinoma: dose-finding results from the phase Ib KEYNOTE-029 Study. Clin Cancer Res. 2018;24(8):1805–15.CrossRef
162.
163.
go back to reference Ansell SM. Sintilimab: another effective immune checkpoint inhibitor in classical Hodgkin lymphoma. Lancet Haematol. 2019;6(1):e2–3.CrossRef Ansell SM. Sintilimab: another effective immune checkpoint inhibitor in classical Hodgkin lymphoma. Lancet Haematol. 2019;6(1):e2–3.CrossRef
164.
go back to reference Yan Z, Yao S, Liu Y, Zhang J, Li P, Wang H, Chu J, et al. Durable response to sintilimab and chidamide in a patient with pegaspargase-and immunotherapy-resistant NK/T-cell lymphoma: Case report and literature review. Front Oncol. 2020;10:2779.CrossRef Yan Z, Yao S, Liu Y, Zhang J, Li P, Wang H, Chu J, et al. Durable response to sintilimab and chidamide in a patient with pegaspargase-and immunotherapy-resistant NK/T-cell lymphoma: Case report and literature review. Front Oncol. 2020;10:2779.CrossRef
165.
go back to reference DU Y. Efficacy of axitinib plus sintilimab in intermediate-and high-risk advanced renal cell carcinoma. Chin J Clin Oncol. 2020:513–6. DU Y. Efficacy of axitinib plus sintilimab in intermediate-and high-risk advanced renal cell carcinoma. Chin J Clin Oncol. 2020:513–6.
166.
go back to reference Lu X, Gu W, Shi G, Ye D. Pazopanib together with 6–8 cycles of sintilimab followed by single use of pazopanib in the second-line treatment of advanced renal cell carcinoma. Transl Androl Urol. 2021;10(5):2078.CrossRef Lu X, Gu W, Shi G, Ye D. Pazopanib together with 6–8 cycles of sintilimab followed by single use of pazopanib in the second-line treatment of advanced renal cell carcinoma. Transl Androl Urol. 2021;10(5):2078.CrossRef
167.
go back to reference Méndez-Vidal MJ, Molina Á, Anido U, Chirivella I, Etxaniz O, Fernández-Parra E, Guix M, et al. Pazopanib: evidence review and clinical practice in the management of advanced renal cell carcinoma. BMC Pharmacol Toxicol. 2018;19(1):77.CrossRef Méndez-Vidal MJ, Molina Á, Anido U, Chirivella I, Etxaniz O, Fernández-Parra E, Guix M, et al. Pazopanib: evidence review and clinical practice in the management of advanced renal cell carcinoma. BMC Pharmacol Toxicol. 2018;19(1):77.CrossRef
168.
go back to reference Huang N, Zhao C, Hu X, Zhang C, Xiong F, Huang W, Da L, et al. Safety and efficacy of sintilimab combination therapy for the treatment of 48 patients with advanced malignant tumors. Transl Cancer Res. 2022;11(1):252.CrossRef Huang N, Zhao C, Hu X, Zhang C, Xiong F, Huang W, Da L, et al. Safety and efficacy of sintilimab combination therapy for the treatment of 48 patients with advanced malignant tumors. Transl Cancer Res. 2022;11(1):252.CrossRef
169.
go back to reference Markham A. Atezolizumab: first global approval. Drugs. 2016;76(12):1227–32.CrossRef Markham A. Atezolizumab: first global approval. Drugs. 2016;76(12):1227–32.CrossRef
170.
go back to reference Powles T, Durán I, Van der Heijden MS, Loriot Y, Vogelzang NJ, De Giorgi U, Oudard S, et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2018;391(10122):748–57.CrossRef Powles T, Durán I, Van der Heijden MS, Loriot Y, Vogelzang NJ, De Giorgi U, Oudard S, et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2018;391(10122):748–57.CrossRef
171.
go back to reference Santini FC, Rudin CM. Atezolizumab for the treatment of non-small cell lung cancer. Expert Rev Clin Pharmacol. 2017;10(9):935–45.CrossRef Santini FC, Rudin CM. Atezolizumab for the treatment of non-small cell lung cancer. Expert Rev Clin Pharmacol. 2017;10(9):935–45.CrossRef
172.
go back to reference Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, Von Pawel J, Gadgeel SM, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65.CrossRef Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, Von Pawel J, Gadgeel SM, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65.CrossRef
173.
go back to reference Adams S, Diéras V, Barrios C, Winer E, Schneeweiss A, Iwata H, Loi S, et al. Patient-reported outcomes from the phase III IMpassion130 trial of atezolizumab plus nab-paclitaxel in metastatic triple-negative breast cancer. Ann Oncol. 2020;31(5):582–9.CrossRef Adams S, Diéras V, Barrios C, Winer E, Schneeweiss A, Iwata H, Loi S, et al. Patient-reported outcomes from the phase III IMpassion130 trial of atezolizumab plus nab-paclitaxel in metastatic triple-negative breast cancer. Ann Oncol. 2020;31(5):582–9.CrossRef
174.
