Skip to main content
Top
Published in: Virology Journal 1/2020

01-12-2020 | Research

Isolation of Ontario aquatic bird bornavirus 1 and characterization of its replication in immortalized avian cell lines

Authors: Phuc H. Pham, Alexander Leacy, Li Deng, Éva Nagy, Leonardo Susta

Published in: Virology Journal | Issue 1/2020

Login to get access

Abstract

Background

Aquatic bird bornavirus 1 (ABBV-1) has been associated with neurological diseases in wild waterfowls. In Canada, presence of ABBV-1 was demonstrated by RT-qPCR and immunohistochemistry in tissues of waterfowls with history of neurological disease and inflammation of the central and peripheral nervous tissue, although causation has not been proven by pathogenesis experiments, yet. To date, in vitro characterization of ABBV-1 is limited to isolation in primary duck embryo fibroblasts. The objectives of this study were to describe isolation of ABBV-1 in primary duck embryonic fibroblasts (DEF), and characterize replication in DEF and three immortalized avian fibroblast cell lines (duck CCL-141, quail QT-35, chicken DF-1) in order to evaluate cellular permissivity and identify suitable cell lines for routine virus propagation.

Methods

The virus was sequenced, and phylogenetic analysis performed on a segment of the N gene coding region. Virus spread in cell cultures, viral RNA and protein production, and titres were evaluated at different passages using immunofluorescence, RT-qPCR, western blotting, and tissue culture dose 50% (TCID50) assay, respectively.

Results

The isolated ABBV-1 showed 97 and 99% identity to European ABBV-1 isolate AF-168 and North American ABBV-1 isolates 062-CQ and CG-N1489, and could infect and replicate in DEF, CCL-141, QT-35 and DF-1 cultures. Viral RNA was detected in all four cultures with highest levels observed in DEF and CCL-141, moderate in QT-35, and lowest in DF-1. N protein was detected in western blots from infected DEF, CCL-141 and QT-35 at moderate to high levels, but minimally in infected DF-1. Infectious titre was highest in DEF (between approximately 105 to 106 FFU / 106 cells). Regarding immortalized cell lines, CCL-141 showed the highest titre between approximately 104 to 105 FFU / 106 cells. DF-1 produced minimal infectious titre.

