Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2012

Open Access 01-12-2012 | Research

Involvement of Src family of kinases and cAMP phosphodiesterase in the luteinizing hormone/chorionic gonadotropin receptor-mediated signaling in the corpus luteum of monkey

Authors: Shah B Kunal, Asaithambi Killivalavan, Rudraiah Medhamurthy

Published in: Reproductive Biology and Endocrinology | Issue 1/2012

Login to get access

Abstract

Background

In higher primates, during non-pregnant cycles, it is indisputable that circulating LH is essential for maintenance of corpus luteum (CL) function. On the other hand, during pregnancy, CL function gets rescued by the LH analogue, chorionic gonadotropin (CG). The molecular mechanisms involved in the control of luteal function during spontaneous luteolysis and rescue processes are not completely understood. Emerging evidence suggests that LH/CGR activation triggers proliferation and transformation of target cells by various signaling molecules as evident from studies demonstrating participation of Src family of tyrosine kinases (SFKs) and MAP kinases in hCG-mediated actions in Leydig cells. Since circulating LH concentration does not vary during luteal regression, it was hypothesized that decreased responsiveness of luteal cells to LH might occur due to changes in LH/CGR expression dynamics, modulation of SFKs or interference with steroid biosynthesis.

Methods

Since, maintenance of structure and function of CL is dependent on the presence of functional LH/CGR its expression dynamics as well as mRNA and protein expressions of SFKs were determined throughout the luteal phase. Employing well characterized luteolysis and CL rescue animal models, activities of SFKs, cAMP phosphodiesterase (cAMP-PDE) and expression of SR-B1 (a membrane receptor associated with trafficking of cholesterol ester) were examined. Also, studies were carried out to investigate the mechanisms responsible for decline in progesterone biosynthesis in CL during the latter part of the non-pregnant cycle.

Results and discussion

The decreased responsiveness of CL to LH during late luteal phase could not be accounted for by changes in LH/CGR mRNA levels, its transcript variants or protein. Results obtained employing model systems depicting different functional states of CL revealed increased activity of SFKs [pSrc (Y-416)] and PDE as well as decreased expression of SR-B1correlating with initiation of spontaneous luteolysis. However, CG, by virtue of its heroic efforts, perhaps by inhibition of SFKs and PDE activation, prevents CL from undergoing regression during pregnancy.