go back to reference Kelley RK, Oliver J, Hazra S, Benzaghou F, Yau T, Cheng A-L, Rimassa L. Cabozantinib in combination with atezolizumab versus sorafenib in treatment-naive advanced hepatocellular carcinoma: COSMIC-312 Phase III study design. Future Oncol. 2020;16(21):1525–36.CrossRef Kelley RK, Oliver J, Hazra S, Benzaghou F, Yau T, Cheng A-L, Rimassa L. Cabozantinib in combination with atezolizumab versus sorafenib in treatment-naive advanced hepatocellular carcinoma: COSMIC-312 Phase III study design. Future Oncol. 2020;16(21):1525–36.CrossRef
175.
go back to reference Rini BI, Powles T, Atkins MB, Escudier B, McDermott DF, Suarez C, Bracarda S, et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet. 2019;393(10189):2404–15.CrossRef Rini BI, Powles T, Atkins MB, Escudier B, McDermott DF, Suarez C, Bracarda S, et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet. 2019;393(10189):2404–15.CrossRef
176.
go back to reference Rini B, Huseni M, Atkins M, McDermott D, Powles T, Escudier B, Banchereau R, et al. Molecular correlates differentiate response to atezolizumab (atezo)+ bevacizumab (bev) vs sunitinib (sun): results from a phase III study (IMmotion151) in untreated metastatic renal cell carcinoma (mRCC). Ann Oncol. 2018;29:viii724–5.CrossRef Rini B, Huseni M, Atkins M, McDermott D, Powles T, Escudier B, Banchereau R, et al. Molecular correlates differentiate response to atezolizumab (atezo)+ bevacizumab (bev) vs sunitinib (sun): results from a phase III study (IMmotion151) in untreated metastatic renal cell carcinoma (mRCC). Ann Oncol. 2018;29:viii724–5.CrossRef
177.
go back to reference McDermott DF, Sosman JA, Sznol M, Massard C, Gordon MS, Hamid O, Powderly JD, et al. Atezolizumab, an anti-programmed death-ligand 1 antibody, in metastatic renal cell carcinoma: long-term safety, clinical activity, and immune correlates from a phase Ia study. J Clin Oncol. 2016;34(8):833–42.CrossRef McDermott DF, Sosman JA, Sznol M, Massard C, Gordon MS, Hamid O, Powderly JD, et al. Atezolizumab, an anti-programmed death-ligand 1 antibody, in metastatic renal cell carcinoma: long-term safety, clinical activity, and immune correlates from a phase Ia study. J Clin Oncol. 2016;34(8):833–42.CrossRef
178.
go back to reference Uzzo R, Bex A, Rini BI, Albiges L, Suarez C, Donaldson F, Asakawa T, et al. A phase III study of atezolizumab (atezo) vs placebo as adjuvant therapy in renal cell carcinoma (RCC) patients (pts) at high risk of recurrence following resection (IMmotion010). Am Soc Clin Oncol; 2017. Uzzo R, Bex A, Rini BI, Albiges L, Suarez C, Donaldson F, Asakawa T, et al. A phase III study of atezolizumab (atezo) vs placebo as adjuvant therapy in renal cell carcinoma (RCC) patients (pts) at high risk of recurrence following resection (IMmotion010). Am Soc Clin Oncol; 2017.
179.
go back to reference McDermott DF, Huseni MA, Atkins MB, Motzer RJ, Rini BI, Escudier B, Fong L, et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med. 2018;24(6):749–57.CrossRef McDermott DF, Huseni MA, Atkins MB, Motzer RJ, Rini BI, Escudier B, Fong L, et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med. 2018;24(6):749–57.CrossRef
180.
go back to reference Pal SK, Albiges L, Suarez Rodriguez C, Liu B, Doss J, Khurana S, Scheffold C, et al. CONTACT-03: Randomized, open-label phase III study of atezolizumab plus cabozantinib versus cabozantinib monotherapy following progression on/after immune checkpoint inhibitor (ICI) treatment in patients with advanced/metastatic renal cell carcinoma. Am Soc Clin Oncol; 2021. Pal SK, Albiges L, Suarez Rodriguez C, Liu B, Doss J, Khurana S, Scheffold C, et al. CONTACT-03: Randomized, open-label phase III study of atezolizumab plus cabozantinib versus cabozantinib monotherapy following progression on/after immune checkpoint inhibitor (ICI) treatment in patients with advanced/metastatic renal cell carcinoma. Am Soc Clin Oncol; 2021.