Conclusions

This study confirms the presence of ABBV-1 among waterfowl in Canada and reported additional in vitro characterization of this virus in different avian cell lines. ABBV-1 replicated to highest titre in DEF, followed by CCL-141 and QT-35, and poorly in DF-1. Our results showed that CCL-141 can be used instead of DEF for routine ABBV-1 production, if a lower titre is an acceptable trade-off for the simplicity of using immortalized cell line over primary culture.
Appendix
Available only for authorised users
Literature
1.
go back to reference Amarasinghe GK, Bào Y, Basler CF, Bavari S, Beer M, Bejerman N, et al. Taxonomy of the order Mononegavirales: update 2017. Arch Virol. 2017;162(8):2493–504.PubMedPubMedCentralCrossRef Amarasinghe GK, Bào Y, Basler CF, Bavari S, Beer M, Bejerman N, et al. Taxonomy of the order Mononegavirales: update 2017. Arch Virol. 2017;162(8):2493–504.PubMedPubMedCentralCrossRef
2.
go back to reference Maes P, Amarasinghe GK, Ayllón MA, Basler CF, Bavari S, Blasdell KR, et al. Taxonomy of the order Mononegavirales: second update 2018. Arch Virol. 2019;164(4):1233–44.PubMedCrossRefPubMedCentral Maes P, Amarasinghe GK, Ayllón MA, Basler CF, Bavari S, Blasdell KR, et al. Taxonomy of the order Mononegavirales: second update 2018. Arch Virol. 2019;164(4):1233–44.PubMedCrossRefPubMedCentral
3.
go back to reference Delnatte P, Berkvens C, Kummrow M, Smith DA, Campbell D, Crawshaw G, et al. New genotype of avian bornavirus in wild geese and trumpeter swans in Canada. Vet Rec. 2011;169(4):108.PubMedCrossRef Delnatte P, Berkvens C, Kummrow M, Smith DA, Campbell D, Crawshaw G, et al. New genotype of avian bornavirus in wild geese and trumpeter swans in Canada. Vet Rec. 2011;169(4):108.PubMedCrossRef
4.
go back to reference Payne S, Covaleda L, Jianhua G, Swafford S, Baroch J, Ferro PJ, et al. Detection and characterization of a distinct Bornavirus lineage from healthy Canada geese (Branta canadensis). J Virol. 2011;85(22):12053–6.PubMedPubMedCentralCrossRef Payne S, Covaleda L, Jianhua G, Swafford S, Baroch J, Ferro PJ, et al. Detection and characterization of a distinct Bornavirus lineage from healthy Canada geese (Branta canadensis). J Virol. 2011;85(22):12053–6.PubMedPubMedCentralCrossRef
5.
go back to reference Thomsen AF, Nielsen JB, Hjulsager CK, Chriél M, Smith DA, Bertelsen MF. Aquatic bird Bornavirus 1 in wild geese, Denmark. Emerg Infect Dis. 2015;21(12):2201–3.PubMedPubMedCentralCrossRef Thomsen AF, Nielsen JB, Hjulsager CK, Chriél M, Smith DA, Bertelsen MF. Aquatic bird Bornavirus 1 in wild geese, Denmark. Emerg Infect Dis. 2015;21(12):2201–3.PubMedPubMedCentralCrossRef
6.
go back to reference Guo J, Tizard I, Baroch J, Shivaprasad HL, Payne SL. Avian Bornaviruses in north American gulls. J Wildl Dis. 2015;51(3):754–8.PubMedCrossRef Guo J, Tizard I, Baroch J, Shivaprasad HL, Payne SL. Avian Bornaviruses in north American gulls. J Wildl Dis. 2015;51(3):754–8.PubMedCrossRef
7.
go back to reference Nielsen AMW, Ojkic D, Dutton CJ, Smith DA. Aquatic bird bornavirus 1 infection in a captive emu ( Dromaius novaehollandiae ): presumed natural transmission from free-ranging wild waterfowl. Avian Pathol. 2018;47(1):58–62.PubMedCrossRef Nielsen AMW, Ojkic D, Dutton CJ, Smith DA. Aquatic bird bornavirus 1 infection in a captive emu ( Dromaius novaehollandiae ): presumed natural transmission from free-ranging wild waterfowl. Avian Pathol. 2018;47(1):58–62.PubMedCrossRef
8.