Conclusions

The results indicated participation of activated Src and increased activity of cAMP-PDE in the control of luteal function in vivo. That the exogenous hCG treatment caused decreased activation of Src and cAMP-PDE activity with increased circulating progesterone might explain the transient CL rescue that occurs during early pregnancy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bazer FW, Wu G, Spencer TE, Johnson GA, Burghardt RC, Bayless K: Novel pathways for implantation and establishment and maintenance of pregnancy in mammals. Mol Hum Reprod. 2010, 16 (3): 135-152. 10.1093/molehr/gap095.PubMedCentralCrossRefPubMed Bazer FW, Wu G, Spencer TE, Johnson GA, Burghardt RC, Bayless K: Novel pathways for implantation and establishment and maintenance of pregnancy in mammals. Mol Hum Reprod. 2010, 16 (3): 135-152. 10.1093/molehr/gap095.PubMedCentralCrossRefPubMed
2.
go back to reference Stocco C, Telleria C, Gibori G: The molecular control of corpus luteum formation, function, and regression. Endocr Rev. 2007, 28 (1): 117-149.CrossRefPubMed Stocco C, Telleria C, Gibori G: The molecular control of corpus luteum formation, function, and regression. Endocr Rev. 2007, 28 (1): 117-149.CrossRefPubMed
3.
go back to reference Moudgal NR, Macdonald GJ, Greep RO: Role of endogenous primate LH in maintaining corpus luteum function in the monkey. J Clin Endocrinol Metab. 1972, 35 (1): 113-116. 10.1210/jcem-35-1-113.CrossRefPubMed Moudgal NR, Macdonald GJ, Greep RO: Role of endogenous primate LH in maintaining corpus luteum function in the monkey. J Clin Endocrinol Metab. 1972, 35 (1): 113-116. 10.1210/jcem-35-1-113.CrossRefPubMed
4.
go back to reference Hutchison JS, Zeleznik AJ: The corpus luteum of the primate menstrual cycle is capable of recovering from a transient withdrawal of pituitary gonadotropin support. Endocrinology. 1985, 117 (3): 1043-1049. 10.1210/endo-117-3-1043.CrossRefPubMed Hutchison JS, Zeleznik AJ: The corpus luteum of the primate menstrual cycle is capable of recovering from a transient withdrawal of pituitary gonadotropin support. Endocrinology. 1985, 117 (3): 1043-1049. 10.1210/endo-117-3-1043.CrossRefPubMed
5.
go back to reference Yadav VK, Muraly P, Medhamurthy R: Identification of novel genes regulated by LH in the primate corpus luteum: insight into their regulation during the late luteal phase. Mol Hum Reprod. 2004, 10 (9): 629-639. 10.1093/molehr/gah089.CrossRefPubMed Yadav VK, Muraly P, Medhamurthy R: Identification of novel genes regulated by LH in the primate corpus luteum: insight into their regulation during the late luteal phase. Mol Hum Reprod. 2004, 10 (9): 629-639. 10.1093/molehr/gah089.CrossRefPubMed
6.
go back to reference Neill JD, Knobil E: On the nature of the initial luteotropic stimulus of pregnancy in the Rhesus monkey. Endocrinology. 1972, 90 (1): 34-38. 10.1210/endo-90-1-34.CrossRefPubMed Neill JD, Knobil E: On the nature of the initial luteotropic stimulus of pregnancy in the Rhesus monkey. Endocrinology. 1972, 90 (1): 34-38. 10.1210/endo-90-1-34.CrossRefPubMed
7.
go back to reference Becker J, Walz A, Daube S, Keck C, Pietrowski D: Distinct responses of human granulosa lutein cells after hCG or LH stimulation in a spheroidal cell culture system. Mol Reprod Dev. 2007, 74 (10): 1312-1316. 10.1002/mrd.20696.CrossRefPubMed Becker J, Walz A, Daube S, Keck C, Pietrowski D: Distinct responses of human granulosa lutein cells after hCG or LH stimulation in a spheroidal cell culture system. Mol Reprod Dev. 2007, 74 (10): 1312-1316. 10.1002/mrd.20696.CrossRefPubMed
8.
go back to reference Walz A, Keck C, Weber H, Kissel C, Pietrowski D: Effects of luteinizing hormone and human chorionic gonadotropin on corpus luteum cells in a spheroid cell culture system. Mol Reprod Dev. 2005, 72 (1): 98-104. 10.1002/mrd.20325.CrossRefPubMed Walz A, Keck C, Weber H, Kissel C, Pietrowski D: Effects of luteinizing hormone and human chorionic gonadotropin on corpus luteum cells in a spheroid cell culture system. Mol Reprod Dev. 2005, 72 (1): 98-104. 10.1002/mrd.20325.CrossRefPubMed
9.
go back to reference Ascoli M, Fanelli F, Segaloff DL: The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr Rev. 2002, 23 (2): 141-174. 10.1210/er.23.2.141.CrossRefPubMed Ascoli M, Fanelli F, Segaloff DL: The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr Rev. 2002, 23 (2): 141-174. 10.1210/er.23.2.141.CrossRefPubMed
10.
go back to reference Hirakawa T, Galet C, Ascoli M: MA-10 cells transfected with the human lutropin/choriogonadotropin receptor (hLHR): a novel experimental paradigm to study the functional properties of the hLHR. Endocrinology. 2002, 143 (3): 1026-1035. 10.1210/en.143.3.1026.CrossRefPubMed Hirakawa T, Galet C, Ascoli M: MA-10 cells transfected with the human lutropin/choriogonadotropin receptor (hLHR): a novel experimental paradigm to study the functional properties of the hLHR. Endocrinology. 2002, 143 (3): 1026-1035. 10.1210/en.143.3.1026.CrossRefPubMed
11.
go back to reference Herrlich A, Kuhn B, Grosse R, Schmid A, Schultz G, Gudermann T: Involvement of Gs and Gi proteins in dual coupling of the luteinizing hormone receptor to adenylyl cyclase and phospholipase C. J Biol Chem. 1996, 271 (28): 16764-16772. 10.1074/jbc.271.28.16764.CrossRefPubMed Herrlich A, Kuhn B, Grosse R, Schmid A, Schultz G, Gudermann T: Involvement of Gs and Gi proteins in dual coupling of the luteinizing hormone receptor to adenylyl cyclase and phospholipase C. J Biol Chem. 1996, 271 (28): 16764-16772. 10.1074/jbc.271.28.16764.CrossRefPubMed
12.
go back to reference Kuhn B, Gudermann T: The luteinizing hormone receptor activates phospholipase C via preferential coupling to Gi2. Biochemistry. 1999, 38 (38): 12490-12498. 10.1021/bi990755m.CrossRefPubMed Kuhn B, Gudermann T: The luteinizing hormone receptor activates phospholipase C via preferential coupling to Gi2. Biochemistry. 1999, 38 (38): 12490-12498. 10.1021/bi990755m.CrossRefPubMed
13.
go back to reference Priyanka S, Medhamurthy R: Characterization of cAMP/PKA/CREB signaling cascade in the bonnet monkey corpus luteum: expressions of inhibin-alpha and StAR during different functional status. Mol Hum Reprod. 2007, 13 (6): 381-390. 10.1093/molehr/gam015.CrossRefPubMed Priyanka S, Medhamurthy R: Characterization of cAMP/PKA/CREB signaling cascade in the bonnet monkey corpus luteum: expressions of inhibin-alpha and StAR during different functional status. Mol Hum Reprod. 2007, 13 (6): 381-390. 10.1093/molehr/gam015.CrossRefPubMed
14.
go back to reference Richards JS: New signaling pathways for hormones and cyclic adenosine 3',5'-monophosphate action in endocrine cells. Mol Endocrinol. 2001, 15 (2): 209-218. 10.1210/me.15.2.209.PubMed Richards JS: New signaling pathways for hormones and cyclic adenosine 3',5'-monophosphate action in endocrine cells. Mol Endocrinol. 2001, 15 (2): 209-218. 10.1210/me.15.2.209.PubMed
15.