181.
go back to reference Atkins MB, McDermott DF, Powles T, Motzer RJ, Rini BI, Fong L, Joseph RW, et al. IMmotion150: A phase II trial in untreated metastatic renal cell carcinoma (mRCC) patients (pts) of atezolizumab (atezo) and bevacizumab (bev) vs and following atezo or sunitinib (sun). Am Soc Clin Oncol. 2017;35:4505.CrossRef Atkins MB, McDermott DF, Powles T, Motzer RJ, Rini BI, Fong L, Joseph RW, et al. IMmotion150: A phase II trial in untreated metastatic renal cell carcinoma (mRCC) patients (pts) of atezolizumab (atezo) and bevacizumab (bev) vs and following atezo or sunitinib (sun). Am Soc Clin Oncol. 2017;35:4505.CrossRef
182.
go back to reference Motzer RJ, Powles T, Atkins MB, Escudier B, McDermott DF, Alekseev BY, Lee J-L, et al. Final overall survival and molecular analysis in immotion151, a phase 3 trial comparing atezolizumab plus bevacizumab vs sunitinib in patients with previously untreated metastatic renal cell carcinoma. JAMA Oncol. 2022;8(2):275–80.CrossRef Motzer RJ, Powles T, Atkins MB, Escudier B, McDermott DF, Alekseev BY, Lee J-L, et al. Final overall survival and molecular analysis in immotion151, a phase 3 trial comparing atezolizumab plus bevacizumab vs sunitinib in patients with previously untreated metastatic renal cell carcinoma. JAMA Oncol. 2022;8(2):275–80.CrossRef
183.
go back to reference Atkins MB, Rini BI, Motzer RJ, Powles T, McDermott DF, Suarez C, Bracarda S, et al. Patient-reported outcomes from the phase III Randomized IMmotion151 Trial: Atezolizumab+ Bevacizumab versus sunitinib in treatment-naive metastatic renal cell carcinoma. Clin Cancer Res. 2020;26(11):2506–14.CrossRef Atkins MB, Rini BI, Motzer RJ, Powles T, McDermott DF, Suarez C, Bracarda S, et al. Patient-reported outcomes from the phase III Randomized IMmotion151 Trial: Atezolizumab+ Bevacizumab versus sunitinib in treatment-naive metastatic renal cell carcinoma. Clin Cancer Res. 2020;26(11):2506–14.CrossRef
184.
go back to reference Blank CU, Wong DJ, Ho TH, Bauer TM, Lee CB, Bene-Tchaleu F, Zhu J, et al. Phase Ib study of atezolizumab plus interferon-α with or without bevacizumab in patients with metastatic renal cell carcinoma and other solid tumors. Curr Oncol. 2021;28(6):5466–79.CrossRef Blank CU, Wong DJ, Ho TH, Bauer TM, Lee CB, Bene-Tchaleu F, Zhu J, et al. Phase Ib study of atezolizumab plus interferon-α with or without bevacizumab in patients with metastatic renal cell carcinoma and other solid tumors. Curr Oncol. 2021;28(6):5466–79.CrossRef
185.
go back to reference Ferrantini M, Capone I, Belardelli F. Interferon-α and cancer: mechanisms of action and new perspectives of clinical use. Biochimie. 2007;89(6–7):884–93.CrossRef Ferrantini M, Capone I, Belardelli F. Interferon-α and cancer: mechanisms of action and new perspectives of clinical use. Biochimie. 2007;89(6–7):884–93.CrossRef
186.
go back to reference Kadowaki N, Antonenko S, Lau JY-N, Liu Y-J. Natural interferon α/β–producing cells link innate and adaptive immunity. J Exp Med. 2000;192(2):219–26.CrossRef Kadowaki N, Antonenko S, Lau JY-N, Liu Y-J. Natural interferon α/β–producing cells link innate and adaptive immunity. J Exp Med. 2000;192(2):219–26.CrossRef
187.
go back to reference Rini BI, Halabi S, Rosenberg JE, Stadler WM, Vaena DA, Archer L, Atkins JN, et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J Clin Oncol. 2010;28(13):2137.CrossRef Rini BI, Halabi S, Rosenberg JE, Stadler WM, Vaena DA, Archer L, Atkins JN, et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J Clin Oncol. 2010;28(13):2137.CrossRef
188.
go back to reference McDermott DF, George DJ. Bevacizumab as a treatment option in advanced renal cell carcinoma: an analysis and interpretation of clinical trial data. Cancer Treat Rev. 2010;36(3):216–23.CrossRef McDermott DF, George DJ. Bevacizumab as a treatment option in advanced renal cell carcinoma: an analysis and interpretation of clinical trial data. Cancer Treat Rev. 2010;36(3):216–23.CrossRef
189.
go back to reference Jung KH, LoRusso P, Burris H, Gordon M, Bang Y-J, Hellmann MD, Cervantes A, et al. Phase I study of the indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitor navoximod (GDC-0919) administered with PD-L1 inhibitor (atezolizumab) in advanced solid tumors. Clin Cancer Res. 2019;25(11):3220–8.CrossRef Jung KH, LoRusso P, Burris H, Gordon M, Bang Y-J, Hellmann MD, Cervantes A, et al. Phase I study of the indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitor navoximod (GDC-0919) administered with PD-L1 inhibitor (atezolizumab) in advanced solid tumors. Clin Cancer Res. 2019;25(11):3220–8.CrossRef
190.
go back to reference Liu M, Wang X, Wang L, Ma X, Gong Z, Zhang S, Li Y. Targeting the IDO1 pathway in cancer: from bench to bedside. J Hematol Oncol. 2018;11(1):1–12.CrossRef Liu M, Wang X, Wang L, Ma X, Gong Z, Zhang S, Li Y. Targeting the IDO1 pathway in cancer: from bench to bedside. J Hematol Oncol. 2018;11(1):1–12.CrossRef
191.
