Skip to main content
Top
Published in: BMC Pregnancy and Childbirth 1/2021

Open Access 01-12-2021 | Intrauterine Growth Restriction | Case report

Prenatal diagnosis of Meier-Gorlin syndrome 7: a case presentation

Authors: Xia Li, Lan-Zhen Zhang, Lin Yu, Zhao-Lua Long, An-Yun Lin, Chen-Yu Gou

Published in: BMC Pregnancy and Childbirth | Issue 1/2021

Login to get access

Abstract

Background

Meier-Gorlin syndrome 7 (MGS7) is a rare autosomal recessive condition. We reported a fetus diagnosed with Meier-Gorlin syndrome 7. The antenatal sonographic images were presented, and compound heterozygous mutations of CDC45 on chromosome 22 were identified by whole-exome sequencing (WES).

Case presentation

Fetal growth restriction (FGR), craniosynostosis, and brachydactyly of right thumb were found in a fetus of 28th gestational weeks. The fetus was diagnosed as MGS7 clinically. After extensive counseling, the couple opted for prenatal diagnosis by cordocentesis and termination of pregnancy. Karyotype analysis and WES were performed. Chromosomal karyotyping showed that the fetus was 46, XY. There were 2 mutations of CDC45, the causal gene of MGS7 on chromosome 22, which were inherited from the couple respectively were identified by WES. Facial dysmorphism, brachydactyly of right thumb, and genitalia abnormally were proved by postpartum autopsy, and craniosynostosis was confirmed by three-dimensional computed tomography (3D-CT) reconstruction.