go back to reference Yadav VK, Medhamurthy R: Dynamic changes in mitogen-activated protein kinase (MAPK) activities in the corpus luteum of the bonnet monkey (Macaca radiata) during development, induced luteolysis, and simulated early pregnancy: a role for p38 MAPK in the regulation of luteal function. Endocrinology. 2006, 147 (4): 2018-2027.CrossRefPubMed Yadav VK, Medhamurthy R: Dynamic changes in mitogen-activated protein kinase (MAPK) activities in the corpus luteum of the bonnet monkey (Macaca radiata) during development, induced luteolysis, and simulated early pregnancy: a role for p38 MAPK in the regulation of luteal function. Endocrinology. 2006, 147 (4): 2018-2027.CrossRefPubMed
16.
go back to reference Gavi S, Shumay E, Wang HY, Malbon CC: G-protein-coupled receptors and tyrosine kinases: crossroads in cell signaling and regulation. Trends Endocrinol Metab. 2006, 17 (2): 48-54. 10.1016/j.tem.2006.01.006.CrossRefPubMed Gavi S, Shumay E, Wang HY, Malbon CC: G-protein-coupled receptors and tyrosine kinases: crossroads in cell signaling and regulation. Trends Endocrinol Metab. 2006, 17 (2): 48-54. 10.1016/j.tem.2006.01.006.CrossRefPubMed
17.
go back to reference Luttrell DK, Luttrell LM: Not so strange bedfellows: G-protein-coupled receptors and Src family kinases. Oncogene. 2004, 23 (48): 7969-7978. 10.1038/sj.onc.1208162.CrossRefPubMed Luttrell DK, Luttrell LM: Not so strange bedfellows: G-protein-coupled receptors and Src family kinases. Oncogene. 2004, 23 (48): 7969-7978. 10.1038/sj.onc.1208162.CrossRefPubMed
18.
go back to reference Taylor CC, Limback D, Terranova PF: Src tyrosine kinase activity is related to luteinizing hormone responsiveness: genetic manipulations using mouse MA10 Leydig cells. Endocrinology. 1996, 137 (12): 5735-5738. 10.1210/en.137.12.5735.PubMed Taylor CC, Limback D, Terranova PF: Src tyrosine kinase activity is related to luteinizing hormone responsiveness: genetic manipulations using mouse MA10 Leydig cells. Endocrinology. 1996, 137 (12): 5735-5738. 10.1210/en.137.12.5735.PubMed
19.
go back to reference Taylor CC, Limback D, Terranova PF: Src tyrosine kinase activity in rat thecal-interstitial cells and mouse TM3 Leydig cells is positively associated with cAMP-specific phosphodiesterase activity. Mol Cell Endocrinol. 1997, 126 (1): 91-100. 10.1016/S0303-7207(96)03975-5.CrossRefPubMed Taylor CC, Limback D, Terranova PF: Src tyrosine kinase activity in rat thecal-interstitial cells and mouse TM3 Leydig cells is positively associated with cAMP-specific phosphodiesterase activity. Mol Cell Endocrinol. 1997, 126 (1): 91-100. 10.1016/S0303-7207(96)03975-5.CrossRefPubMed
20.
go back to reference Mizutani T, Shiraishi K, Welsh T, Ascoli M: Activation of the lutropin/choriogonadotropin receptor in MA-10 cells leads to the tyrosine phosphorylation of the focal adhesion kinase by a pathway that involves Src family kinases. Mol Endocrinol. 2006, 20 (3): 619-630.PubMedCentralCrossRefPubMed Mizutani T, Shiraishi K, Welsh T, Ascoli M: Activation of the lutropin/choriogonadotropin receptor in MA-10 cells leads to the tyrosine phosphorylation of the focal adhesion kinase by a pathway that involves Src family kinases. Mol Endocrinol. 2006, 20 (3): 619-630.PubMedCentralCrossRefPubMed
21.
go back to reference Shiraishi K, Ascoli M: Activation of the lutropin/choriogonadotropin receptor in MA-10 cells stimulates tyrosine kinase cascades that activate ras and the extracellular signal regulated kinases (ERK1/2). Endocrinology. 2006, 147 (7): 3419-3427. 10.1210/en.2005-1478.PubMedCentralCrossRefPubMed Shiraishi K, Ascoli M: Activation of the lutropin/choriogonadotropin receptor in MA-10 cells stimulates tyrosine kinase cascades that activate ras and the extracellular signal regulated kinases (ERK1/2). Endocrinology. 2006, 147 (7): 3419-3427. 10.1210/en.2005-1478.PubMedCentralCrossRefPubMed
22.
go back to reference Liscum L, Munn NJ: Intracellular cholesterol transport. Biochim Biophys Acta. 1999, 1438 (1): 19-37.CrossRefPubMed Liscum L, Munn NJ: Intracellular cholesterol transport. Biochim Biophys Acta. 1999, 1438 (1): 19-37.CrossRefPubMed
23.
go back to reference Luo L, Chen H, Stocco DM, Zirkin BR: Leydig cell protein synthesis and steroidogenesis in response to acute stimulation by luteinizing hormone in rats. Biol Reprod. 1998, 59 (2): 263-270. 10.1095/biolreprod59.2.263.CrossRefPubMed Luo L, Chen H, Stocco DM, Zirkin BR: Leydig cell protein synthesis and steroidogenesis in response to acute stimulation by luteinizing hormone in rats. Biol Reprod. 1998, 59 (2): 263-270. 10.1095/biolreprod59.2.263.CrossRefPubMed
24.
go back to reference Stocco DM: Tracking the role of a star in the sky of the new millennium. Mol Endocrinol. 2001, 15 (8): 1245-1254. 10.1210/me.15.8.1245.CrossRefPubMed Stocco DM: Tracking the role of a star in the sky of the new millennium. Mol Endocrinol. 2001, 15 (8): 1245-1254. 10.1210/me.15.8.1245.CrossRefPubMed
25.
go back to reference Andersen JM, Dietschy JM: Relative importance of high and low density lipoproteins in the regulation of cholesterol synthesis in the adrenal gland, ovary, and testis of the rat. J Biol Chem. 1978, 253 (24): 9024-9032.PubMed Andersen JM, Dietschy JM: Relative importance of high and low density lipoproteins in the regulation of cholesterol synthesis in the adrenal gland, ovary, and testis of the rat. J Biol Chem. 1978, 253 (24): 9024-9032.PubMed
26.
go back to reference Spady DK, Dietschy JM: Sterol synthesis in vivo in 18 tissues of the squirrel monkey, guinea pig, rabbit, hamster, and rat. J Lipid Res. 1983, 24 (3): 303-315.PubMed Spady DK, Dietschy JM: Sterol synthesis in vivo in 18 tissues of the squirrel monkey, guinea pig, rabbit, hamster, and rat. J Lipid Res. 1983, 24 (3): 303-315.PubMed
27.
go back to reference Azhar S, Nomoto A, Leers-Sucheta S, Reaven E: Simultaneous induction of an HDL receptor protein (SR-BI) and the selective uptake of HDL-cholesteryl esters in a physiologically relevant steroidogenic cell model. J Lipid Res. 1998, 39 (8): 1616-1628.PubMed Azhar S, Nomoto A, Leers-Sucheta S, Reaven E: Simultaneous induction of an HDL receptor protein (SR-BI) and the selective uptake of HDL-cholesteryl esters in a physiologically relevant steroidogenic cell model. J Lipid Res. 1998, 39 (8): 1616-1628.PubMed
28.
go back to reference Connelly MA, Klein SM, Azhar S, Abumrad NA, Williams DL: Comparison of class B scavenger receptors, CD36 and scavenger receptor BI (SR-BI), shows that both receptors mediate high density lipoprotein-cholesteryl ester selective uptake but SR-BI exhibits a unique enhancement of cholesteryl ester uptake. J Biol Chem. 1999, 274 (1): 41-47. 10.1074/jbc.274.1.41.CrossRefPubMed Connelly MA, Klein SM, Azhar S, Abumrad NA, Williams DL: Comparison of class B scavenger receptors, CD36 and scavenger receptor BI (SR-BI), shows that both receptors mediate high density lipoprotein-cholesteryl ester selective uptake but SR-BI exhibits a unique enhancement of cholesteryl ester uptake. J Biol Chem. 1999, 274 (1): 41-47. 10.1074/jbc.274.1.41.CrossRefPubMed
29.