go back to reference Zhai L, Ladomersky E, Lauing KL, Wu M, Genet M, Gritsina G, Győrffy B, et al. Infiltrating T cells increase IDO1 expression in glioblastoma and contribute to decreased patient survival. Clin Cancer Res. 2017;23(21):6650–60.CrossRef Zhai L, Ladomersky E, Lauing KL, Wu M, Genet M, Gritsina G, Győrffy B, et al. Infiltrating T cells increase IDO1 expression in glioblastoma and contribute to decreased patient survival. Clin Cancer Res. 2017;23(21):6650–60.CrossRef
192.
go back to reference Li F, Zhang R, Li S, Liu J. IDO1: an important immunotherapy target in cancer treatment. Int Immunopharmacol. 2017;47:70–7.CrossRef Li F, Zhang R, Li S, Liu J. IDO1: an important immunotherapy target in cancer treatment. Int Immunopharmacol. 2017;47:70–7.CrossRef
193.
go back to reference Zhai L, Spranger S, Binder DC, Gritsina G, Lauing KL, Giles FJ, Wainwright DA. Molecular pathways: targeting IDO1 and other tryptophan dioxygenases for cancer immunotherapy. Clin Cancer Res. 2015;21(24):5427–33.CrossRef Zhai L, Spranger S, Binder DC, Gritsina G, Lauing KL, Giles FJ, Wainwright DA. Molecular pathways: targeting IDO1 and other tryptophan dioxygenases for cancer immunotherapy. Clin Cancer Res. 2015;21(24):5427–33.CrossRef
194.
195.
go back to reference Kaufman HL, Russell JS, Hamid O, Bhatia S, Terheyden P, D’Angelo SP, Shih KC, et al. Updated efficacy of avelumab in patients with previously treated metastatic Merkel cell carcinoma after≥ 1 year of follow-up: JAVELIN Merkel 200, a phase 2 clinical trial. J Immunother Cancer. 2018;6(1):1–7.CrossRef Kaufman HL, Russell JS, Hamid O, Bhatia S, Terheyden P, D’Angelo SP, Shih KC, et al. Updated efficacy of avelumab in patients with previously treated metastatic Merkel cell carcinoma after≥ 1 year of follow-up: JAVELIN Merkel 200, a phase 2 clinical trial. J Immunother Cancer. 2018;6(1):1–7.CrossRef
196.
go back to reference Powles T, Sridhar SS, Loriot Y, Bellmunt J, Mu XJ, Ching KA, Pu J, et al. Avelumab maintenance in advanced urothelial carcinoma: biomarker analysis of the phase 3 JAVELIN Bladder 100 trial. Nat Med. 2021;27(12):2200–11.CrossRef Powles T, Sridhar SS, Loriot Y, Bellmunt J, Mu XJ, Ching KA, Pu J, et al. Avelumab maintenance in advanced urothelial carcinoma: biomarker analysis of the phase 3 JAVELIN Bladder 100 trial. Nat Med. 2021;27(12):2200–11.CrossRef
197.
go back to reference Choueiri TK, Larkin J, Oya M, Thistlethwaite F, Martignoni M, Nathan P, Powles T, et al. Preliminary results for avelumab plus axitinib as first-line therapy in patients with advanced clear-cell renal-cell carcinoma (JAVELIN Renal 100): an open-label, dose-finding and dose-expansion, phase 1b trial. Lancet Oncol. 2018;19(4):451–60.CrossRef Choueiri TK, Larkin J, Oya M, Thistlethwaite F, Martignoni M, Nathan P, Powles T, et al. Preliminary results for avelumab plus axitinib as first-line therapy in patients with advanced clear-cell renal-cell carcinoma (JAVELIN Renal 100): an open-label, dose-finding and dose-expansion, phase 1b trial. Lancet Oncol. 2018;19(4):451–60.CrossRef
198.
go back to reference Vaishampayan U, Schöffski P, Ravaud A, Borel C, Peguero J, Chaves J, Morris JC, et al. Avelumab monotherapy as first-line or second-line treatment in patients with metastatic renal cell carcinoma: phase Ib results from the JAVELIN Solid Tumor trial. J Immunother Cancer. 2019;7(1):1–9.CrossRef Vaishampayan U, Schöffski P, Ravaud A, Borel C, Peguero J, Chaves J, Morris JC, et al. Avelumab monotherapy as first-line or second-line treatment in patients with metastatic renal cell carcinoma: phase Ib results from the JAVELIN Solid Tumor trial. J Immunother Cancer. 2019;7(1):1–9.CrossRef
199.
go back to reference Motzer RJ, Penkov K, Haanen J, Rini B, Albiges L, Campbell MT, Venugopal B, et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380(12):1103–15.CrossRef Motzer RJ, Penkov K, Haanen J, Rini B, Albiges L, Campbell MT, Venugopal B, et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380(12):1103–15.CrossRef
200.