go back to reference Guo J, Baroch J, Randall A, Tizard I. Complete Genome Sequence of an Avian Bornavirus Isolated from a Healthy Canadian Goose (Branta canadensis). Genome Announc. 2013;1(5):e00839.PubMedPubMedCentralCrossRef Guo J, Baroch J, Randall A, Tizard I. Complete Genome Sequence of an Avian Bornavirus Isolated from a Healthy Canadian Goose (Branta canadensis). Genome Announc. 2013;1(5):e00839.PubMedPubMedCentralCrossRef
10.
go back to reference Tomonaga K, Kobayashi T, Ikuta K. Molecular and cellular biology of Borna disease virus infection. Microbes Infect. 2002;4(4):491–500.PubMedCrossRef Tomonaga K, Kobayashi T, Ikuta K. Molecular and cellular biology of Borna disease virus infection. Microbes Infect. 2002;4(4):491–500.PubMedCrossRef
11.
12.
go back to reference Ludwig H, Becht H, Groh L. Borna disease (BD), a slow virus infection biological properties of the virus. Med Microbiol Immunol. 1973;158(4):275–89.PubMedCrossRef Ludwig H, Becht H, Groh L. Borna disease (BD), a slow virus infection biological properties of the virus. Med Microbiol Immunol. 1973;158(4):275–89.PubMedCrossRef
13.
go back to reference Anzil AP, Blinzinger K. Electron microscopic studies of rabbit central and peripheral nervous system in experimental Borna disease. Acta Neuropathol. 1972;22(4):305–18.PubMedCrossRef Anzil AP, Blinzinger K. Electron microscopic studies of rabbit central and peripheral nervous system in experimental Borna disease. Acta Neuropathol. 1972;22(4):305–18.PubMedCrossRef
14.
go back to reference Matsumoto Y, Hayashi Y, Omori H, Honda T, Daito T, Horie M, et al. Bornavirus closely associates and segregates with host chromosomes to ensure persistent Intranuclear infection. Cell Host Microbe. 2012;11(5):492–503.PubMedCrossRef Matsumoto Y, Hayashi Y, Omori H, Honda T, Daito T, Horie M, et al. Bornavirus closely associates and segregates with host chromosomes to ensure persistent Intranuclear infection. Cell Host Microbe. 2012;11(5):492–503.PubMedCrossRef
15.
go back to reference Maclachlan N, Dubovi EJ. Bornaviridae. In: Fenner’s Veterinary Virology. London: Academic Press; 2017. p. 381–7. Maclachlan N, Dubovi EJ. Bornaviridae. In: Fenner’s Veterinary Virology. London: Academic Press; 2017. p. 381–7.
17.
go back to reference Guo J, Payne S, Zhang S, Turner D, Tizard I, Suchodolski P. Avian Bornaviruses: diagnosis, isolation, and genotyping. In: Current protocols in microbiology. Hoboken: Wiley; 2014. p. 15I.1.1–15I.1.33.CrossRef Guo J, Payne S, Zhang S, Turner D, Tizard I, Suchodolski P. Avian Bornaviruses: diagnosis, isolation, and genotyping. In: Current protocols in microbiology. Hoboken: Wiley; 2014. p. 15I.1.1–15I.1.33.CrossRef
19.
go back to reference Beug H, Graf T. Isolation of clonal strains of chicken embryo fibroblasts. Exp Cell Res. 1977;107(2):417–28.PubMedCrossRef Beug H, Graf T. Isolation of clonal strains of chicken embryo fibroblasts. Exp Cell Res. 1977;107(2):417–28.PubMedCrossRef
20.
go back to reference Delnatte P, Nagy É, Ojkic D, Crawshaw G, Smith DA. Investigation into the possibility of vertical transmission of avian bornavirus in free-ranging Canada geese (Branta canadensis). Avian Pathol. 2014;43(4):301–4.PubMedCrossRef Delnatte P, Nagy É, Ojkic D, Crawshaw G, Smith DA. Investigation into the possibility of vertical transmission of avian bornavirus in free-ranging Canada geese (Branta canadensis). Avian Pathol. 2014;43(4):301–4.PubMedCrossRef
21.