go back to reference Azhar S, Reaven E: Scavenger receptor class BI and selective cholesteryl ester uptake: partners in the regulation of steroidogenesis. Mol Cell Endocrinol. 2002, 195 (1-2): 1-26. 10.1016/S0303-7207(02)00222-8.CrossRefPubMed Azhar S, Reaven E: Scavenger receptor class BI and selective cholesteryl ester uptake: partners in the regulation of steroidogenesis. Mol Cell Endocrinol. 2002, 195 (1-2): 1-26. 10.1016/S0303-7207(02)00222-8.CrossRefPubMed
30.
go back to reference Azhar S, Leers-Sucheta S, Reaven E: Cholesterol uptake in adrenal and gonadal tissues: the SR-BI and 'selective' pathway connection. Front Biosci. 2003, 8: s998-s1029. 10.2741/1165.CrossRefPubMed Azhar S, Leers-Sucheta S, Reaven E: Cholesterol uptake in adrenal and gonadal tissues: the SR-BI and 'selective' pathway connection. Front Biosci. 2003, 8: s998-s1029. 10.2741/1165.CrossRefPubMed
31.
go back to reference Connelly MA, Williams DL: SR-BI and cholesterol uptake into steroidogenic cells. Trends Endocrinol Metab. 2003, 14 (10): 467-472. 10.1016/j.tem.2003.10.002.CrossRefPubMed Connelly MA, Williams DL: SR-BI and cholesterol uptake into steroidogenic cells. Trends Endocrinol Metab. 2003, 14 (10): 467-472. 10.1016/j.tem.2003.10.002.CrossRefPubMed
32.
go back to reference Taniguchi H, Komiyama J, Viger RS, Okuda K: The expression of the nuclear receptors NR5A1 and NR5A2 and transcription factor GATA6 correlates with steroidogenic gene expression in the bovine corpus luteum. Mol Reprod Dev. 2009, 76 (9): 873-880. 10.1002/mrd.21054.CrossRefPubMed Taniguchi H, Komiyama J, Viger RS, Okuda K: The expression of the nuclear receptors NR5A1 and NR5A2 and transcription factor GATA6 correlates with steroidogenic gene expression in the bovine corpus luteum. Mol Reprod Dev. 2009, 76 (9): 873-880. 10.1002/mrd.21054.CrossRefPubMed
33.
go back to reference Schoonjans K, Annicotte JS, Huby T, Botrugno OA, Fayard E, Ueda Y, Chapman J, Auwerx J: Liver receptor homolog 1 controls the expression of the scavenger receptor class B type I. EMBO Rep. 2002, 3 (12): 1181-1187. 10.1093/embo-reports/kvf238.PubMedCentralCrossRefPubMed Schoonjans K, Annicotte JS, Huby T, Botrugno OA, Fayard E, Ueda Y, Chapman J, Auwerx J: Liver receptor homolog 1 controls the expression of the scavenger receptor class B type I. EMBO Rep. 2002, 3 (12): 1181-1187. 10.1093/embo-reports/kvf238.PubMedCentralCrossRefPubMed
34.
go back to reference Priyanka S, Jayaram P, Sridaran R, Medhamurthy R: Genome-wide gene expression analysis reveals a dynamic interplay between luteotropic and luteolytic factors in the regulation of corpus luteum function in the bonnet monkey (Macaca radiata). Endocrinology. 2009, 150 (3): 1473-1484.PubMedCentralCrossRefPubMed Priyanka S, Jayaram P, Sridaran R, Medhamurthy R: Genome-wide gene expression analysis reveals a dynamic interplay between luteotropic and luteolytic factors in the regulation of corpus luteum function in the bonnet monkey (Macaca radiata). Endocrinology. 2009, 150 (3): 1473-1484.PubMedCentralCrossRefPubMed
35.
go back to reference Rao CV, Ireland JJ, Roche JF: Decrease of various luteal enzyme activities during prostaglandin F2 alpha-induced luteal regression in bovine. Mol Cell Endocrinol. 1984, 34 (2): 99-105. 10.1016/0303-7207(84)90060-1.CrossRefPubMed Rao CV, Ireland JJ, Roche JF: Decrease of various luteal enzyme activities during prostaglandin F2 alpha-induced luteal regression in bovine. Mol Cell Endocrinol. 1984, 34 (2): 99-105. 10.1016/0303-7207(84)90060-1.CrossRefPubMed
36.
go back to reference Selvaraj N, Medhamurthy R, Ramachandra SG, Sairam MR, Moudgal NR: Assessment of luteal rescue and desensitization of macaque corpus luteum brought about by human chorionic gonadotrophin and deglycosylated human chorionic gonadotrophin treatment. J Biosci. 1996, 21 (4): 497-510. 10.1007/BF02703214.CrossRef Selvaraj N, Medhamurthy R, Ramachandra SG, Sairam MR, Moudgal NR: Assessment of luteal rescue and desensitization of macaque corpus luteum brought about by human chorionic gonadotrophin and deglycosylated human chorionic gonadotrophin treatment. J Biosci. 1996, 21 (4): 497-510. 10.1007/BF02703214.CrossRef
37.
go back to reference Steiner AL, Kipnis DM, Utiger R, Parker C: Radioimmunoassay for the measurement of adenosine 3',5'-cyclic phosphate. Proc Natl Acad Sci USA. 1969, 64 (1): 367-373. 10.1073/pnas.64.1.367.PubMedCentralCrossRefPubMed Steiner AL, Kipnis DM, Utiger R, Parker C: Radioimmunoassay for the measurement of adenosine 3',5'-cyclic phosphate. Proc Natl Acad Sci USA. 1969, 64 (1): 367-373. 10.1073/pnas.64.1.367.PubMedCentralCrossRefPubMed
38.
go back to reference Thompson WJ, Appleman MM: Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry. 1971, 10 (2): 311-316. 10.1021/bi00778a018.CrossRefPubMed Thompson WJ, Appleman MM: Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry. 1971, 10 (2): 311-316. 10.1021/bi00778a018.CrossRefPubMed
39.
go back to reference Jyotsna UR, Medhamurthy R: Standardization and validation of an induced ovulation model system in buffalo cows: Characterization of gene expression changes in the periovulatory follicle. Anim Reprod Sci. 2009, 113 (1-4): 71-81. 10.1016/j.anireprosci.2008.08.001.CrossRefPubMed Jyotsna UR, Medhamurthy R: Standardization and validation of an induced ovulation model system in buffalo cows: Characterization of gene expression changes in the periovulatory follicle. Anim Reprod Sci. 2009, 113 (1-4): 71-81. 10.1016/j.anireprosci.2008.08.001.CrossRefPubMed
40.
go back to reference Yadav VK, Sudhagar RR, Medhamurthy R: Apoptosis during spontaneous and prostaglandin F(2alpha)-induced luteal regression in the buffalo cow (Bubalus bubalis): involvement of mitogen-activated protein kinases. Biol Reprod. 2002, 67 (3): 752-759. 10.1095/biolreprod.102.004077.CrossRefPubMed Yadav VK, Sudhagar RR, Medhamurthy R: Apoptosis during spontaneous and prostaglandin F(2alpha)-induced luteal regression in the buffalo cow (Bubalus bubalis): involvement of mitogen-activated protein kinases. Biol Reprod. 2002, 67 (3): 752-759. 10.1095/biolreprod.102.004077.CrossRefPubMed
42.
go back to reference Ravindranath N, Little-Ihrig LL, Zeleznik AJ: Characterization of the levels of messenger ribonucleic acid that encode for luteinizing hormone receptor during the luteal phase of the primate menstrual cycle. J Clin Endocrinol Metab. 1992, 74 (4): 779-785. 10.1210/jc.74.4.779.CrossRefPubMed Ravindranath N, Little-Ihrig LL, Zeleznik AJ: Characterization of the levels of messenger ribonucleic acid that encode for luteinizing hormone receptor during the luteal phase of the primate menstrual cycle. J Clin Endocrinol Metab. 1992, 74 (4): 779-785. 10.1210/jc.74.4.779.CrossRefPubMed
46.
go back to reference Minegishi T, Tano M, Abe Y, Nakamura K, Ibuki Y, Miyamoto K: Expression of luteinizing hormone/human chorionic gonadotrophin (LH/HCG) receptor mRNA in the human ovary. Mol Hum Reprod. 1997, 3 (2): 101-107. 10.1093/molehr/3.2.101.CrossRefPubMed Minegishi T, Tano M, Abe Y, Nakamura K, Ibuki Y, Miyamoto K: Expression of luteinizing hormone/human chorionic gonadotrophin (LH/HCG) receptor mRNA in the human ovary. Mol Hum Reprod. 1997, 3 (2): 101-107. 10.1093/molehr/3.2.101.CrossRefPubMed
47.