go back to reference Choueiri T, Larkin J, Pal S, Motzer R, Rini B, Venugopal B, Alekseev B, et al. Efficacy and correlative analyses of avelumab plus axitinib versus sunitinib in sarcomatoid renal cell carcinoma: post hoc analysis of a randomized clinical trial. ESMO open. 2021;6(3): 100101.CrossRef Choueiri T, Larkin J, Pal S, Motzer R, Rini B, Venugopal B, Alekseev B, et al. Efficacy and correlative analyses of avelumab plus axitinib versus sunitinib in sarcomatoid renal cell carcinoma: post hoc analysis of a randomized clinical trial. ESMO open. 2021;6(3): 100101.CrossRef
201.
go back to reference Motzer RJ, Robbins PB, Powles T, Albiges L, Haanen JB, Larkin J, Mu XJ, et al. Avelumab plus axitinib versus sunitinib in advanced renal cell carcinoma: biomarker analysis of the phase 3 JAVELIN Renal 101 trial. Nat Med. 2020;26(11):1733–41.CrossRef Motzer RJ, Robbins PB, Powles T, Albiges L, Haanen JB, Larkin J, Mu XJ, et al. Avelumab plus axitinib versus sunitinib in advanced renal cell carcinoma: biomarker analysis of the phase 3 JAVELIN Renal 101 trial. Nat Med. 2020;26(11):1733–41.CrossRef
202.
go back to reference Bilen MA, Rini BI, Voss MH, Larkin J, Haanen JB, Albiges L, Pagliaro LC, et al. Association of neutrophil-to-lymphocyte ratio with efficacy of first-line avelumab plus axitinib vs. sunitinib in patients with advanced renal cell carcinoma enrolled in the Phase 3 JAVELIN Renal 101 Trial. Clin Cancer Res. 2021;28:738.CrossRef Bilen MA, Rini BI, Voss MH, Larkin J, Haanen JB, Albiges L, Pagliaro LC, et al. Association of neutrophil-to-lymphocyte ratio with efficacy of first-line avelumab plus axitinib vs. sunitinib in patients with advanced renal cell carcinoma enrolled in the Phase 3 JAVELIN Renal 101 Trial. Clin Cancer Res. 2021;28:738.CrossRef
203.
go back to reference Guzik K, Tomala M, Muszak D, Konieczny M, Hec A, Błaszkiewicz U, Pustuła M, et al. Development of the inhibitors that target the PD-1/PD-L1 interaction—a brief look at progress on small molecules, peptides and macrocycles. Molecules. 2019;24(11):2071.CrossRef Guzik K, Tomala M, Muszak D, Konieczny M, Hec A, Błaszkiewicz U, Pustuła M, et al. Development of the inhibitors that target the PD-1/PD-L1 interaction—a brief look at progress on small molecules, peptides and macrocycles. Molecules. 2019;24(11):2071.CrossRef
204.
go back to reference Guo L, Wei R, Lin Y, Kwok HF. Clinical and recent patents applications of PD-1/PD-L1 targeting immunotherapy in cancer treatment-current progress, strategy, and future perspective. Front Immunol. 2020;11:1508.CrossRef Guo L, Wei R, Lin Y, Kwok HF. Clinical and recent patents applications of PD-1/PD-L1 targeting immunotherapy in cancer treatment-current progress, strategy, and future perspective. Front Immunol. 2020;11:1508.CrossRef
205.
go back to reference Skalniak L, Zak KM, Guzik K, Magiera K, Musielak B, Pachota M, Szelazek B, et al. Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget. 2017;8(42):72167.CrossRef Skalniak L, Zak KM, Guzik K, Magiera K, Musielak B, Pachota M, Szelazek B, et al. Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget. 2017;8(42):72167.CrossRef
206.
go back to reference Zhan M-M, Hu X-Q, Liu X-X, Ruan B-F, Xu J, Liao C. From monoclonal antibodies to small molecules: the development of inhibitors targeting the PD-1/PD-L1 pathway. Drug Discov Today. 2016;21(6):1027–36.CrossRef Zhan M-M, Hu X-Q, Liu X-X, Ruan B-F, Xu J, Liao C. From monoclonal antibodies to small molecules: the development of inhibitors targeting the PD-1/PD-L1 pathway. Drug Discov Today. 2016;21(6):1027–36.CrossRef
207.
go back to reference Ganesan A, Ahmed M, Okoye I, Arutyunova E, Babu D, Turnbull WL, Kundu JK, et al. Comprehensive in vitro characterization of PD-L1 small molecule inhibitors. Sci Rep. 2019;9(1):1–19.CrossRef Ganesan A, Ahmed M, Okoye I, Arutyunova E, Babu D, Turnbull WL, Kundu JK, et al. Comprehensive in vitro characterization of PD-L1 small molecule inhibitors. Sci Rep. 2019;9(1):1–19.CrossRef
208.
go back to reference Awadasseid A, Wu Y, Zhang W. Advance investigation on synthetic small-molecule inhibitors targeting PD-1/PD-L1 signaling pathway. Life Sci. 2021;282: 119813.CrossRef Awadasseid A, Wu Y, Zhang W. Advance investigation on synthetic small-molecule inhibitors targeting PD-1/PD-L1 signaling pathway. Life Sci. 2021;282: 119813.CrossRef
209.
go back to reference Musielak B, Kocik J, Skalniak L, Magiera-Mularz K, Sala D, Czub M, Stec M, et al. CA-170–a potent small-molecule PD-L1 inhibitor or not? Molecules. 2019;24(15):2804.CrossRef Musielak B, Kocik J, Skalniak L, Magiera-Mularz K, Sala D, Czub M, Stec M, et al. CA-170–a potent small-molecule PD-L1 inhibitor or not? Molecules. 2019;24(15):2804.CrossRef
210.
go back to reference Li C, Shi M, Lin X, Zhang Y, Yu S, Zhou C, Yang N, et al. Novel risk scoring system for immune checkpoint inhibitors treatment in non-small cell lung cancer. Transl Lung Cancer Res. 2021;10(2):776–89.CrossRef Li C, Shi M, Lin X, Zhang Y, Yu S, Zhou C, Yang N, et al. Novel risk scoring system for immune checkpoint inhibitors treatment in non-small cell lung cancer. Transl Lung Cancer Res. 2021;10(2):776–89.CrossRef
211.
go back to reference Albiges L, Hakimi AA, Xie W, McKay RR, Simantov R, Lin X, Lee JL, et al. Body mass index and metastatic renal cell carcinoma: clinical and biological correlations. J Clin Oncol. 2016;34(30):3655–63.CrossRef Albiges L, Hakimi AA, Xie W, McKay RR, Simantov R, Lin X, Lee JL, et al. Body mass index and metastatic renal cell carcinoma: clinical and biological correlations. J Clin Oncol. 2016;34(30):3655–63.CrossRef
212.
go back to reference Cella D, Grünwald V, Escudier B, Hammers HJ, George S, Nathan P, Grimm M-O, et al. Patient-reported outcomes of patients with advanced renal cell carcinoma treated with nivolumab plus ipilimumab versus sunitinib (CheckMate 214): a randomised, phase 3 trial. Lancet Oncol. 2019;20(2):297–310.CrossRef Cella D, Grünwald V, Escudier B, Hammers HJ, George S, Nathan P, Grimm M-O, et al. Patient-reported outcomes of patients with advanced renal cell carcinoma treated with nivolumab plus ipilimumab versus sunitinib (CheckMate 214): a randomised, phase 3 trial. Lancet Oncol. 2019;20(2):297–310.CrossRef
213.
go back to reference Cella D, Motzer RJ, Suarez C, Blum SI, Ejzykowicz F, Hamilton M, Wallace JF, et al. Patient-reported outcomes with first-line nivolumab plus cabozantinib versus sunitinib in patients with advanced renal cell carcinoma treated in CheckMate 9ER: an open-label, randomised, phase 3 trial. Lancet Oncol. 2022;23:292.CrossRef Cella D, Motzer RJ, Suarez C, Blum SI, Ejzykowicz F, Hamilton M, Wallace JF, et al. Patient-reported outcomes with first-line nivolumab plus cabozantinib versus sunitinib in patients with advanced renal cell carcinoma treated in CheckMate 9ER: an open-label, randomised, phase 3 trial. Lancet Oncol. 2022;23:292.CrossRef
214.
go back to reference Courcier J, Dalban C, Laguerre B, Ladoire S, Barthélémy P, Oudard S, Joly F, et al. Primary renal tumour response in patients treated with nivolumab for metastatic renal cell carcinoma: results from the GETUG-AFU 26 NIVOREN trial. Eur Urol. 2021;80(3):325–9.CrossRef Courcier J, Dalban C, Laguerre B, Ladoire S, Barthélémy P, Oudard S, Joly F, et al. Primary renal tumour response in patients treated with nivolumab for metastatic renal cell carcinoma: results from the GETUG-AFU 26 NIVOREN trial. Eur Urol. 2021;80(3):325–9.CrossRef
215.
go back to reference Weiss SA, Djureinovic D, Jessel S, Krykbaeva I, Zhang L, Jilaveanu L, Ralabate A, et al. A phase I study of APX005M and cabiralizumab with or without nivolumab in patients with melanoma, kidney cancer, or non-small cell lung cancer resistant to anti-PD-1/PD-L1. Clin Cancer Res. 2021;27(17):4757–67.CrossRef Weiss SA, Djureinovic D, Jessel S, Krykbaeva I, Zhang L, Jilaveanu L, Ralabate A, et al. A phase I study of APX005M and cabiralizumab with or without nivolumab in patients with melanoma, kidney cancer, or non-small cell lung cancer resistant to anti-PD-1/PD-L1. Clin Cancer Res. 2021;27(17):4757–67.CrossRef
216.
go back to reference Ficial M, Jegede OA, Sant’Angelo M, Hou Y, Flaifel A, Pignon JC, Braun DA, et al. Expression of T-cell exhaustion molecules and human endogenous retroviruses as predictive biomarkers for response to nivolumab in metastatic clear cell renal cell carcinoma. Clin Cancer Res. 2021;27(5):1371–80.CrossRef Ficial M, Jegede OA, Sant’Angelo M, Hou Y, Flaifel A, Pignon JC, Braun DA, et al. Expression of T-cell exhaustion molecules and human endogenous retroviruses as predictive biomarkers for response to nivolumab in metastatic clear cell renal cell carcinoma. Clin Cancer Res. 2021;27(5):1371–80.CrossRef
217.
