Skip to main content
Top
Published in: International Ophthalmology 1/2020

Open Access 01-01-2020 | Keratomileusis | Original Paper

Predictors affecting myopic regression in − 6.0D to − 10.0D myopia after laser-assisted subepithelial keratomileusis and laser in situ keratomileusis flap creation with femtosecond laser-assisted or mechanical microkeratome-assisted

Authors: Jihong Zhou, Wei Gu, Shaowei Li, Lijuan Wu, Yan Gao, Xiuhua Guo

Published in: International Ophthalmology | Issue 1/2020

Login to get access

Abstract

Purpose

To investigate the predictive factors of postoperative myopic regression among subjects who have undergone laser-assisted subepithelial keratomileusis (LASEK), laser-assisted in situ keratomileusis (LASIK) flap created with a mechanical microkeratome (MM), and LASIK flap created with a femtosecond laser (FS). All recruited patients had a manifest spherical equivalence (SE) from − 6.0D to − 10.0D myopia.

Methods

This retrospective, observational case series study analyzed outcomes of refraction at 1 day, 1 week, and 1, 3, 6, and 12 months postoperatively. Predictors affecting myopic regression and other covariates were estimated with the Cox proportional hazards model for the three types of surgeries.

Results

The study enrolled 496 eyes in the LASEK group, 1054 eyes in the FS-LASIK group, and 910 eyes in the MM-LASIK group. At 12 months, from − 6.0D to − 10.0D myopia showed that the survival rates (no myopic regression) were 52.19%, 59.12%, and 58.79% in the MM-LASIK, FS-LASIK, and LASEK groups, respectively. Risk factors for myopic regression included thicker postoperative central corneal thickness (P ≦ 0.01), older age (P ≦ 0.01), aspherical ablation (P = 0.02), and larger transitional zone (TZ) (P = 0.03). Steeper corneal curvature (Kmax) (P = 0.01), thicker preoperative central corneal thickness (P < 0.01), smaller preoperative myopia (P < 0.01), longer duration of myopia (P = 0.02), with contact lens (P < 0.01), and larger optical zone (OZ) (P = 0.02) were protective factors. Among the three groups, the MM-LASIK had the highest risk of postoperative myopic regression (P < 0.01).

Conclusions

The MM-LASIK group experienced the highest myopic regression, followed by the FS-LASIK and LASEK groups. Older age, aspheric ablation used, thicker postoperative central corneal thickness, and enlarging TZ contribute to myopic regression; steeper preoperative corneal curvature (Kmax), longer duration of myopia, with contact lens, thicker preoperative central corneal thickness, lower manifest refraction SE, and enlarging OZ prevent postoperative myopic regression in myopia from − 6.0D to − 10.0D.
Literature
1.
go back to reference Chayet AS, Assil KK, Montes M, Espinosa-Lagana M, Castellanos A, Tsioulias G (1998) Regression and its mechanism after laser in situ keratomileusis in moderate and high myopia. Ophthalmology 105(7):1194–1199PubMed Chayet AS, Assil KK, Montes M, Espinosa-Lagana M, Castellanos A, Tsioulias G (1998) Regression and its mechanism after laser in situ keratomileusis in moderate and high myopia. Ophthalmology 105(7):1194–1199PubMed
2.
go back to reference Hu DJ, Feder RS, Basti S, Fung BB, Rademaker AW, Stewart P, Rosenberg MA (2004) Predictive formula for calculating the probability of LASIK enhancement. J Cataract Refract Surg 30:363–368PubMed Hu DJ, Feder RS, Basti S, Fung BB, Rademaker AW, Stewart P, Rosenberg MA (2004) Predictive formula for calculating the probability of LASIK enhancement. J Cataract Refract Surg 30:363–368PubMed
3.
go back to reference Albietz JM, Lenton LM, McLennan SG (2004) Chronic dry eye and regression after laser in situ keratomileusis for myopia. J Cataract Refract Surg 30:675–684PubMed Albietz JM, Lenton LM, McLennan SG (2004) Chronic dry eye and regression after laser in situ keratomileusis for myopia. J Cataract Refract Surg 30:675–684PubMed
4.
go back to reference Lian J, Zhang Q, Ye W, Zhou D, Wang K (2002) An analysis of regression after laser in situ keratomileusis for treatment of myopia. Zhonghua Yan Ke Za Zhi 38(6):363–366 (in Chinese) PubMed Lian J, Zhang Q, Ye W, Zhou D, Wang K (2002) An analysis of regression after laser in situ keratomileusis for treatment of myopia. Zhonghua Yan Ke Za Zhi 38(6):363–366 (in Chinese) PubMed
5.
go back to reference Chen Y-I, Chien K-L, Wang I-J, Yen AM-F, Chen L-S, Lin P-J, Chen TH-H (2007) An interval-censored model for predicting myopic regression after laser in situ keratomileusis. Invest Ophthalmol Vis Sci 48:3516–3523PubMed Chen Y-I, Chien K-L, Wang I-J, Yen AM-F, Chen L-S, Lin P-J, Chen TH-H (2007) An interval-censored model for predicting myopic regression after laser in situ keratomileusis. Invest Ophthalmol Vis Sci 48:3516–3523PubMed
6.
go back to reference Yuen LH, Chan WK, Koh J, Mehta JS, Tan DT, for the SingLasik Research Group (2010) A 10-year prospective audit of LASIK outcomes for myopia in 37,932 eyes at a single institution in Asia. Ophthalmology 117:1236–1244.e1PubMed Yuen LH, Chan WK, Koh J, Mehta JS, Tan DT, for the SingLasik Research Group (2010) A 10-year prospective audit of LASIK outcomes for myopia in 37,932 eyes at a single institution in Asia. Ophthalmology 117:1236–1244.e1PubMed
7.
go back to reference Hersh PS, Fry KL, Bishop DS (2003) Incidence and associations of retreatment after LASIK. Ophthalmology 110:748–754PubMed Hersh PS, Fry KL, Bishop DS (2003) Incidence and associations of retreatment after LASIK. Ophthalmology 110:748–754PubMed
8.
go back to reference Qi H, Hao Y, Xia Y, Chen Y (2006) Regression-related factors before and after laser in situ keratomileusis. Ophthalmologica 220(4):272–276PubMed Qi H, Hao Y, Xia Y, Chen Y (2006) Regression-related factors before and after laser in situ keratomileusis. Ophthalmologica 220(4):272–276PubMed
9.
go back to reference Eleftheriadis H, Prandi B, Diaz-Rato A, Morcillo M, Sabater JB (2005) The effect of flap thickness on the visual and refractive outcome of myopic laser in situ keratomileusis. Eye 19:1290–1296PubMed Eleftheriadis H, Prandi B, Diaz-Rato A, Morcillo M, Sabater JB (2005) The effect of flap thickness on the visual and refractive outcome of myopic laser in situ keratomileusis. Eye 19:1290–1296PubMed
10.
go back to reference Lohmann CP, Reischl U, Marshall J (1999) Regression and epithelial hyperplasia after myopic photorefractive keratectomy in a human cornea. J Cataract Refract Surg 25(5):712–715PubMed Lohmann CP, Reischl U, Marshall J (1999) Regression and epithelial hyperplasia after myopic photorefractive keratectomy in a human cornea. J Cataract Refract Surg 25(5):712–715PubMed
11.
go back to reference Kamiya K, Miyata K, Tokunaga T, Kiuchi T, Hiraoka T, Oshika T (2004) Structural analysis of the cornea using scanning-slit corneal topography in eyes undergoing excimer laser refractive surgery. Cornea 23(8):59–64 Kamiya K, Miyata K, Tokunaga T, Kiuchi T, Hiraoka T, Oshika T (2004) Structural analysis of the cornea using scanning-slit corneal topography in eyes undergoing excimer laser refractive surgery. Cornea 23(8):59–64
12.
go back to reference Baek TM, Lee KH, Kagaya F, Tomidokoro A, Amano S, Oshika T (2001) Factors affecting the forward shift of posterior corneal surface after laser in situ keratomileusis. Ophthalmology 108(2):317–320PubMed Baek TM, Lee KH, Kagaya F, Tomidokoro A, Amano S, Oshika T (2001) Factors affecting the forward shift of posterior corneal surface after laser in situ keratomileusis. Ophthalmology 108(2):317–320PubMed
13.
go back to reference Miyata K, Tokunaga T, Nakahara M et al (2004) Residual bed thickness and corneal forward shift after laser in situ keratomileusis. J Cataract Refract Surg 30(5):1067–1072PubMed Miyata K, Tokunaga T, Nakahara M et al (2004) Residual bed thickness and corneal forward shift after laser in situ keratomileusis. J Cataract Refract Surg 30(5):1067–1072PubMed
14.
go back to reference Fotedar R, Mitchell P, Burlutsky G, Wang JJ (2008) Relationship of 10-year change in refraction to nuclear cataract and axial length findings from an older population. Ophthalmology 115(8):1273–1278PubMed Fotedar R, Mitchell P, Burlutsky G, Wang JJ (2008) Relationship of 10-year change in refraction to nuclear cataract and axial length findings from an older population. Ophthalmology 115(8):1273–1278PubMed
15.
go back to reference Saka N, Ohno-Matsui K, Shimada N et al (2010) Long-term changes in axial length in adult eyes with pathologic myopia. Am J Ophthalmol 150(4):562–568PubMed Saka N, Ohno-Matsui K, Shimada N et al (2010) Long-term changes in axial length in adult eyes with pathologic myopia. Am J Ophthalmol 150(4):562–568PubMed
16.
go back to reference Saka N, Moriyama M, Shimada N, Nagaoka N, Fukuda K, Hayashi K, Yoshida T, Tokoro T, Ohno-Matsui K (2013) Changes of axial length measured by IOL master during 2 years in eyes of adults with pathologic myopia. Graefes Arch Clin Exp Ophthalmol 251(2):495–499PubMed Saka N, Moriyama M, Shimada N, Nagaoka N, Fukuda K, Hayashi K, Yoshida T, Tokoro T, Ohno-Matsui K (2013) Changes of axial length measured by IOL master during 2 years in eyes of adults with pathologic myopia. Graefes Arch Clin Exp Ophthalmol 251(2):495–499PubMed
17.
go back to reference Igarashi A, Shimizu K, Kamiya K (2014) Eight-year follow-up of posterior chamber phakic intraocular lens implantation for moderate to high myopia. Am J Ophthalmol 157(3):532–539PubMed Igarashi A, Shimizu K, Kamiya K (2014) Eight-year follow-up of posterior chamber phakic intraocular lens implantation for moderate to high myopia. Am J Ophthalmol 157(3):532–539PubMed
18.
go back to reference Lin MY, Chang DC, Hsu WM, Wang IJ (2012) Cox proportional hazards model of myopic regression for laser in situ keratomileusis flap creation with a femtosecond laser and with a mechanical microkeratome. J Cataract Refract Surg 38:992–999PubMed Lin MY, Chang DC, Hsu WM, Wang IJ (2012) Cox proportional hazards model of myopic regression for laser in situ keratomileusis flap creation with a femtosecond laser and with a mechanical microkeratome. J Cataract Refract Surg 38:992–999PubMed
19.
go back to reference Kim JY, Kim MJ, Kim T-I, Choi H-J, Pak JH, Tchah H (2006) A femtosecond laser creates a stronger flap than a mechanical microkeratome. Invest Ophthalmol Vis Sci 47:599–604PubMed Kim JY, Kim MJ, Kim T-I, Choi H-J, Pak JH, Tchah H (2006) A femtosecond laser creates a stronger flap than a mechanical microkeratome. Invest Ophthalmol Vis Sci 47:599–604PubMed
20.
go back to reference Baird A, Moemede P, Bohlen P (1985) Immunoreactive fibroblast growth factor in cells of peritoneal exudates suggests its identity with macrophage-derived growth factor. Biochem Biophys Res Commun 126(1):358–364PubMed Baird A, Moemede P, Bohlen P (1985) Immunoreactive fibroblast growth factor in cells of peritoneal exudates suggests its identity with macrophage-derived growth factor. Biochem Biophys Res Commun 126(1):358–364PubMed
21.
go back to reference Randleman JB, Dawson DG, Grossniklaus HE, McCarey BE, Edelhauser HF (2008) Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery. J Refract Surg 24(1):S85–S89PubMed Randleman JB, Dawson DG, Grossniklaus HE, McCarey BE, Edelhauser HF (2008) Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery. J Refract Surg 24(1):S85–S89PubMed