go back to reference Minegishi T, Nakamura K, Yamashita S, Omori Y: The effect of splice variant of the human luteinizing hormone (LH) receptor on the expression of gonadotropin receptor. Mol Cell Endocrinol. 2007, 260-262: 117-125.CrossRefPubMed Minegishi T, Nakamura K, Yamashita S, Omori Y: The effect of splice variant of the human luteinizing hormone (LH) receptor on the expression of gonadotropin receptor. Mol Cell Endocrinol. 2007, 260-262: 117-125.CrossRefPubMed
48.
go back to reference Yamashita S, Nakamura K, Omori Y, Tsunekawa K, Murakami M, Minegishi T: Association of human follitropin (FSH) receptor with splicing variant of human lutropin/choriogonadotropin receptor negatively controls the expression of human FSH receptor. Mol Endocrinol. 2005, 19 (8): 2099-2111. 10.1210/me.2005-0049.CrossRefPubMed Yamashita S, Nakamura K, Omori Y, Tsunekawa K, Murakami M, Minegishi T: Association of human follitropin (FSH) receptor with splicing variant of human lutropin/choriogonadotropin receptor negatively controls the expression of human FSH receptor. Mol Endocrinol. 2005, 19 (8): 2099-2111. 10.1210/me.2005-0049.CrossRefPubMed
49.
go back to reference Nakamura K, Yamashita S, Omori Y, Minegishi T: A splice variant of the human luteinizing hormone (LH) receptor modulates the expression of wild-type human LH receptor. Mol Endocrinol. 2004, 18 (6): 1461-1470. 10.1210/me.2003-0489.CrossRefPubMed Nakamura K, Yamashita S, Omori Y, Minegishi T: A splice variant of the human luteinizing hormone (LH) receptor modulates the expression of wild-type human LH receptor. Mol Endocrinol. 2004, 18 (6): 1461-1470. 10.1210/me.2003-0489.CrossRefPubMed
50.
go back to reference Nishimori K, Dunkel L, Hsueh AJ, Yamoto M, Nakano R: Expression of luteinizing hormone and chorionic gonadotropin receptor messenger ribonucleic acid in human corpora lutea during menstrual cycle and pregnancy. J Clin Endocrinol Metab. 1995, 80 (4): 1444-1448. 10.1210/jc.80.4.1444.PubMed Nishimori K, Dunkel L, Hsueh AJ, Yamoto M, Nakano R: Expression of luteinizing hormone and chorionic gonadotropin receptor messenger ribonucleic acid in human corpora lutea during menstrual cycle and pregnancy. J Clin Endocrinol Metab. 1995, 80 (4): 1444-1448. 10.1210/jc.80.4.1444.PubMed
51.
go back to reference Cameron JL, Stouffer RL: Gonadotropin receptors of the primate corpus luteum. II. Changes in available luteinizing hormone- and chorionic gonadotropin-binding sites in macaque luteal membranes during the nonfertile menstrual cycle. Endocrinology. 1982, 110 (6): 2068-2073. 10.1210/endo-110-6-2068.CrossRefPubMed Cameron JL, Stouffer RL: Gonadotropin receptors of the primate corpus luteum. II. Changes in available luteinizing hormone- and chorionic gonadotropin-binding sites in macaque luteal membranes during the nonfertile menstrual cycle. Endocrinology. 1982, 110 (6): 2068-2073. 10.1210/endo-110-6-2068.CrossRefPubMed
52.
go back to reference Madhra M, Gay E, Fraser HM, Duncan WC: Alternative splicing of the human luteal LH receptor during luteolysis and maternal recognition of pregnancy. Mol Hum Reprod. 2004, 10 (8): 599-603. 10.1093/molehr/gah076.CrossRefPubMed Madhra M, Gay E, Fraser HM, Duncan WC: Alternative splicing of the human luteal LH receptor during luteolysis and maternal recognition of pregnancy. Mol Hum Reprod. 2004, 10 (8): 599-603. 10.1093/molehr/gah076.CrossRefPubMed
53.
go back to reference Wang H, Ascoli M, Segaloff DL: Multiple luteinizing hormone/chorionic gonadotropin receptor messenger ribonucleic acid transcripts. Endocrinology. 1991, 129 (1): 133-138. 10.1210/endo-129-1-133.CrossRefPubMed Wang H, Ascoli M, Segaloff DL: Multiple luteinizing hormone/chorionic gonadotropin receptor messenger ribonucleic acid transcripts. Endocrinology. 1991, 129 (1): 133-138. 10.1210/endo-129-1-133.CrossRefPubMed
54.
go back to reference Smith GD, Sawyer HR, Mirando MA, Griswold MD, Sadhu A, Reeves JJ: Steady-state luteinizing hormone receptor messenger ribonucleic acid levels and endothelial cell composition in bovine normal- and short-lived corpora lutea. Biol Reprod. 1996, 55 (4): 902-909. 10.1095/biolreprod55.4.902.CrossRefPubMed Smith GD, Sawyer HR, Mirando MA, Griswold MD, Sadhu A, Reeves JJ: Steady-state luteinizing hormone receptor messenger ribonucleic acid levels and endothelial cell composition in bovine normal- and short-lived corpora lutea. Biol Reprod. 1996, 55 (4): 902-909. 10.1095/biolreprod55.4.902.CrossRefPubMed
55.
go back to reference Gromoll J, Wistuba J, Terwort N, Godmann M, Muller T, Simoni M: A new subclass of the luteinizing hormone/chorionic gonadotropin receptor lacking exon 10 messenger RNA in the New World monkey (Platyrrhini) lineage. Biol Reprod. 2003, 69 (1): 75-80. 10.1095/biolreprod.102.014902.CrossRefPubMed Gromoll J, Wistuba J, Terwort N, Godmann M, Muller T, Simoni M: A new subclass of the luteinizing hormone/chorionic gonadotropin receptor lacking exon 10 messenger RNA in the New World monkey (Platyrrhini) lineage. Biol Reprod. 2003, 69 (1): 75-80. 10.1095/biolreprod.102.014902.CrossRefPubMed
56.
go back to reference Muller T, Gromoll J, Simoni M: Absence of exon 10 of the human luteinizing hormone (LH) receptor impairs LH, but not human chorionic gonadotropin action. J Clin Endocrinol Metab. 2003, 88 (5): 2242-2249. 10.1210/jc.2002-021946.CrossRefPubMed Muller T, Gromoll J, Simoni M: Absence of exon 10 of the human luteinizing hormone (LH) receptor impairs LH, but not human chorionic gonadotropin action. J Clin Endocrinol Metab. 2003, 88 (5): 2242-2249. 10.1210/jc.2002-021946.CrossRefPubMed
57.
go back to reference Gromoll J, Schulz A, Borta H, Gudermann T, Teerds KJ, Greschniok A, Nieschlag E, Seif FJ: Homozygous mutation within the conserved Ala-Phe-Asn-Glu-Thr motif of exon 7 of the LH receptor causes male pseudohermaphroditism. Eur J Endocrinol. 2002, 147 (5): 597-608. 10.1530/eje.0.1470597.CrossRefPubMed Gromoll J, Schulz A, Borta H, Gudermann T, Teerds KJ, Greschniok A, Nieschlag E, Seif FJ: Homozygous mutation within the conserved Ala-Phe-Asn-Glu-Thr motif of exon 7 of the LH receptor causes male pseudohermaphroditism. Eur J Endocrinol. 2002, 147 (5): 597-608. 10.1530/eje.0.1470597.CrossRefPubMed
58.
go back to reference Aatsinki JT, Pietila EM, Lakkakorpi JT, Rajaniemi HJ: Expression of the LH/CG receptor gene in rat ovarian tissue is regulated by an extensive alternative splicing of the primary transcript. Mol Cell Endocrinol. 1992, 84 (1-2): 127-135. 10.1016/0303-7207(92)90079-L.CrossRefPubMed Aatsinki JT, Pietila EM, Lakkakorpi JT, Rajaniemi HJ: Expression of the LH/CG receptor gene in rat ovarian tissue is regulated by an extensive alternative splicing of the primary transcript. Mol Cell Endocrinol. 1992, 84 (1-2): 127-135. 10.1016/0303-7207(92)90079-L.CrossRefPubMed
59.
go back to reference Dickinson RE, Stewart AJ, Myers M, Millar RP, Duncan WC: Differential expression and functional characterization of luteinizing hormone receptor splice variants in human luteal cells: implications for luteolysis. Endocrinology. 2009, 150 (6): 2873-2881. 10.1210/en.2008-1382.CrossRefPubMed Dickinson RE, Stewart AJ, Myers M, Millar RP, Duncan WC: Differential expression and functional characterization of luteinizing hormone receptor splice variants in human luteal cells: implications for luteolysis. Endocrinology. 2009, 150 (6): 2873-2881. 10.1210/en.2008-1382.CrossRefPubMed
60.
go back to reference Carvalho CR, Carvalheira JB, Lima MH, Zimmerman SF, Caperuto LC, Amanso A, Gasparetti AL, Meneghetti V, Zimmerman LF, Velloso LA, et al: Novel signal transduction pathway for luteinizing hormone and its interaction with insulin: activation of Janus kinase/signal transducer and activator of transcription and phosphoinositol 3-kinase/Akt pathways. Endocrinology. 2003, 144 (2): 638-647. 10.1210/en.2002-220706.CrossRefPubMed Carvalho CR, Carvalheira JB, Lima MH, Zimmerman SF, Caperuto LC, Amanso A, Gasparetti AL, Meneghetti V, Zimmerman LF, Velloso LA, et al: Novel signal transduction pathway for luteinizing hormone and its interaction with insulin: activation of Janus kinase/signal transducer and activator of transcription and phosphoinositol 3-kinase/Akt pathways. Endocrinology. 2003, 144 (2): 638-647. 10.1210/en.2002-220706.CrossRefPubMed
61.
go back to reference Davis JS: Mechanisms of hormone action: luteinizing hormone receptors and second-messenger pathways. Curr Opin Obstet Gynecol. 1994, 6 (3): 254-261.CrossRefPubMed Davis JS: Mechanisms of hormone action: luteinizing hormone receptors and second-messenger pathways. Curr Opin Obstet Gynecol. 1994, 6 (3): 254-261.CrossRefPubMed
62.
go back to reference Conti M, Hsieh M, Park JY, Su YQ: Role of the epidermal growth factor network in ovarian follicles. Mol Endocrinol. 2006, 20 (4): 715-723.CrossRefPubMed Conti M, Hsieh M, Park JY, Su YQ: Role of the epidermal growth factor network in ovarian follicles. Mol Endocrinol. 2006, 20 (4): 715-723.CrossRefPubMed
63.
go back to reference Hsieh M, Conti M: G-protein-coupled receptor signaling and the EGF network in endocrine systems. Trends Endocrinol Metab. 2005, 16 (7): 320-326. 10.1016/j.tem.2005.07.005.CrossRefPubMed Hsieh M, Conti M: G-protein-coupled receptor signaling and the EGF network in endocrine systems. Trends Endocrinol Metab. 2005, 16 (7): 320-326. 10.1016/j.tem.2005.07.005.CrossRefPubMed
64.
go back to reference Tai P, Shiraishi K, Ascoli M: Activation of the lutropin/choriogonadotropin receptor inhibits apoptosis of immature Leydig cells in primary culture. Endocrinology. 2009, 150 (8): 3766-3773. 10.1210/en.2009-0207.PubMedCentralCrossRefPubMed Tai P, Shiraishi K, Ascoli M: Activation of the lutropin/choriogonadotropin receptor inhibits apoptosis of immature Leydig cells in primary culture. Endocrinology. 2009, 150 (8): 3766-3773. 10.1210/en.2009-0207.PubMedCentralCrossRefPubMed
65.
go back to reference Shiraishi K, Ascoli M: Lutropin/choriogonadotropin stimulate the proliferation of primary cultures of rat Leydig cells through a pathway that involves activation of the extracellularly regulated kinase 1/2 cascade. Endocrinology. 2007, 148 (7): 3214-3225. 10.1210/en.2007-0160.PubMedCentralCrossRefPubMed Shiraishi K, Ascoli M: Lutropin/choriogonadotropin stimulate the proliferation of primary cultures of rat Leydig cells through a pathway that involves activation of the extracellularly regulated kinase 1/2 cascade. Endocrinology. 2007, 148 (7): 3214-3225. 10.1210/en.2007-0160.PubMedCentralCrossRefPubMed
66.
go back to reference Galet C, Ascoli M: Arrestin-3 is essential for the activation of Fyn by the luteinizing hormone receptor (LHR) in MA-10 cells. Cell Signal. 2008, 20 (10): 1822-1829. 10.1016/j.cellsig.2008.06.005.PubMedCentralCrossRefPubMed Galet C, Ascoli M: Arrestin-3 is essential for the activation of Fyn by the luteinizing hormone receptor (LHR) in MA-10 cells. Cell Signal. 2008, 20 (10): 1822-1829. 10.1016/j.cellsig.2008.06.005.PubMedCentralCrossRefPubMed
67.
go back to reference Andric N, Ascoli M: The luteinizing hormone receptor-activated extracellularly regulated kinase-1/2 cascade stimulates epiregulin release from granulosa cells. Endocrinology. 2008, 149 (11): 5549-5556. 10.1210/en.2008-0618.PubMedCentralCrossRefPubMed Andric N, Ascoli M: The luteinizing hormone receptor-activated extracellularly regulated kinase-1/2 cascade stimulates epiregulin release from granulosa cells. Endocrinology. 2008, 149 (11): 5549-5556. 10.1210/en.2008-0618.PubMedCentralCrossRefPubMed
68.
go back to reference Shiraishi K, Ascoli M: A co-culture system reveals the involvement of intercellular pathways as mediators of the lutropin receptor (LHR)-stimulated ERK1/2 phosphorylation in Leydig cells. Exp Cell Res. 2008, 314 (1): 25-37. 10.1016/j.yexcr.2007.06.025.PubMedCentralCrossRefPubMed Shiraishi K, Ascoli M: A co-culture system reveals the involvement of intercellular pathways as mediators of the lutropin receptor (LHR)-stimulated ERK1/2 phosphorylation in Leydig cells. Exp Cell Res. 2008, 314 (1): 25-37. 10.1016/j.yexcr.2007.06.025.PubMedCentralCrossRefPubMed
69.
go back to reference Panigone S, Hsieh M, Fu M, Persani L, Conti M: Luteinizing hormone signaling in preovulatory follicles involves early activation of the epidermal growth factor receptor pathway. Mol Endocrinol. 2008, 22 (4): 924-936. 10.1210/me.2007-0246.PubMedCentralCrossRefPubMed Panigone S, Hsieh M, Fu M, Persani L, Conti M: Luteinizing hormone signaling in preovulatory follicles involves early activation of the epidermal growth factor receptor pathway. Mol Endocrinol. 2008, 22 (4): 924-936. 10.1210/me.2007-0246.PubMedCentralCrossRefPubMed
70.
go back to reference Chaturvedi G, Arai K, Terranova PF, Roby KF: The Src tyrosine kinase pathway regulates thecal CYP17 expression and androstenedione secretion. Mol Cell Biochem. 2008, 318 (1-2): 191-200. 10.1007/s11010-008-9871-9.PubMedCentralCrossRefPubMed Chaturvedi G, Arai K, Terranova PF, Roby KF: The Src tyrosine kinase pathway regulates thecal CYP17 expression and androstenedione secretion. Mol Cell Biochem. 2008, 318 (1-2): 191-200. 10.1007/s11010-008-9871-9.PubMedCentralCrossRefPubMed
71.
go back to reference Taylor CC, Terranova PF: Lipopolysaccharide inhibits rat ovarian thecal-interstitial cell steroid secretion in vitro. Endocrinology. 1995, 136 (12): 5527-5532. 10.1210/en.136.12.5527.PubMed Taylor CC, Terranova PF: Lipopolysaccharide inhibits rat ovarian thecal-interstitial cell steroid secretion in vitro. Endocrinology. 1995, 136 (12): 5527-5532. 10.1210/en.136.12.5527.PubMed
72.
go back to reference Roby KF, Son DS, Taylor CC, Montgomery-Rice V, Kirchoff J, Tang S, Terranova PF: Alterations in reproductive function in SRC tyrosine kinase knockout mice. Endocrine. 2005, 26 (2): 169-176. 10.1385/ENDO:26:2:169.CrossRefPubMed Roby KF, Son DS, Taylor CC, Montgomery-Rice V, Kirchoff J, Tang S, Terranova PF: Alterations in reproductive function in SRC tyrosine kinase knockout mice. Endocrine. 2005, 26 (2): 169-176. 10.1385/ENDO:26:2:169.CrossRefPubMed
73.
go back to reference Taylor CC: Src tyrosine kinase-induced loss of luteinizing hormone responsiveness is via a Ras-dependent, phosphatidylinositol-3-kinase independent pathway. Biol Reprod. 2002, 67 (3): 789-794. 10.1095/biolreprod.101.000976.CrossRefPubMed Taylor CC: Src tyrosine kinase-induced loss of luteinizing hormone responsiveness is via a Ras-dependent, phosphatidylinositol-3-kinase independent pathway. Biol Reprod. 2002, 67 (3): 789-794. 10.1095/biolreprod.101.000976.CrossRefPubMed
74.
go back to reference Sirianni R, Carr BR, Pezzi V, Rainey WE: A role for src tyrosine kinase in regulating adrenal aldosterone production. J Mol Endocrinol. 2001, 26 (3): 207-215. 10.1677/jme.0.0260207.CrossRefPubMed Sirianni R, Carr BR, Pezzi V, Rainey WE: A role for src tyrosine kinase in regulating adrenal aldosterone production. J Mol Endocrinol. 2001, 26 (3): 207-215. 10.1677/jme.0.0260207.CrossRefPubMed
75.
go back to reference Sirianni R, Carr BR, Ando S, Rainey WE: Inhibition of Src tyrosine kinase stimulates adrenal androgen production. J Mol Endocrinol. 2003, 30 (3): 287-299. 10.1677/jme.0.0300287.CrossRefPubMed Sirianni R, Carr BR, Ando S, Rainey WE: Inhibition of Src tyrosine kinase stimulates adrenal androgen production. J Mol Endocrinol. 2003, 30 (3): 287-299. 10.1677/jme.0.0300287.CrossRefPubMed
76.
go back to reference Ma YC, Huang J, Ali S, Lowry W, Huang XY: Src tyrosine kinase is a novel direct effector of G proteins. Cell. 2000, 102 (5): 635-646. 10.1016/S0092-8674(00)00086-6.CrossRefPubMed Ma YC, Huang J, Ali S, Lowry W, Huang XY: Src tyrosine kinase is a novel direct effector of G proteins. Cell. 2000, 102 (5): 635-646. 10.1016/S0092-8674(00)00086-6.CrossRefPubMed
77.
go back to reference Dikic I, Tokiwa G, Lev S, Courtneidge SA, Schlessinger J: A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature. 1996, 383 (6600): 547-550. 10.1038/383547a0.CrossRefPubMed Dikic I, Tokiwa G, Lev S, Courtneidge SA, Schlessinger J: A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature. 1996, 383 (6600): 547-550. 10.1038/383547a0.CrossRefPubMed
78.
go back to reference Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, Lin F, Kawakatsu H, Owada K, Luttrell DK, et al: Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science. 1999, 283 (5402): 655-661. 10.1126/science.283.5402.655.CrossRefPubMed Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, Lin F, Kawakatsu H, Owada K, Luttrell DK, et al: Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science. 1999, 283 (5402): 655-661. 10.1126/science.283.5402.655.CrossRefPubMed
79.
go back to reference Conti M, Beavo J: Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem. 2007, 76: 481-511. 10.1146/annurev.biochem.76.060305.150444.CrossRefPubMed Conti M, Beavo J: Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem. 2007, 76: 481-511. 10.1146/annurev.biochem.76.060305.150444.CrossRefPubMed
80.
go back to reference Mehats C, Andersen CB, Filopanti M, Jin SL, Conti M: Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling. Trends Endocrinol Metab. 2002, 13 (1): 29-35. 10.1016/S1043-2760(01)00523-9.CrossRefPubMed Mehats C, Andersen CB, Filopanti M, Jin SL, Conti M: Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling. Trends Endocrinol Metab. 2002, 13 (1): 29-35. 10.1016/S1043-2760(01)00523-9.CrossRefPubMed
81.
go back to reference Conti M: Phosphodiesterases and cyclic nucleotide signaling in endocrine cells. Mol Endocrinol. 2000, 14 (9): 1317-1327. 10.1210/me.14.9.1317.CrossRefPubMed Conti M: Phosphodiesterases and cyclic nucleotide signaling in endocrine cells. Mol Endocrinol. 2000, 14 (9): 1317-1327. 10.1210/me.14.9.1317.CrossRefPubMed
82.
go back to reference Swinnen JV, Joseph DR, Conti M: The mRNA encoding a high-affinity cAMP phosphodiesterase is regulated by hormones and cAMP. Proc Natl Acad Sci USA. 1989, 86 (21): 8197-8201. 10.1073/pnas.86.21.8197.PubMedCentralCrossRefPubMed Swinnen JV, Joseph DR, Conti M: The mRNA encoding a high-affinity cAMP phosphodiesterase is regulated by hormones and cAMP. Proc Natl Acad Sci USA. 1989, 86 (21): 8197-8201. 10.1073/pnas.86.21.8197.PubMedCentralCrossRefPubMed
83.
go back to reference Stouffer RL, Ottobre JS, Molskness TA, Zelinski-Wooten MB: The function and regulation of the primate corpus luteum during the fertile menstrual cycle. Prog Clin Biol Res. 1989, 294: 129-142.PubMed Stouffer RL, Ottobre JS, Molskness TA, Zelinski-Wooten MB: The function and regulation of the primate corpus luteum during the fertile menstrual cycle. Prog Clin Biol Res. 1989, 294: 129-142.PubMed
84.
go back to reference Chandrasekaran A, Toh KY, Low SH, Tay SK, Brenner S, Goh DL: Identification and characterization of novel mouse PDE4D isoforms: molecular cloning, subcellular distribution and detection of isoform-specific intracellular localization signals. Cell Signal. 2008, 20 (1): 139-153. 10.1016/j.cellsig.2007.10.003.CrossRefPubMed Chandrasekaran A, Toh KY, Low SH, Tay SK, Brenner S, Goh DL: Identification and characterization of novel mouse PDE4D isoforms: molecular cloning, subcellular distribution and detection of isoform-specific intracellular localization signals. Cell Signal. 2008, 20 (1): 139-153. 10.1016/j.cellsig.2007.10.003.CrossRefPubMed
85.
go back to reference Richter W, Jin SL, Conti M: Splice variants of the cyclic nucleotide phosphodiesterase PDE4D are differentially expressed and regulated in rat tissue. Biochem J. 2005, 388 (Pt 3): 803-811.PubMedCentralCrossRefPubMed Richter W, Jin SL, Conti M: Splice variants of the cyclic nucleotide phosphodiesterase PDE4D are differentially expressed and regulated in rat tissue. Biochem J. 2005, 388 (Pt 3): 803-811.PubMedCentralCrossRefPubMed
86.
go back to reference Conti M, Richter W, Mehats C, Livera G, Park JY, Jin C: Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J Biol Chem. 2003, 278 (8): 5493-5496. 10.1074/jbc.R200029200.CrossRefPubMed Conti M, Richter W, Mehats C, Livera G, Park JY, Jin C: Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J Biol Chem. 2003, 278 (8): 5493-5496. 10.1074/jbc.R200029200.CrossRefPubMed
87.
go back to reference Bolger GB, Erdogan S, Jones RE, Loughney K, Scotland G, Hoffmann R, Wilkinson I, Farrell C, Houslay MD: Characterization of five different proteins produced by alternatively spliced mRNAs from the human cAMP-specific phosphodiesterase PDE4D gene. Biochem J. 1997, 328 (Pt 2): 539-548.PubMedCentralCrossRefPubMed Bolger GB, Erdogan S, Jones RE, Loughney K, Scotland G, Hoffmann R, Wilkinson I, Farrell C, Houslay MD: Characterization of five different proteins produced by alternatively spliced mRNAs from the human cAMP-specific phosphodiesterase PDE4D gene. Biochem J. 1997, 328 (Pt 2): 539-548.PubMedCentralCrossRefPubMed
88.
go back to reference Beard MB, O'Connell JC, Bolger GB, Houslay MD: The unique N-terminal domain of the cAMP phosphodiesterase PDE4D4 allows for interaction with specific SH3 domains. FEBS Lett. 1999, 460 (1): 173-177. 10.1016/S0014-5793(99)01335-6.CrossRefPubMed Beard MB, O'Connell JC, Bolger GB, Houslay MD: The unique N-terminal domain of the cAMP phosphodiesterase PDE4D4 allows for interaction with specific SH3 domains. FEBS Lett. 1999, 460 (1): 173-177. 10.1016/S0014-5793(99)01335-6.CrossRefPubMed
89.
go back to reference O'Connell JC, McCallum JF, McPhee I, Wakefield J, Houslay ES, Wishart W, Bolger G, Frame M, Houslay MD: The SH3 domain of Src tyrosyl protein kinase interacts with the N-terminal splice region of the PDE4A cAMP-specific phosphodiesterase RPDE-6 (RNPDE4A5). Biochem J. 1996, 318 (Pt 1): 255-261.PubMedCentralCrossRefPubMed O'Connell JC, McCallum JF, McPhee I, Wakefield J, Houslay ES, Wishart W, Bolger G, Frame M, Houslay MD: The SH3 domain of Src tyrosyl protein kinase interacts with the N-terminal splice region of the PDE4A cAMP-specific phosphodiesterase RPDE-6 (RNPDE4A5). Biochem J. 1996, 318 (Pt 1): 255-261.PubMedCentralCrossRefPubMed
90.
go back to reference Dodge-Kafka KL, Bauman A, Mayer N, Henson E, Heredia L, Ahn J, McAvoy T, Nairn AC, Kapiloff MS: cAMP-stimulated protein phosphatase 2A activity associated with muscle A kinase-anchoring protein (mAKAP) signaling complexes inhibits the phosphorylation and activity of the cAMP-specific phosphodiesterase PDE4D3. J Biol Chem. 2010, 285 (15): 11078-11086. 10.1074/jbc.M109.034868.PubMedCentralCrossRefPubMed Dodge-Kafka KL, Bauman A, Mayer N, Henson E, Heredia L, Ahn J, McAvoy T, Nairn AC, Kapiloff MS: cAMP-stimulated protein phosphatase 2A activity associated with muscle A kinase-anchoring protein (mAKAP) signaling complexes inhibits the phosphorylation and activity of the cAMP-specific phosphodiesterase PDE4D3. J Biol Chem. 2010, 285 (15): 11078-11086. 10.1074/jbc.M109.034868.PubMedCentralCrossRefPubMed
91.
go back to reference Carlisle Michel JJ, Dodge KL, Wong W, Mayer NC, Langeberg LK, Scott JD: PKA-phosphorylation of PDE4D3 facilitates recruitment of the mAKAP signalling complex. Biochem J. 2004, 381 (Pt 3): 587-592.PubMedCentralCrossRefPubMed Carlisle Michel JJ, Dodge KL, Wong W, Mayer NC, Langeberg LK, Scott JD: PKA-phosphorylation of PDE4D3 facilitates recruitment of the mAKAP signalling complex. Biochem J. 2004, 381 (Pt 3): 587-592.PubMedCentralCrossRefPubMed
92.
go back to reference Dodge KL, Khouangsathiene S, Kapiloff MS, Mouton R, Hill EV, Houslay MD, Langeberg LK, Scott JD: mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J. 2001, 20 (8): 1921-1930. 10.1093/emboj/20.8.1921.PubMedCentralCrossRefPubMed Dodge KL, Khouangsathiene S, Kapiloff MS, Mouton R, Hill EV, Houslay MD, Langeberg LK, Scott JD: mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J. 2001, 20 (8): 1921-1930. 10.1093/emboj/20.8.1921.PubMedCentralCrossRefPubMed
93.
go back to reference Willoughby D, Wong W, Schaack J, Scott JD, Cooper DM: An anchored PKA and PDE4 complex regulates subplasmalemmal cAMP dynamics. EMBO J. 2006, 25 (10): 2051-2061. 10.1038/sj.emboj.7601113.PubMedCentralCrossRefPubMed Willoughby D, Wong W, Schaack J, Scott JD, Cooper DM: An anchored PKA and PDE4 complex regulates subplasmalemmal cAMP dynamics. EMBO J. 2006, 25 (10): 2051-2061. 10.1038/sj.emboj.7601113.PubMedCentralCrossRefPubMed
94.
go back to reference Devoto L, Kohen P, Vega M, Castro O, Gonzalez RR, Retamales I, Carvallo P, Christenson LK, Strauss JF: Control of human luteal steroidogenesis. Mol Cell Endocrinol. 2002, 186 (2): 137-141. 10.1016/S0303-7207(01)00654-2.CrossRefPubMed Devoto L, Kohen P, Vega M, Castro O, Gonzalez RR, Retamales I, Carvallo P, Christenson LK, Strauss JF: Control of human luteal steroidogenesis. Mol Cell Endocrinol. 2002, 186 (2): 137-141. 10.1016/S0303-7207(01)00654-2.CrossRefPubMed
95.
go back to reference Manna PR, Dyson MT, Stocco DM: Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol Hum Reprod. 2009, 15 (6): 321-333. 10.1093/molehr/gap025.PubMedCentralCrossRefPubMed Manna PR, Dyson MT, Stocco DM: Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol Hum Reprod. 2009, 15 (6): 321-333. 10.1093/molehr/gap025.PubMedCentralCrossRefPubMed
96.
go back to reference Reaven E, Nomoto A, Leers-Sucheta S, Temel R, Williams DL, Azhar S: Expression and microvillar localization of scavenger receptor, class B, type I (a high density lipoprotein receptor) in luteinized and hormone-desensitized rat ovarian models. Endocrinology. 1998, 139 (6): 2847-2856. 10.1210/en.139.6.2847.PubMed Reaven E, Nomoto A, Leers-Sucheta S, Temel R, Williams DL, Azhar S: Expression and microvillar localization of scavenger receptor, class B, type I (a high density lipoprotein receptor) in luteinized and hormone-desensitized rat ovarian models. Endocrinology. 1998, 139 (6): 2847-2856. 10.1210/en.139.6.2847.PubMed
97.
go back to reference Li X, Peegel H, Menon KM: In situ hybridization of high density lipoprotein (scavenger, type 1) receptor messenger ribonucleic acid (mRNA) during folliculogenesis and luteinization: evidence for mRNA expression and induction by human chorionic gonadotropin specifically in cell types that use cholesterol for steroidogenesis. Endocrinology. 1998, 139 (7): 3043-3049. 10.1210/en.139.7.3043.PubMed Li X, Peegel H, Menon KM: In situ hybridization of high density lipoprotein (scavenger, type 1) receptor messenger ribonucleic acid (mRNA) during folliculogenesis and luteinization: evidence for mRNA expression and induction by human chorionic gonadotropin specifically in cell types that use cholesterol for steroidogenesis. Endocrinology. 1998, 139 (7): 3043-3049. 10.1210/en.139.7.3043.PubMed
98.
go back to reference Connelly MA: SR-BI-mediated HDL cholesteryl ester delivery in the adrenal gland. Mol Cell Endocrinol. 2009, 300: (1-2):83-88. 10.1016/j.mce.2008.11.023.CrossRef Connelly MA: SR-BI-mediated HDL cholesteryl ester delivery in the adrenal gland. Mol Cell Endocrinol. 2009, 300: (1-2):83-88. 10.1016/j.mce.2008.11.023.CrossRef
99.
go back to reference Rao RM, Jo Y, Leers-Sucheta S, Bose HS, Miller WL, Azhar S, Stocco DM: Differential regulation of steroid hormone biosynthesis in R2C and MA-10 Leydig tumor cells: role of SR-B1-mediated selective cholesteryl ester transport. Biol Reprod. 2003, 68 (1): 114-121.CrossRefPubMed Rao RM, Jo Y, Leers-Sucheta S, Bose HS, Miller WL, Azhar S, Stocco DM: Differential regulation of steroid hormone biosynthesis in R2C and MA-10 Leydig tumor cells: role of SR-B1-mediated selective cholesteryl ester transport. Biol Reprod. 2003, 68 (1): 114-121.CrossRefPubMed
100.
go back to reference Reaven E, Zhan L, Nomoto A, Leers-Sucheta S, Azhar S: Expression and microvillar localization of scavenger receptor class B, type I (SR-BI) and selective cholesteryl ester uptake in Leydig cells from rat testis. J Lipid Res. 2000, 41 (3): 343-356.PubMed Reaven E, Zhan L, Nomoto A, Leers-Sucheta S, Azhar S: Expression and microvillar localization of scavenger receptor class B, type I (SR-BI) and selective cholesteryl ester uptake in Leydig cells from rat testis. J Lipid Res. 2000, 41 (3): 343-356.PubMed
Metadata
Title
Involvement of Src family of kinases and cAMP phosphodiesterase in the luteinizing hormone/chorionic gonadotropin receptor-mediated signaling in the corpus luteum of monkey
Authors
Shah B Kunal
Asaithambi Killivalavan
Rudraiah Medhamurthy
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2012
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/1477-7827-10-25

Other articles of this Issue 1/2012

Reproductive Biology and Endocrinology 1/2012 Go to the issue