go back to reference Monaco E, Hoppes S, Guo J, Tizard I. The detection of avian Bornavirus within Psittacine eggs. J Avian Med Surg. 2012;26(3):144–8.PubMedCrossRef Monaco E, Hoppes S, Guo J, Tizard I. The detection of avian Bornavirus within Psittacine eggs. J Avian Med Surg. 2012;26(3):144–8.PubMedCrossRef
22.
go back to reference Lierz M, Piepenbring A, Herden C, Oberhäuser K, Heffels-Redmann U, Enderlein D. Vertical transmission of avian Bornavirus in Psittacines. Emerg Infect Dis. 2011;17(12):2390–1.PubMedPubMedCentralCrossRef Lierz M, Piepenbring A, Herden C, Oberhäuser K, Heffels-Redmann U, Enderlein D. Vertical transmission of avian Bornavirus in Psittacines. Emerg Infect Dis. 2011;17(12):2390–1.PubMedPubMedCentralCrossRef
23.
go back to reference Kerski A, de Kloet AH, de Kloet SR. Vertical transmission of avian Bornavirus in Psittaciformes: avian Bornavirus RNA and anti-avian Bornavirus antibodies in eggs, embryos, and hatchlings obtained from infected sun Conures (Aratinga solstitialis). Avian Dis. 2012;56(3):471–8.PubMedCrossRef Kerski A, de Kloet AH, de Kloet SR. Vertical transmission of avian Bornavirus in Psittaciformes: avian Bornavirus RNA and anti-avian Bornavirus antibodies in eggs, embryos, and hatchlings obtained from infected sun Conures (Aratinga solstitialis). Avian Dis. 2012;56(3):471–8.PubMedCrossRef
24.
go back to reference Payne SL, Delnatte P, Guo J, Heatley JJ, Tizard I, Smith DA. Birds and bornaviruses. Animal Health Res Rev. 2012;13:145–56.CrossRef Payne SL, Delnatte P, Guo J, Heatley JJ, Tizard I, Smith DA. Birds and bornaviruses. Animal Health Res Rev. 2012;13:145–56.CrossRef
25.
go back to reference Guo J, Covaleda L, Heatley JJ, Baroch JA, Tizard I, Payne SL. Widespread avian bornavirus infection in mute swans in the Northeast United States. Vet Med (Auckland, NZ). 2012;3:49–52. Guo J, Covaleda L, Heatley JJ, Baroch JA, Tizard I, Payne SL. Widespread avian bornavirus infection in mute swans in the Northeast United States. Vet Med (Auckland, NZ). 2012;3:49–52.
26.
go back to reference Bols NC, Pham PH, Dayeh VR, LEJ L. Invitromatics, invitrome, and invitroomics: introduction of three new terms for in vitro biology and illustration of their use with the cell lines from rainbow trout. In Vitro Cell Dev Biol Animal. 2017;53:383–405.CrossRef Bols NC, Pham PH, Dayeh VR, LEJ L. Invitromatics, invitrome, and invitroomics: introduction of three new terms for in vitro biology and illustration of their use with the cell lines from rainbow trout. In Vitro Cell Dev Biol Animal. 2017;53:383–405.CrossRef
27.
go back to reference Guo J, Shivaprasad HL, Rech RR, Heatley JJ, Tizard I, Payne S. Characterization of a new genotype of avian bornavirus from wild ducks. Virol J. 2014;11(1):197.PubMedPubMedCentralCrossRef Guo J, Shivaprasad HL, Rech RR, Heatley JJ, Tizard I, Payne S. Characterization of a new genotype of avian bornavirus from wild ducks. Virol J. 2014;11(1):197.PubMedPubMedCentralCrossRef
28.
go back to reference Rubbenstroth D, Rinder M, Stein M, Höper D, Kaspers B, Brosinski K, et al. Avian bornaviruses are widely distributed in canary birds (Serinus canaria f. domestica). Vet Microbiol. 2013;165(3–4):287–95.PubMedCrossRef Rubbenstroth D, Rinder M, Stein M, Höper D, Kaspers B, Brosinski K, et al. Avian bornaviruses are widely distributed in canary birds (Serinus canaria f. domestica). Vet Microbiol. 2013;165(3–4):287–95.PubMedCrossRef
29.
go back to reference Rubbenstroth D, Schmidt V, Rinder M, Legler M, Corman VM, Staeheli P. Discovery of a new avian bornavirus genotype in estrildid finches (Estrildidae) in Germany. Vet Microbiol. 2014;168(2–4):318–23.PubMedCrossRef Rubbenstroth D, Schmidt V, Rinder M, Legler M, Corman VM, Staeheli P. Discovery of a new avian bornavirus genotype in estrildid finches (Estrildidae) in Germany. Vet Microbiol. 2014;168(2–4):318–23.PubMedCrossRef
30.
go back to reference Gray P, Hoppes S, Suchodolski P, Mirhosseini N, Payne S, Villanueva I, et al. Use of avian Bornavirus isolates to induce Proventricular dilatation disease in Conures. Emerg Infect Dis. 2010;16(3):473–9.PubMedPubMedCentralCrossRef Gray P, Hoppes S, Suchodolski P, Mirhosseini N, Payne S, Villanueva I, et al. Use of avian Bornavirus isolates to induce Proventricular dilatation disease in Conures. Emerg Infect Dis. 2010;16(3):473–9.PubMedPubMedCentralCrossRef
31.
go back to reference Rubbenstroth D, Rinder M, Kaspers B, Staeheli P. Efficient isolation of avian bornaviruses (ABV) from naturally infected psittacine birds and identification of a new ABV genotype from a salmon-crested cockatoo (Cacatua moluccensis). Vet Microbiol. 2012;161(1–2):36–42.PubMedCrossRef Rubbenstroth D, Rinder M, Kaspers B, Staeheli P. Efficient isolation of avian bornaviruses (ABV) from naturally infected psittacine birds and identification of a new ABV genotype from a salmon-crested cockatoo (Cacatua moluccensis). Vet Microbiol. 2012;161(1–2):36–42.PubMedCrossRef
32.
go back to reference de Araujo JL, Rodrigues-Hoffmann A, Giaretta PR, Guo J, Heatley J, Tizard I, et al. Distribution of viral antigen and inflammatory lesions in the central nervous system of cockatiels (Nymphicus hollandicus) experimentally infected with parrot Bornavirus 2. Vet Pathol. 2019;56(1):106–17.PubMedCrossRef de Araujo JL, Rodrigues-Hoffmann A, Giaretta PR, Guo J, Heatley J, Tizard I, et al. Distribution of viral antigen and inflammatory lesions in the central nervous system of cockatiels (Nymphicus hollandicus) experimentally infected with parrot Bornavirus 2. Vet Pathol. 2019;56(1):106–17.PubMedCrossRef
33.
go back to reference Rinder M, Ackermann A, Kempf H, Kaspers B, Korbel R, Staeheli P. Broad tissue and cell tropism of avian bornavirus in parrots with proventricular dilatation disease. J Virol. 2009;83(11):5401–7.PubMedPubMedCentralCrossRef Rinder M, Ackermann A, Kempf H, Kaspers B, Korbel R, Staeheli P. Broad tissue and cell tropism of avian bornavirus in parrots with proventricular dilatation disease. J Virol. 2009;83(11):5401–7.PubMedPubMedCentralCrossRef
34.
go back to reference Horie M, Sassa Y, Iki H, Ebisawa K, Fukushi H, Yanai T, et al. Isolation of avian bornaviruses from psittacine birds using QT6 quail cells in Japan. J Vet Med Sci. 2016;78(2):305.PubMedCrossRef Horie M, Sassa Y, Iki H, Ebisawa K, Fukushi H, Yanai T, et al. Isolation of avian bornaviruses from psittacine birds using QT6 quail cells in Japan. J Vet Med Sci. 2016;78(2):305.PubMedCrossRef
35.
36.
go back to reference Wolf K, Burke CN, Quimby MC. Duck viral enteritis: microtiter plate isolation and neutralization test using the duck embryo fibroblast cell line. Avian Dis. 1974;18(3):427–34.PubMedCrossRef Wolf K, Burke CN, Quimby MC. Duck viral enteritis: microtiter plate isolation and neutralization test using the duck embryo fibroblast cell line. Avian Dis. 1974;18(3):427–34.PubMedCrossRef
37.