Conclusions

It is possible to detect multiple clinical features of Meier-Gorlin syndrome in prenatal sonography. Deteriorative FGR complicated with craniosynostosis indicates MGS7. Combination of 2D and 3D ultrasonography helps to detect craniosynostosis. The affected fetus was confirmed a compound heterozygote of CDC45 related MGS by whole-exome sequencing, which is critical in identifying rare genetic diseases.
Literature
1.
go back to reference de Munnik SA, Otten BJ, Schoots J, Bicknell LS, Aftimos S, Al-Aama JY, et al. Meier-Gorlin syndrome: growth and secondary sexual development of a microcephalic primordial dwarfism disorder. Am J Med Genet A. 2012;158A(11):2733–42.CrossRef de Munnik SA, Otten BJ, Schoots J, Bicknell LS, Aftimos S, Al-Aama JY, et al. Meier-Gorlin syndrome: growth and secondary sexual development of a microcephalic primordial dwarfism disorder. Am J Med Genet A. 2012;158A(11):2733–42.CrossRef
2.
go back to reference Shalev SA, Hall JG. Another adult with Meier-Gorlin syndrome--insights into the natural history. Clin Dysmorphol. 2003;12(3):167–9.PubMed Shalev SA, Hall JG. Another adult with Meier-Gorlin syndrome--insights into the natural history. Clin Dysmorphol. 2003;12(3):167–9.PubMed
3.
go back to reference Belaid R, Zouaoui H, Yazidi M, Oueslati I, Grira W, Chaker F, et al. Meier-Gorlin syndrome: an additional case report in an adult woman. Clin Dysmorphol. 2019;28(2):86–90.CrossRef Belaid R, Zouaoui H, Yazidi M, Oueslati I, Grira W, Chaker F, et al. Meier-Gorlin syndrome: an additional case report in an adult woman. Clin Dysmorphol. 2019;28(2):86–90.CrossRef
4.
go back to reference Ting CY, Bhatia NS, Lim JY, Goh CJ, Vasanwala RF, Ong CC, et al. Further delineation of CDC45-related Meier-Gorlin syndrome with craniosynostosis and review of literature. Eur J Med Genet. 2020;63(2):103652.CrossRef Ting CY, Bhatia NS, Lim JY, Goh CJ, Vasanwala RF, Ong CC, et al. Further delineation of CDC45-related Meier-Gorlin syndrome with craniosynostosis and review of literature. Eur J Med Genet. 2020;63(2):103652.CrossRef
5.
go back to reference Sahota DS, Leung TY, Leung TN, Chan OK, Lau TK. Fetal crown-rump length and estimation of gestational age in an ethnic Chinese population. Ultrasound Obstet Gynecol. 2009;33(2):157–60.CrossRef Sahota DS, Leung TY, Leung TN, Chan OK, Lau TK. Fetal crown-rump length and estimation of gestational age in an ethnic Chinese population. Ultrasound Obstet Gynecol. 2009;33(2):157–60.CrossRef
6.
go back to reference Leung TN, Pang MW, Daljit SS, Leung TY, Poon CF, Wong SM, et al. Fetal biometry in ethnic Chinese: biparietal diameter, head circumference, abdominal circumference and femur length. Ultrasound Obstet Gynecol. 2008;31(3):321–7.CrossRef Leung TN, Pang MW, Daljit SS, Leung TY, Poon CF, Wong SM, et al. Fetal biometry in ethnic Chinese: biparietal diameter, head circumference, abdominal circumference and femur length. Ultrasound Obstet Gynecol. 2008;31(3):321–7.CrossRef
7.
go back to reference Cohen BTI, Symons JC, Hall CM, Shaw DG, Bhamra M, Jackson AM, et al. Microtia and short stature: a new syndrome. J Med Genet. 1991;28(11):786–90.CrossRef Cohen BTI, Symons JC, Hall CM, Shaw DG, Bhamra M, Jackson AM, et al. Microtia and short stature: a new syndrome. J Med Genet. 1991;28(11):786–90.CrossRef
8.
go back to reference Heller RC, Kang S, Lam WM, Chen S, Chan CS, Bell SP. Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell. 2011;146(1):80–91.CrossRef Heller RC, Kang S, Lam WM, Chen S, Chan CS, Bell SP. Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell. 2011;146(1):80–91.CrossRef
9.
go back to reference de Munnik SA, Hoefsloot EH, Roukema J, Schoots J, Knoers NV, Brunner HG, et al. Meier-Gorlin syndrome. Orphanet J Rare Dis. 2015;10:114.CrossRef de Munnik SA, Hoefsloot EH, Roukema J, Schoots J, Knoers NV, Brunner HG, et al. Meier-Gorlin syndrome. Orphanet J Rare Dis. 2015;10:114.CrossRef
10.
go back to reference Bicknell LS, Bongers EM, Leitch A, Brown S, Schoots J, Harley ME, et al. Mutations in the pre-replication complex cause Meier-Gorlin syndrome. Nat Genet. 2011;43(4):356–9.CrossRef Bicknell LS, Bongers EM, Leitch A, Brown S, Schoots J, Harley ME, et al. Mutations in the pre-replication complex cause Meier-Gorlin syndrome. Nat Genet. 2011;43(4):356–9.CrossRef
11.
go back to reference Burrage LC, Charng WL, Eldomery MK, Willer JR, Davis EE, Lugtenberg D, et al. De novo GMNN mutations cause autosomal-dominant primordial dwarfism associated with Meier-Gorlin syndrome. Am J Hum Genet. 2015;97(6):904–13.CrossRef Burrage LC, Charng WL, Eldomery MK, Willer JR, Davis EE, Lugtenberg D, et al. De novo GMNN mutations cause autosomal-dominant primordial dwarfism associated with Meier-Gorlin syndrome. Am J Hum Genet. 2015;97(6):904–13.CrossRef
12.
go back to reference Fenwick AL, Kliszczak M, Cooper F, Murray J, Sanchez-Pulido L, Twigg SR, et al. Mutations in CDC45, encoding an essential component of the pre-initiation complex, cause Meier-Gorlin syndrome and Craniosynostosis. Am J Hum Genet. 2016;99(1):125–38.CrossRef Fenwick AL, Kliszczak M, Cooper F, Murray J, Sanchez-Pulido L, Twigg SR, et al. Mutations in CDC45, encoding an essential component of the pre-initiation complex, cause Meier-Gorlin syndrome and Craniosynostosis. Am J Hum Genet. 2016;99(1):125–38.CrossRef
13.
go back to reference Rios-Morales RY, Chan SH, Bell SP. Initiation-specific alleles of the Cdc45 helicase-activating protein. PLoS One. 2019;14(3):e0214426.CrossRef Rios-Morales RY, Chan SH, Bell SP. Initiation-specific alleles of the Cdc45 helicase-activating protein. PLoS One. 2019;14(3):e0214426.CrossRef
14.
go back to reference de Munnik SA, Bicknell LS, Aftimos S, Al-Aama JY, van Bever Y, Bober MB, et al. Meier-Gorlin syndrome genotype-phenotype studies: 35 individuals with pre-replication complex gene mutations and 10 without molecular diagnosis. Eur J Hum Genet. 2012;20(6):598–606.CrossRef de Munnik SA, Bicknell LS, Aftimos S, Al-Aama JY, van Bever Y, Bober MB, et al. Meier-Gorlin syndrome genotype-phenotype studies: 35 individuals with pre-replication complex gene mutations and 10 without molecular diagnosis. Eur J Hum Genet. 2012;20(6):598–606.CrossRef
15.
go back to reference Morankar RG, Goyal A, Gauba K, Kapur A. Dentofacial characteristics in a child with Meier-Gorlin syndrome: a rare case report. Saudi Dent J. 2018;30(3):260–4.CrossRef Morankar RG, Goyal A, Gauba K, Kapur A. Dentofacial characteristics in a child with Meier-Gorlin syndrome: a rare case report. Saudi Dent J. 2018;30(3):260–4.CrossRef
16.
go back to reference Delahaye S, Bernard JP, Renier D, Ville Y. Prenatal ultrasound diagnosis of fetal craniosynostosis. Ultrasound Obstet Gynecol. 2003;21(4):347–53.CrossRef Delahaye S, Bernard JP, Renier D, Ville Y. Prenatal ultrasound diagnosis of fetal craniosynostosis. