Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2014

Open Access 01-12-2014 | Research article

Khz-cp (crude polysaccharide extract obtained from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia) induces apoptosis by increasing intracellular calcium levels and activating P38 and NADPH oxidase-dependent generation of reactive oxygen species in SNU-1 cells

Authors: Tae Hwan Kim, Ju Sung Kim, Zoo Haye Kim, Ren Bin Huang, Young Lye Chae, Ren Sheng Wang

Published in: BMC Complementary Medicine and Therapies | Issue 1/2014

Login to get access

Abstract

Background

Khz-cp is a crude polysaccharide extract that is obtained after nuclear fusion in Ganoderma lucidum and Polyporus umbellatus mycelia (Khz). It inhibits the growth of cancer cells.

Methods

Khz-cp was extracted by solvent extraction. The anti-proliferative activity of Khz-cp was confirmed by using Annexin-V/PI-flow cytometry analysis. Intracellular calcium increase and measurement of intracellular reactive oxygen species (ROS) were performed by using flow cytometry and inverted microscope. SNU-1 cells were treated with p38, Bcl-2 and Nox family siRNA. siRNA transfected cells was employed to investigate the expression of apoptotic, growth and survival genes in SNU-1 cells. Western blot analysis was performed to confirm the expression of the genes.

Results

In the present study, Khz-cp induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz-cp was found to induce apoptosis by increasing the intracellular Ca2+ concentration ([Ca2+] i ) and activating P38 to generate reactive oxygen species (ROS) via NADPH oxidase and the mitochondria. Khz-cp-induced apoptosis was caspase dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-cp-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was shown by the translocation of the regulatory subunits p47phox and p67phox to the cell membrane and was necessary for ROS generation by Khz-cp. Khz-cp triggered a rapid and sustained increase in [Ca2+] i that activated P38. P38 was considered to play a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47phox and p67phox subunits and ROS generation.

Conclusions

In summary, these data indicate that Khz-cp preferentially induces apoptosis in cancer cells and that the signaling mechanisms involve an increase in [Ca2+] i , P38 activation, and ROS generation via NADPH oxidase and mitochondria.
Appendix
Available only for authorised users
Literature
1.
go back to reference Debatin KM: Apoptosis pathways in cancer and cancer therapy. Cancer Immunol Immunother. 2004, 53: 153-159.CrossRefPubMed Debatin KM: Apoptosis pathways in cancer and cancer therapy. Cancer Immunol Immunother. 2004, 53: 153-159.CrossRefPubMed
2.
go back to reference Arends MJ, Wyllie AH: Apoptosis: mechanisms and roles in pathology. Int Rev Exp Pathol. 1991, 32: 223-254.CrossRefPubMed Arends MJ, Wyllie AH: Apoptosis: mechanisms and roles in pathology. Int Rev Exp Pathol. 1991, 32: 223-254.CrossRefPubMed
3.
go back to reference Mesner PW, Budihardjo II, Kaufmann SH: Chemotherapy-induced apoptosis. Adv Pharmacol. 1997, 41: 461-499.CrossRefPubMed Mesner PW, Budihardjo II, Kaufmann SH: Chemotherapy-induced apoptosis. Adv Pharmacol. 1997, 41: 461-499.CrossRefPubMed
4.
go back to reference Palombo JD, Ganguly A, Bistrian BR, Menard MP: The antiproliferative effects of biologically active isomers of conjugated linoleic acid on human colorectal and prostatic cancer cells. Cancer Lett. 2002, 177: 163-172.CrossRefPubMed Palombo JD, Ganguly A, Bistrian BR, Menard MP: The antiproliferative effects of biologically active isomers of conjugated linoleic acid on human colorectal and prostatic cancer cells. Cancer Lett. 2002, 177: 163-172.CrossRefPubMed
5.
go back to reference Wasser SP, Weis AL: Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol. 1999, 19: 65-96.PubMed Wasser SP, Weis AL: Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol. 1999, 19: 65-96.PubMed
6.
go back to reference Jiang J, Sliva D: Novel medicinal mushroom blend suppresses growth and invasiveness of human breast cancer cells. Int J Oncol. 2010, 37 (6): 1529-1536.PubMed Jiang J, Sliva D: Novel medicinal mushroom blend suppresses growth and invasiveness of human breast cancer cells. Int J Oncol. 2010, 37 (6): 1529-1536.PubMed
7.
go back to reference Lin ZB, Zhang HN: Anti-tumor and immunoregulatory activities of Ganoderma lucidum and its possible mechanisms. Acta Pharmacol Sin. 2004, 25: 1387-1395.PubMed Lin ZB, Zhang HN: Anti-tumor and immunoregulatory activities of Ganoderma lucidum and its possible mechanisms. Acta Pharmacol Sin. 2004, 25: 1387-1395.PubMed
8.
go back to reference Sanodiya BS, Thakur GS, Baghel RK, Prasad GB, Bisen PS: Ganoderma lucidum: a potent pharmacological macrofungus. Curr Pharm Biotechnol. 2009, 10: 717-742.CrossRefPubMed Sanodiya BS, Thakur GS, Baghel RK, Prasad GB, Bisen PS: Ganoderma lucidum: a potent pharmacological macrofungus. Curr Pharm Biotechnol. 2009, 10: 717-742.CrossRefPubMed
9.
go back to reference Gao Y, Gao H, Chan E, Tang W, Xu A, Yang H, Huang M, Lan J, Li X, Xu C, Zhou S, Duan W: Antitumor activity and underlying mechanisms of ganopoly, the refined polysaccarides extracted from Ganoderma lucidum, in mice. Immunol Investig. 2005, 34: 171-198.CrossRef Gao Y, Gao H, Chan E, Tang W, Xu A, Yang H, Huang M, Lan J, Li X, Xu C, Zhou S, Duan W: Antitumor activity and underlying mechanisms of ganopoly, the refined polysaccarides extracted from Ganoderma lucidum, in mice. Immunol Investig. 2005, 34: 171-198.CrossRef
10.
go back to reference Yue GG, Fung KP, Tse GM, Leung PC, Lau CB: Comparative studies of various ganoderma species and their different parts with regard to antitumor and immunomodulating activities in vitro. J Altern Complement Med. 2006, 12: 777-789.CrossRefPubMed Yue GG, Fung KP, Tse GM, Leung PC, Lau CB: Comparative studies of various ganoderma species and their different parts with regard to antitumor and immunomodulating activities in vitro. J Altern Complement Med. 2006, 12: 777-789.CrossRefPubMed
11.
go back to reference Zhao YY, Chao X, Zhang Y, Lin RC, Sun WJ: Cytotoxic steroids from Polyporus umbellatus. Planta Med. 2010, 76 (15): 1755-1758.CrossRefPubMed Zhao YY, Chao X, Zhang Y, Lin RC, Sun WJ: Cytotoxic steroids from Polyporus umbellatus. Planta Med. 2010, 76 (15): 1755-1758.CrossRefPubMed
12.
go back to reference Kim TH, Kim JS, Kim ZH, Huang RB, Wang RS: Khz (fusion of ganoderma lucidum and polyporus umbellatus mycelia) induces apoptosis by increasing intracellular calcium levels and activating JNK and NADPH oxidase-dependent generation of reactive oxygen species. PLoS One. 2012, 7 (10): e46208-CrossRefPubMedPubMedCentral Kim TH, Kim JS, Kim ZH, Huang RB, Wang RS: Khz (fusion of ganoderma lucidum and polyporus umbellatus mycelia) induces apoptosis by increasing intracellular calcium levels and activating JNK and NADPH oxidase-dependent generation of reactive oxygen species. PLoS One. 2012, 7 (10): e46208-CrossRefPubMedPubMedCentral
13.
go back to reference Kim TH, Kim J, Kim Z, Huang RB, Wang RS: Khz (Fusion of Ganoderma lucidum and Polyporus umbellatus Mycelia) Induces Apoptosis in A549 Human Lung Cancer Cells by Generating Reactive Oxygen Species and Decreasing the Mitochondrial Membrane Potential. Food Sci. Biotechnol. 2014, 23 (3): 859-864.CrossRef Kim TH, Kim J, Kim Z, Huang RB, Wang RS: Khz (Fusion of Ganoderma lucidum and Polyporus umbellatus Mycelia) Induces Apoptosis in A549 Human Lung Cancer Cells by Generating Reactive Oxygen Species and Decreasing the Mitochondrial Membrane Potential. Food Sci. Biotechnol. 2014, 23 (3): 859-864.CrossRef
14.
go back to reference Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AM: Mechanisms of cell death in oxidative stress. Antioxid Redox Signal. 2007, 9: 49-89.CrossRefPubMed Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AM: Mechanisms of cell death in oxidative stress. Antioxid Redox Signal. 2007, 9: 49-89.CrossRefPubMed
15.
go back to reference Buttke TM, Sandstrom PA: Oxidative stress as a mediator of apoptosis. Immunol Today. 1994, 15: 7-10.CrossRefPubMed Buttke TM, Sandstrom PA: Oxidative stress as a mediator of apoptosis. Immunol Today. 1994, 15: 7-10.CrossRefPubMed
16.
go back to reference Jacobson MD: Reactive oxygen species and programmed cell death. Trends Biochem Sci. 1996, 21: 83-86.CrossRefPubMed Jacobson MD: Reactive oxygen species and programmed cell death. Trends Biochem Sci. 1996, 21: 83-86.CrossRefPubMed
17.
go back to reference Miyajima A, Nakashima J, Yoshioka K: Role of reactive oxygen species in cis-dichlorodiammineplatium-induced cytotoxicity on bladder cancer cells. Br J Cancer. 1997, 76: 206-210.CrossRefPubMedPubMedCentral Miyajima A, Nakashima J, Yoshioka K: Role of reactive oxygen species in cis-dichlorodiammineplatium-induced cytotoxicity on bladder cancer cells. Br J Cancer. 1997, 76: 206-210.CrossRefPubMedPubMedCentral
18.
go back to reference Zhou Y, Hileman EO, Plunkett W, Keating MJ, Huang P: Free radical stress in chronic lymphocytic leukemia cells and its role in cellular sensitivity to ROS-generating anticancer agents. Blood. 2003, 101: 4098-4104.CrossRefPubMed Zhou Y, Hileman EO, Plunkett W, Keating MJ, Huang P: Free radical stress in chronic lymphocytic leukemia cells and its role in cellular sensitivity to ROS-generating anticancer agents. Blood. 2003, 101: 4098-4104.CrossRefPubMed
19.
go back to reference Schulze-Osthoff K, Bakker AC, Vanhaesebroeck B, Beyaert R, Jacob WA, Fiers W: Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem. 2003, 278: 37832-37839.CrossRef Schulze-Osthoff K, Bakker AC, Vanhaesebroeck B, Beyaert R, Jacob WA, Fiers W: Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem. 2003, 278: 37832-37839.CrossRef
20.
go back to reference Quillet-Mary A, Jaffrézou JP, Mansat V, Bordier C, Naval J, Laurent G: Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J Biol Chem. 1992, 267: 5317-5323. Quillet-Mary A, Jaffrézou JP, Mansat V, Bordier C, Naval J, Laurent G: Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J Biol Chem. 1992, 267: 5317-5323.
21.
go back to reference Fleury C, Mignotte B, Vayssiere JL: Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J Biol Chem. 1997, 272: 21388-21395.CrossRef Fleury C, Mignotte B, Vayssiere JL: Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J Biol Chem. 1997, 272: 21388-21395.CrossRef
22.