go back to reference Schaefer-Klein J, Givol I, Barsov EV, Whitcomb JM, VanBrocklin M, Foster DN, et al. The EV-O-derived cell line DF-1 supports the efficient replication of avian Leukosis-sarcoma viruses and vectors. Virology. 1998;248(2):305–11.PubMedCrossRef Schaefer-Klein J, Givol I, Barsov EV, Whitcomb JM, VanBrocklin M, Foster DN, et al. The EV-O-derived cell line DF-1 supports the efficient replication of avian Leukosis-sarcoma viruses and vectors. Virology. 1998;248(2):305–11.PubMedCrossRef
38.
go back to reference Moscovici C, Moscovici MG, Jimenez H, Lai MMC, Hayman MJ, Vogt PK. Continuous tissue culture cell lines derived from chemically induced tumors of Japanese quail. Cell. 1977;11(1):95–103.PubMedCrossRef Moscovici C, Moscovici MG, Jimenez H, Lai MMC, Hayman MJ, Vogt PK. Continuous tissue culture cell lines derived from chemically induced tumors of Japanese quail. Cell. 1977;11(1):95–103.PubMedCrossRef
39.
go back to reference Delnatte P, Ojkic D, DeLay J, Campbell D, Crawshaw G, Smith DA. Pathology and diagnosis of avian bornavirus infection in wild Canada geese ( Branta canadensis ), trumpeter swans ( Cygnus buccinator ) and mute swans ( Cygnus olor ) in Canada: a retrospective study. Avian Pathol. 2013;42(2):114–28.PubMedCrossRef Delnatte P, Ojkic D, DeLay J, Campbell D, Crawshaw G, Smith DA. Pathology and diagnosis of avian bornavirus infection in wild Canada geese ( Branta canadensis ), trumpeter swans ( Cygnus buccinator ) and mute swans ( Cygnus olor ) in Canada: a retrospective study. Avian Pathol. 2013;42(2):114–28.PubMedCrossRef
40.
go back to reference Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.PubMed Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.PubMed
41.
42.
go back to reference Felsenstein J. Confidence limits on phylogenies: an approach using the BOOTSTRAP. Evolution (N Y). 1985;39(4):783–91. Felsenstein J. Confidence limits on phylogenies: an approach using the BOOTSTRAP. Evolution (N Y). 1985;39(4):783–91.
43.
go back to reference Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci. 2004;101(30):11030–5.PubMedCrossRefPubMedCentral Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci. 2004;101(30):11030–5.PubMedCrossRefPubMedCentral
44.
go back to reference Luria SE, Darnell JE, Baltimore D, and Campell A (Editors), General Virology (3rd Edition). New York; Toronto: Wiley; 1978. p. 578. Luria SE, Darnell JE, Baltimore D, and Campell A (Editors), General Virology (3rd Edition). New York; Toronto: Wiley; 1978. p. 578.
45.
46.
go back to reference Pham PH, Tong WWL, Misk E, Jones G, Lumsden JS, Bols NC. Atlantic salmon endothelial cells from the heart were more susceptible than fibroblasts from the bulbus arteriosus to four RNA viruses but protected from two viruses by dsRNA pretreatment. Fish Shellfish Immunol. 2017;70:214–27.PubMedCrossRef Pham PH, Tong WWL, Misk E, Jones G, Lumsden JS, Bols NC. Atlantic salmon endothelial cells from the heart were more susceptible than fibroblasts from the bulbus arteriosus to four RNA viruses but protected from two viruses by dsRNA pretreatment. Fish Shellfish Immunol. 2017;70:214–27.PubMedCrossRef
47.
go back to reference Rubbenstroth D, Schmidt V, Rinder M, Legler M, Twietmeyer S, Schwemmer P, et al. Phylogenetic Analysis Supports Horizontal Transmission as a Driving Force of the Spread of Avian Bornaviruses. Lierz M, editor. PLoS One. 2016;11(8):e0160936.PubMedPubMedCentralCrossRef Rubbenstroth D, Schmidt V, Rinder M, Legler M, Twietmeyer S, Schwemmer P, et al. Phylogenetic Analysis Supports Horizontal Transmission as a Driving Force of the Spread of Avian Bornaviruses. Lierz M, editor. PLoS One. 2016;11(8):e0160936.PubMedPubMedCentralCrossRef
48.
go back to reference Murray M, Guo J, Tizard I, Jennings S, Shivaprasad HL, Payne S, et al. Aquatic bird Bornavirus-associated disease in free-living Canada geese ( Branta canadensis ) in the northeastern USA. J Wildl Dis. 2017;53(3):607–11.PubMedCrossRef Murray M, Guo J, Tizard I, Jennings S, Shivaprasad HL, Payne S, et al. Aquatic bird Bornavirus-associated disease in free-living Canada geese ( Branta canadensis ) in the northeastern USA. J Wildl Dis. 2017;53(3):607–11.PubMedCrossRef
49.
go back to reference Ouyang N, Storts R, Tian Y, Wigle W, Villanueva I, Mirhosseini N, et al. Histopathology and the detection of avian bornavirus in the nervous system of birds diagnosed with proventricular dilatation disease. Avian Pathol. 2009;38(5):393–401.PubMedCrossRef Ouyang N, Storts R, Tian Y, Wigle W, Villanueva I, Mirhosseini N, et al. Histopathology and the detection of avian bornavirus in the nervous system of birds diagnosed with proventricular dilatation disease. Avian Pathol. 2009;38(5):393–401.PubMedCrossRef
50.
go back to reference Raghav R, Taylor M, DeLay J, Ojkic D, Pearl DL, Kistler AL, et al. Avian Bornavirus is present in many tissues of Psittacine birds with Histopathologic evidence of Proventricular dilatation disease. J Vet Diagn Investig. 2010;22(4):495–508.CrossRef Raghav R, Taylor M, DeLay J, Ojkic D, Pearl DL, Kistler AL, et al. Avian Bornavirus is present in many tissues of Psittacine birds with Histopathologic evidence of Proventricular dilatation disease. J Vet Diagn Investig. 2010;22(4):495–508.CrossRef
51.
go back to reference Cubitt B, de la Torre JC. Borna disease virus (BDV), a nonsegmented RNA virus, replicates in the nuclei of infected cells where infectious BDV ribonucleoproteins are present. J Virol. 1994;68(3):1371–81.PubMedPubMedCentralCrossRef Cubitt B, de la Torre JC. Borna disease virus (BDV), a nonsegmented RNA virus, replicates in the nuclei of infected cells where infectious BDV ribonucleoproteins are present. J Virol. 1994;68(3):1371–81.PubMedPubMedCentralCrossRef
52.
go back to reference Briese T, de la Torre JC, Lewis A, Ludwig H, Lipkin WI. Borna disease virus, a negative-strand RNA virus, transcribes in the nucleus of infected cells. Proc Natl Acad Sci U S A. 1992;89(23):11486–9.PubMedPubMedCentralCrossRef Briese T, de la Torre JC, Lewis A, Ludwig H, Lipkin WI. Borna disease virus, a negative-strand RNA virus, transcribes in the nucleus of infected cells. Proc Natl Acad Sci U S A. 1992;89(23):11486–9.PubMedPubMedCentralCrossRef
53.
54.
go back to reference Hameed SS, Guo J, Tizard I, Shivaprasad HL, Payne S. Studies on immunity and immunopathogenesis of parrot bornaviral disease in cockatiels. Virology. 2018;515:81–91.PubMedCrossRef Hameed SS, Guo J, Tizard I, Shivaprasad HL, Payne S. Studies on immunity and immunopathogenesis of parrot bornaviral disease in cockatiels. Virology. 2018;515:81–91.PubMedCrossRef
55.
go back to reference Kaaden OR, Lange S, Stiburek B. Establishment and characterization of chicken embryo fibroblast clone LSCC-H32. In Vitro. 1982;18(10):827–34.PubMedCrossRef Kaaden OR, Lange S, Stiburek B. Establishment and characterization of chicken embryo fibroblast clone LSCC-H32. In Vitro. 1982;18(10):827–34.PubMedCrossRef
56.
go back to reference Antin PB, Ordahl CP. Isolation and characterization of an avian myogenic cell line. Dev Biol. 1991;143(1):111–21.PubMedCrossRef Antin PB, Ordahl CP. Isolation and characterization of an avian myogenic cell line. Dev Biol. 1991;143(1):111–21.PubMedCrossRef
57.
go back to reference Kawaguchi T, Nomura K, Hirayama Y, Kitagawa T. Establishment and characterization of a chicken hepatocellular carcinoma cell line, LMH. Cancer Res. 1987;47(16):4460–4.PubMed Kawaguchi T, Nomura K, Hirayama Y, Kitagawa T. Establishment and characterization of a chicken hepatocellular carcinoma cell line, LMH. Cancer Res. 1987;47(16):4460–4.PubMed
58.
go back to reference Reuter A, Ackermann A, Kothlow S, Rinder M, Kaspers B, Staeheli P. Avian bornaviruses escape recognition by the innate immune system. Viruses. 2010;2(4):927–38.PubMedPubMedCentralCrossRef Reuter A, Ackermann A, Kothlow S, Rinder M, Kaspers B, Staeheli P. Avian bornaviruses escape recognition by the innate immune system. Viruses. 2010;2(4):927–38.PubMedPubMedCentralCrossRef
59.
go back to reference Reuter A, Horie M, Höper D, Ohnemus A, Narr A, Rinder M, et al. Synergistic antiviral activity of ribavirin and interferon-α against parrot bornaviruses in avian cells. J Gen Virol. 2016;97(9):2096–103.PubMedCrossRef Reuter A, Horie M, Höper D, Ohnemus A, Narr A, Rinder M, et al. Synergistic antiviral activity of ribavirin and interferon-α against parrot bornaviruses in avian cells. J Gen Virol. 2016;97(9):2096–103.PubMedCrossRef
60.
go back to reference Schwemmle M, Salvatore M, Shi L, Richt J, Lee CH, Lipkin WI. Interactions of the Borna disease virus P, N, and X proteins and their functional implications. J Biol Chem. 1998;273(15):9007–12.PubMedCrossRef Schwemmle M, Salvatore M, Shi L, Richt J, Lee CH, Lipkin WI. Interactions of the Borna disease virus P, N, and X proteins and their functional implications. J Biol Chem. 1998;273(15):9007–12.PubMedCrossRef
61.
go back to reference Poenisch M, Wille S, Ackermann A, Staeheli P, Schneider U. The X protein of Borna disease virus serves essential functions in the viral multiplication cycle. J Virol. 2007;81(13):7297–9.PubMedPubMedCentralCrossRef Poenisch M, Wille S, Ackermann A, Staeheli P, Schneider U. The X protein of Borna disease virus serves essential functions in the viral multiplication cycle. J Virol. 2007;81(13):7297–9.PubMedPubMedCentralCrossRef
62.
go back to reference Doi T, Kwon H-J, Honda T, Sato H, Yoneda M, Kai C. Measles virus induces persistent infection by autoregulation of viral replication. Sci Rep. 2016;6(1):37163.PubMedPubMedCentralCrossRef Doi T, Kwon H-J, Honda T, Sato H, Yoneda M, Kai C. Measles virus induces persistent infection by autoregulation of viral replication. Sci Rep. 2016;6(1):37163.PubMedPubMedCentralCrossRef
63.
go back to reference Wertz GM, Howard MB, Davis N, Patton J. The switch from transcription to replication of a negative-strand RNA virus. Cold Spring Harb Symp Quant Biol. 1987;52:367–71.PubMedCrossRef Wertz GM, Howard MB, Davis N, Patton J. The switch from transcription to replication of a negative-strand RNA virus. Cold Spring Harb Symp Quant Biol. 1987;52:367–71.PubMedCrossRef
Metadata
Title
Isolation of Ontario aquatic bird bornavirus 1 and characterization of its replication in immortalized avian cell lines
Authors
Phuc H. Pham
Alexander Leacy
Li Deng
Éva Nagy
Leonardo Susta
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2020
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-020-1286-6

Other articles of this Issue 1/2020

Virology Journal 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.