22.
go back to reference Scarcelli G, Pineda R, Yun SH (2012) Brillouin optical microscopy for corneal biomechanics. Invest Ophthalmol Vis Sci 53:185–190PubMedPubMedCentral Scarcelli G, Pineda R, Yun SH (2012) Brillouin optical microscopy for corneal biomechanics. Invest Ophthalmol Vis Sci 53:185–190PubMedPubMedCentral
23.
go back to reference Petsche SJ, Chernyak D, Martiz J, Levenston ME, Pinsky PM (2012) Depth-dependent transverse shear properties of the human corneal stroma. Invest Ophthalmol Vis Sci 53:873–880PubMedPubMedCentral Petsche SJ, Chernyak D, Martiz J, Levenston ME, Pinsky PM (2012) Depth-dependent transverse shear properties of the human corneal stroma. Invest Ophthalmol Vis Sci 53:873–880PubMedPubMedCentral
24.
go back to reference Binder PS (2006) One thousand consecutive IntraLase laser in situ keratomileusis flaps. J Cataract Refract Surg 32:962–969PubMed Binder PS (2006) One thousand consecutive IntraLase laser in situ keratomileusis flaps. J Cataract Refract Surg 32:962–969PubMed
25.
go back to reference Yildirim R, Aras C, Ozdamar A, Bahcecioglu H, Ozkan S (2000) Reproducibility of corneal flap thickness in laser in situ keratomileusis using the Hansatome microkeratome. J Cataract Refract Surg 26:1729–1732PubMed Yildirim R, Aras C, Ozdamar A, Bahcecioglu H, Ozkan S (2000) Reproducibility of corneal flap thickness in laser in situ keratomileusis using the Hansatome microkeratome. J Cataract Refract Surg 26:1729–1732PubMed
26.
go back to reference Von Jagow B, Kohnen T (2009) Corneal architecture of femtosecond laser and microkeratome flaps imaged by anterior segment optical coherence tomography. J Cataract Refract Surg 35(1):35–41 Von Jagow B, Kohnen T (2009) Corneal architecture of femtosecond laser and microkeratome flaps imaged by anterior segment optical coherence tomography. J Cataract Refract Surg 35(1):35–41
27.
go back to reference Kim G, Christiansen SM, Moshirfar M (2014) Change in keratometry after myopic laser in situ keratomileusis and photorefractive keratectomy. J Cataract Refract Surg 40(4):564–574PubMed Kim G, Christiansen SM, Moshirfar M (2014) Change in keratometry after myopic laser in situ keratomileusis and photorefractive keratectomy. J Cataract Refract Surg 40(4):564–574PubMed
28.
go back to reference O’Brart DP, Corbett MC, Lohmann CP, Kerr Muir MG, Marshall J (1995) The effects of ablation diameter on the outcome of excimer laser photorefractive keratectomy: a prospective, randomized double-blind study. Arch Ophthalmol 113:438–443PubMed O’Brart DP, Corbett MC, Lohmann CP, Kerr Muir MG, Marshall J (1995) The effects of ablation diameter on the outcome of excimer laser photorefractive keratectomy: a prospective, randomized double-blind study. Arch Ophthalmol 113:438–443PubMed
29.
go back to reference Shah SI, Hersh PS (1996) Photorefractive keratectomy for myopia with a 6-mm beam diameter. J Refract Surg 12:341–346PubMed Shah SI, Hersh PS (1996) Photorefractive keratectomy for myopia with a 6-mm beam diameter. J Refract Surg 12:341–346PubMed
30.
go back to reference Rajan MS, O’Brart D, Jaycock P, Marshall J (2006) Effects of ablation diameter on long-term refractive stability and corneal transparency after photorefractive keratectomy. Ophthalmology 113(10):1798–1806PubMed Rajan MS, O’Brart D, Jaycock P, Marshall J (2006) Effects of ablation diameter on long-term refractive stability and corneal transparency after photorefractive keratectomy. Ophthalmology 113(10):1798–1806PubMed
31.
go back to reference Gauthier CA, Epstein D, Holden BA, Tengroth B, Fagerholm P, Hamberg-Nyström H, Sievert R (1995) Epithelial alterations following photorefractive keratectomy for myopia. J Refract Surg 11:113–118PubMed Gauthier CA, Epstein D, Holden BA, Tengroth B, Fagerholm P, Hamberg-Nyström H, Sievert R (1995) Epithelial alterations following photorefractive keratectomy for myopia. J Refract Surg 11:113–118PubMed
32.
go back to reference Gauthier CA, Holden BA, Epstein D, Tengroth B, Fagerholm P, Hamberg-Nyström H (1997) Factors affecting epithelial hyperplasia after photorefractive keratectomy. J Cataract Refract Surg 23(7):1042–1050PubMed Gauthier CA, Holden BA, Epstein D, Tengroth B, Fagerholm P, Hamberg-Nyström H (1997) Factors affecting epithelial hyperplasia after photorefractive keratectomy. J Cataract Refract Surg 23(7):1042–1050PubMed
33.
go back to reference O’Brart DP, Corbett MC, Verma S, Heacock G, Oliver KM, Lohmann CP, Kerr Muir MG, Marshall J (1996) Effects of ablation diameter, depth, and edge contour on the outcome of photorefractive keratectomy. J Refract Surg 12(1):50–60PubMed O’Brart DP, Corbett MC, Verma S, Heacock G, Oliver KM, Lohmann CP, Kerr Muir MG, Marshall J (1996) Effects of ablation diameter, depth, and edge contour on the outcome of photorefractive keratectomy. J Refract Surg 12(1):50–60PubMed
34.
go back to reference Steinert RF, Hersh PS (1998) Spherical and aspherical photorefractive keratectomy and laser in situ keratomileusis for moderate to high myopia: two prospective, randomized clinical trials. Summit technology PRK-LASIK study group. Trans Am Ophthalmol Soc 96:197–221 discussion 221–227 PubMedPubMedCentral Steinert RF, Hersh PS (1998) Spherical and aspherical photorefractive keratectomy and laser in situ keratomileusis for moderate to high myopia: two prospective, randomized clinical trials. Summit technology PRK-LASIK study group. Trans Am Ophthalmol Soc 96:197–221 discussion 221–227 PubMedPubMedCentral
35.
go back to reference Rao SK, Cheng ACK, Fan DS, Leung AT, Lam DS (2001) Effect of preoperative keratometry on refractive outcomes after laser in situ keratomileusis. J Cataract Refract Surg 27:297–302PubMed Rao SK, Cheng ACK, Fan DS, Leung AT, Lam DS (2001) Effect of preoperative keratometry on refractive outcomes after laser in situ keratomileusis. J Cataract Refract Surg 27:297–302PubMed
36.
go back to reference Pokroy R, Mimouni M, Sela T, Munzer G, Kaiserman I (2016) Myopic laser in situ keratomileusis retreatment: incidence and associations. J Cataract Refract Surg 42(10):1408–1414PubMed Pokroy R, Mimouni M, Sela T, Munzer G, Kaiserman I (2016) Myopic laser in situ keratomileusis retreatment: incidence and associations. J Cataract Refract Surg 42(10):1408–1414PubMed
37.
go back to reference Backhouse S, Fox S, Ibrahim B, Phillips JR (2012) Peripheral refraction in myopia corrected with spectacles versus contact lenses. Ophthalmic Physiol Opt 32(4):294–303PubMed Backhouse S, Fox S, Ibrahim B, Phillips JR (2012) Peripheral refraction in myopia corrected with spectacles versus contact lenses. Ophthalmic Physiol Opt 32(4):294–303PubMed
38.
go back to reference Gauthier CA, Holden BA, Epstein D, Tengroth B, Fagerholm P, Hamberg-Nyström H (1996) Role of epithelial hyperplasia in regression following photorefractive keratectomy. Br J Ophthalmol 80(6):545–548PubMedPubMedCentral Gauthier CA, Holden BA, Epstein D, Tengroth B, Fagerholm P, Hamberg-Nyström H (1996) Role of epithelial hyperplasia in regression following photorefractive keratectomy. Br J Ophthalmol 80(6):545–548PubMedPubMedCentral
39.
go back to reference Lim SA, Park Y, Cheong YJ, Na KS, Joo C-K (2016) Factors affecting long-term myopic regression after laser in situ keratomileusis and laser-assisted subepithelial keratectomy for moderate myopia. Korean J Ophthalmol 30(2):92–100PubMedPubMedCentral Lim SA, Park Y, Cheong YJ, Na KS, Joo C-K (2016) Factors affecting long-term myopic regression after laser in situ keratomileusis and laser-assisted subepithelial keratectomy for moderate myopia. Korean J Ophthalmol 30(2):92–100PubMedPubMedCentral
40.
go back to reference Reinstein DZ, Archer TJ, Gobbe M (2012) Change in epithelial thickness profile 24 hours and longitudinally for 1 year after myopic LASIK: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg 28(3):195–201PubMed Reinstein DZ, Archer TJ, Gobbe M (2012) Change in epithelial thickness profile 24 hours and longitudinally for 1 year after myopic LASIK: three-dimensional display with Artemis very high-frequency digital ultrasound. J Refract Surg 28(3):195–201PubMed
41.
go back to reference Perlman EM, Reinert SE (2004) Factors influencing the need for enhancement after laser in situ keratomileusis. J Refract Surg 20:783–789PubMed Perlman EM, Reinert SE (2004) Factors influencing the need for enhancement after laser in situ keratomileusis. J Refract Surg 20:783–789PubMed
Metadata
Title
Predictors affecting myopic regression in − 6.0D to − 10.0D myopia after laser-assisted subepithelial keratomileusis and laser in situ keratomileusis flap creation with femtosecond laser-assisted or mechanical microkeratome-assisted
Authors
Jihong Zhou
Wei Gu
Shaowei Li
Lijuan Wu
Yan Gao
Xiuhua Guo
Publication date
01-01-2020
Publisher
Springer Netherlands
Published in
International Ophthalmology / Issue 1/2020
Print ISSN: 0165-5701
Electronic ISSN: 1573-2630
DOI
https://doi.org/10.1007/s10792-019-01179-5

Other articles of this Issue 1/2020

International Ophthalmology 1/2020 Go to the issue