go back to reference McFarlane JJ, Kochenderfer MD, Olsen MR, Bauer TM, Molina A, Hauke RJ, Reeves JA, et al. Safety and efficacy of nivolumab in patients with advanced clear cell renal cell carcinoma: results from the phase IIIb/IV CheckMate 374 Study. Clin Genitourin Cancer. 2020;18(6):469-76.e4.CrossRef McFarlane JJ, Kochenderfer MD, Olsen MR, Bauer TM, Molina A, Hauke RJ, Reeves JA, et al. Safety and efficacy of nivolumab in patients with advanced clear cell renal cell carcinoma: results from the phase IIIb/IV CheckMate 374 Study. Clin Genitourin Cancer. 2020;18(6):469-76.e4.CrossRef
218.
go back to reference Flippot R, Dalban C, Laguerre B, Borchiellini D, Gravis G, Négrier S, Chevreau C, et al. Safety and efficacy of nivolumab in brain metastases from renal cell carcinoma: results of the GETUG-AFU 26 NIVOREN Multicenter Phase II Study. J Clin Oncol. 2019;37(23):2008–16.CrossRef Flippot R, Dalban C, Laguerre B, Borchiellini D, Gravis G, Négrier S, Chevreau C, et al. Safety and efficacy of nivolumab in brain metastases from renal cell carcinoma: results of the GETUG-AFU 26 NIVOREN Multicenter Phase II Study. J Clin Oncol. 2019;37(23):2008–16.CrossRef
219.
go back to reference Tannir NM, Cho DC, Diab A, Sznol M, Bilen MA, Balar AV, Grignani G, et al. Bempegaldesleukin plus nivolumab in first-line renal cell carcinoma: results from the PIVOT-02 study. J Immunother Cancer. 2022;10(4):e004419.CrossRef Tannir NM, Cho DC, Diab A, Sznol M, Bilen MA, Balar AV, Grignani G, et al. Bempegaldesleukin plus nivolumab in first-line renal cell carcinoma: results from the PIVOT-02 study. J Immunother Cancer. 2022;10(4):e004419.CrossRef
220.
go back to reference Masini C, Iotti C, De Giorgi U, Bellia RS, Buti S, Salaroli F, Zampiva I, et al. Nivolumab in combination with stereotactic body radiotherapy in pretreated patients with metastatic renal cell carcinoma. Results of the phase II NIVES study. Eur Urol. 2022;81(3):274–82.CrossRef Masini C, Iotti C, De Giorgi U, Bellia RS, Buti S, Salaroli F, Zampiva I, et al. Nivolumab in combination with stereotactic body radiotherapy in pretreated patients with metastatic renal cell carcinoma. Results of the phase II NIVES study. Eur Urol. 2022;81(3):274–82.CrossRef
221.
go back to reference Lee CH, Shah AY, Rasco D, Rao A, Taylor MH, Di Simone C, Hsieh JJ, et al. Lenvatinib plus pembrolizumab in patients with either treatment-naive or previously treated metastatic renal cell carcinoma (Study 111/KEYNOTE-146): a phase 1b/2 study. Lancet Oncol. 2021;22(7):946–58.CrossRef Lee CH, Shah AY, Rasco D, Rao A, Taylor MH, Di Simone C, Hsieh JJ, et al. Lenvatinib plus pembrolizumab in patients with either treatment-naive or previously treated metastatic renal cell carcinoma (Study 111/KEYNOTE-146): a phase 1b/2 study. Lancet Oncol. 2021;22(7):946–58.CrossRef
222.
go back to reference Dudek AZ, Liu LC, Gupta S, Logan TF, Singer EA, Joshi M, Zakharia YN, et al. Phase Ib/II clinical trial of pembrolizumab with bevacizumab for metastatic renal cell carcinoma: BTCRC-GU14-003. J Clin Oncol. 2020;38(11):1138.CrossRef Dudek AZ, Liu LC, Gupta S, Logan TF, Singer EA, Joshi M, Zakharia YN, et al. Phase Ib/II clinical trial of pembrolizumab with bevacizumab for metastatic renal cell carcinoma: BTCRC-GU14-003. J Clin Oncol. 2020;38(11):1138.CrossRef
223.
go back to reference Martini J-F, Plimack ER, Choueiri TK, McDermott DF, Puzanov I, Fishman MN, Cho DC, et al. Angiogenic and immune-related biomarkers and outcomes following axitinib/pembrolizumab treatment in patients with advanced renal cell carcinoma. Clin Cancer Res. 2020;26(21):5598–608.CrossRef Martini J-F, Plimack ER, Choueiri TK, McDermott DF, Puzanov I, Fishman MN, Cho DC, et al. Angiogenic and immune-related biomarkers and outcomes following axitinib/pembrolizumab treatment in patients with advanced renal cell carcinoma. Clin Cancer Res. 2020;26(21):5598–608.CrossRef
224.