go back to reference Fleury C, Mignotte B, Vayssière JL: Mitochondrial reactive oxygen species in cell death signaling. Biochimie. 2002, 84: 131-141.CrossRefPubMed Fleury C, Mignotte B, Vayssière JL: Mitochondrial reactive oxygen species in cell death signaling. Biochimie. 2002, 84: 131-141.CrossRefPubMed
23.
go back to reference Ott M, Gogvadze V, Orrenius S, Zhivotovsky B: Mitochondria, oxidative stress and cell death. Apoptosis. 2007, 12: 913-922.CrossRefPubMed Ott M, Gogvadze V, Orrenius S, Zhivotovsky B: Mitochondria, oxidative stress and cell death. Apoptosis. 2007, 12: 913-922.CrossRefPubMed
24.
go back to reference Hiraoka W, Vazquez N, Nieves-Neira W, Chanock SJ, Pommier Y: Role of oxygen radicals generated by NADPH oxidase in apoptosis induced in human leukemia cells. J Clin Invest. 1998, 102: 1961-1968.CrossRefPubMedPubMedCentral Hiraoka W, Vazquez N, Nieves-Neira W, Chanock SJ, Pommier Y: Role of oxygen radicals generated by NADPH oxidase in apoptosis induced in human leukemia cells. J Clin Invest. 1998, 102: 1961-1968.CrossRefPubMedPubMedCentral
25.
go back to reference Qin F, Patel R, Yan C, Liu W: NADPH oxidase is involved in angiotensin II-induced apoptosis in H9C2 cardiac muscle cells: effects of apocynin. Free Radic Biol Med. 2006, 40: 236-246.CrossRefPubMed Qin F, Patel R, Yan C, Liu W: NADPH oxidase is involved in angiotensin II-induced apoptosis in H9C2 cardiac muscle cells: effects of apocynin. Free Radic Biol Med. 2006, 40: 236-246.CrossRefPubMed
26.
go back to reference Brennan AM, Suh SW, Won SJ, Narasimhan P, Kauppinen TM, Lee H, Edling Y, Chan PH, Swanson RA: NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci. 2009, 12: 857-863.CrossRefPubMedPubMedCentral Brennan AM, Suh SW, Won SJ, Narasimhan P, Kauppinen TM, Lee H, Edling Y, Chan PH, Swanson RA: NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci. 2009, 12: 857-863.CrossRefPubMedPubMedCentral
27.
28.
go back to reference Granfeldt D, Samuelsson M, Karlsson A: Capacitative Ca2+ influx and activation of the neutrophil respiratory burst. Different regulation of plasma membrane- and granule-localized NADPH-oxidase. J Leukoc Biol. 2002, 71: 611-617.PubMed Granfeldt D, Samuelsson M, Karlsson A: Capacitative Ca2+ influx and activation of the neutrophil respiratory burst. Different regulation of plasma membrane- and granule-localized NADPH-oxidase. J Leukoc Biol. 2002, 71: 611-617.PubMed
29.
go back to reference Wang G, Anrather J, Glass MJ, Tarsitano MJ, Zhou P, Frys KA, Pickel VM, Iadecola C: Nox2, Ca2+, and protein kinase C play a role in angiotensin II-induced free radical production in nucleus tractus solitaries. Hypertension. 2006, 48: 482-489.CrossRefPubMed Wang G, Anrather J, Glass MJ, Tarsitano MJ, Zhou P, Frys KA, Pickel VM, Iadecola C: Nox2, Ca2+, and protein kinase C play a role in angiotensin II-induced free radical production in nucleus tractus solitaries. Hypertension. 2006, 48: 482-489.CrossRefPubMed
30.
go back to reference Kim JE, Koo KH, Kim YH, Sohn J, Park YG: Identification of potential lung cancer biomarkers using an in vitro carcinogenesis model. Exp Mol Med. 2008, 40: 709-720.CrossRefPubMedPubMedCentral Kim JE, Koo KH, Kim YH, Sohn J, Park YG: Identification of potential lung cancer biomarkers using an in vitro carcinogenesis model. Exp Mol Med. 2008, 40: 709-720.CrossRefPubMedPubMedCentral
31.
go back to reference Klein-Szanto AJ, Iizasa T, Momiki S, Garcia-Palazzo I, Caamano J, Metcalf R, Welsh J, Harris CC: A tobacco-specific N-nitrosamine or cigarette smoke condensate causes neoplastic transformation of xenotransplanted human bronchial epithelial cells. Proc Natl Acad Sci U S A. 1992, 89: 6693-6697.CrossRefPubMedPubMedCentral Klein-Szanto AJ, Iizasa T, Momiki S, Garcia-Palazzo I, Caamano J, Metcalf R, Welsh J, Harris CC: A tobacco-specific N-nitrosamine or cigarette smoke condensate causes neoplastic transformation of xenotransplanted human bronchial epithelial cells. Proc Natl Acad Sci U S A. 1992, 89: 6693-6697.CrossRefPubMedPubMedCentral
32.
go back to reference Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA, Murphy MP: Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem. 2001, 276: 4588-4596.CrossRefPubMed Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA, Murphy MP: Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem. 2001, 276: 4588-4596.CrossRefPubMed
33.
go back to reference Matsuzawa A, Ichijo H: Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim Biophys Acta. 2008, 1780: 1325-1336.CrossRefPubMed Matsuzawa A, Ichijo H: Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim Biophys Acta. 2008, 1780: 1325-1336.CrossRefPubMed
34.
go back to reference Kuppusamy P, Li H, Ilangovan G, Cardounel AJ, Zweier JL, Yamada K, Krishna MC, Mitchell JB: Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res. 2002, 62: 307-312.PubMed Kuppusamy P, Li H, Ilangovan G, Cardounel AJ, Zweier JL, Yamada K, Krishna MC, Mitchell JB: Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res. 2002, 62: 307-312.PubMed
35.
go back to reference Jacobson MD, Raff MC: Programmed cell death and Bcl-2 protection in very low oxygen. Nature. 1995, 374: 814-816.CrossRefPubMed Jacobson MD, Raff MC: Programmed cell death and Bcl-2 protection in very low oxygen. Nature. 1995, 374: 814-816.CrossRefPubMed
36.
go back to reference Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ: BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science. 2003, 300: 135-139.CrossRefPubMed Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ: BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science. 2003, 300: 135-139.CrossRefPubMed
37.
go back to reference Yu JH, Lim JW, Kim KH, Morio T, Kim H: NADPH oxidase and apoptosis in cerulein-stimulated pancreatic acinar AR42J cells. Free Radic Biol Med. 2005, 39: 590-602.CrossRefPubMed Yu JH, Lim JW, Kim KH, Morio T, Kim H: NADPH oxidase and apoptosis in cerulein-stimulated pancreatic acinar AR42J cells. Free Radic Biol Med. 2005, 39: 590-602.CrossRefPubMed
38.
go back to reference Gandhi S, Wood-Kaczmar A, Yao Z, Plun-Favreau H, Deas E, Klupsch K, Downward J, Latchman DS, Tabrizi SJ, Wood NW, Duchen MR, Abramov AY: PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell. 2009, 33: 627-638.CrossRefPubMedPubMedCentral Gandhi S, Wood-Kaczmar A, Yao Z, Plun-Favreau H, Deas E, Klupsch K, Downward J, Latchman DS, Tabrizi SJ, Wood NW, Duchen MR, Abramov AY: PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell. 2009, 33: 627-638.CrossRefPubMedPubMedCentral
39.
go back to reference Benhar M, Dalyot I, Engelberg D, Levitzki A: Enhanced ROS production in oncogenically transformed cells potentiates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress. Mol Cell Biol. 2001, 21: 6913-6926.CrossRefPubMedPubMedCentral Benhar M, Dalyot I, Engelberg D, Levitzki A: Enhanced ROS production in oncogenically transformed cells potentiates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress. Mol Cell Biol. 2001, 21: 6913-6926.CrossRefPubMedPubMedCentral
40.
go back to reference Saeki K, Kobayashi N, Inazawa Y, Zhang H, Nishitoh H, Ichijo H, Saeki K, Isemura M, Yuo A: Oxidation-triggered c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways for apoptosis in human leukaemic cells stimulated by epigallocatechin-3-gallate (EGCG): a distinct pathway from those of chemically induced and receptor-mediated apoptosis. Biochem J. 2002, 368: 705-720.CrossRefPubMedPubMedCentral Saeki K, Kobayashi N, Inazawa Y, Zhang H, Nishitoh H, Ichijo H, Saeki K, Isemura M, Yuo A: Oxidation-triggered c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways for apoptosis in human leukaemic cells stimulated by epigallocatechin-3-gallate (EGCG): a distinct pathway from those of chemically induced and receptor-mediated apoptosis. Biochem J. 2002, 368: 705-720.CrossRefPubMedPubMedCentral
Metadata
Title
Khz-cp (crude polysaccharide extract obtained from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia) induces apoptosis by increasing intracellular calcium levels and activating P38 and NADPH oxidase-dependent generation of reactive oxygen species in SNU-1 cells
Authors
Tae Hwan Kim
Ju Sung Kim
Zoo Haye Kim
Ren Bin Huang
Young Lye Chae
Ren Sheng Wang
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2014
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/1472-6882-14-236

Other articles of this Issue 1/2014

BMC Complementary Medicine and Therapies 1/2014 Go to the issue