go back to reference Siva S, Bressel M, Wood ST, Shaw MG, Loi S, Sandhu SK, Tran B, et al. Stereotactic radiotherapy and short-course pembrolizumab for oligometastatic renal cell carcinoma—the RAPPORT trial. Eur Urol. 2022;81(4):364–72.CrossRef Siva S, Bressel M, Wood ST, Shaw MG, Loi S, Sandhu SK, Tran B, et al. Stereotactic radiotherapy and short-course pembrolizumab for oligometastatic renal cell carcinoma—the RAPPORT trial. Eur Urol. 2022;81(4):364–72.CrossRef
225.
go back to reference Tang B, Yan X, Sheng X, Si L, Cui C, Kong Y, Mao L, et al. Safety and clinical activity with an anti-PD-1 antibody JS001 in advanced melanoma or urologic cancer patients. J Hematol Oncol. 2019;12(1):7.CrossRef Tang B, Yan X, Sheng X, Si L, Cui C, Kong Y, Mao L, et al. Safety and clinical activity with an anti-PD-1 antibody JS001 in advanced melanoma or urologic cancer patients. J Hematol Oncol. 2019;12(1):7.CrossRef
226.
go back to reference Pal SK, McGregor B, Suárez C, Tsao CK, Kelly W, Vaishampayan U, Pagliaro L, et al. Cabozantinib in combination with atezolizumab for advanced renal cell carcinoma: results from the COSMIC-021 Study. J Clin Oncol. 2021;39(33):3725–36.CrossRef Pal SK, McGregor B, Suárez C, Tsao CK, Kelly W, Vaishampayan U, Pagliaro L, et al. Cabozantinib in combination with atezolizumab for advanced renal cell carcinoma: results from the COSMIC-021 Study. J Clin Oncol. 2021;39(33):3725–36.CrossRef
227.
go back to reference Powles T, Atkins MB, Escudier B, Motzer RJ, Rini BI, Fong L, Joseph RW, et al. Efficacy and safety of atezolizumab plus bevacizumab following disease progression on atezolizumab or sunitinib monotherapy in patients with metastatic renal cell carcinoma in IMmotion150: a randomized phase 2 clinical trial. Eur Urol. 2021;79(5):665–73.CrossRef Powles T, Atkins MB, Escudier B, Motzer RJ, Rini BI, Fong L, Joseph RW, et al. Efficacy and safety of atezolizumab plus bevacizumab following disease progression on atezolizumab or sunitinib monotherapy in patients with metastatic renal cell carcinoma in IMmotion150: a randomized phase 2 clinical trial. Eur Urol. 2021;79(5):665–73.CrossRef
228.
go back to reference Jung KH, LoRusso P, Burris H, Gordon M, Bang YJ, Hellmann MD, Cervantes A, et al. Phase I Study of the Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitor Navoximod (GDC-0919) Administered with PD-L1 Inhibitor (Atezolizumab) in Advanced Solid Tumors. Clin Cancer Res. 2019;25(11):3220–8.CrossRef Jung KH, LoRusso P, Burris H, Gordon M, Bang YJ, Hellmann MD, Cervantes A, et al. Phase I Study of the Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitor Navoximod (GDC-0919) Administered with PD-L1 Inhibitor (Atezolizumab) in Advanced Solid Tumors. Clin Cancer Res. 2019;25(11):3220–8.CrossRef
229.
go back to reference Choueiri TK, Motzer RJ, Rini BI, Haanen J, Campbell MT, Venugopal B, Kollmannsberger C, et al. Updated efficacy results from the JAVELIN Renal 101 trial: first-line avelumab plus axitinib versus sunitinib in patients with advanced renal cell carcinoma. Ann Oncol. 2020;31(8):1030–9.CrossRef Choueiri TK, Motzer RJ, Rini BI, Haanen J, Campbell MT, Venugopal B, Kollmannsberger C, et al. Updated efficacy results from the JAVELIN Renal 101 trial: first-line avelumab plus axitinib versus sunitinib in patients with advanced renal cell carcinoma. Ann Oncol. 2020;31(8):1030–9.CrossRef
230.
go back to reference Fong L, Hotson A, Powderly JD, Sznol M, Heist RS, Choueiri TK, George S, et al. Adenosine 2A receptor blockade as an immunotherapy for treatment-refractory renal cell cancer. Cancer Discov. 2020;10(1):40–53.CrossRef Fong L, Hotson A, Powderly JD, Sznol M, Heist RS, Choueiri TK, George S, et al. Adenosine 2A receptor blockade as an immunotherapy for treatment-refractory renal cell cancer. Cancer Discov. 2020;10(1):40–53.CrossRef
Metadata
Title
Clinical potential of PD-1/PD-L1 blockade therapy for renal cell carcinoma (RCC): a rapidly evolving strategy
Authors
Mohammadsaleh Jahangir
Omid Yazdani
Mohammad Saeed Kahrizi
Sara Soltanzadeh
Hamidreza Javididashtbayaz
Azam Mivefroshan
Saba Ilkhani
Romina Esbati
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2022
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02816-3

Other articles of this Issue 1/2022

Cancer Cell International 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine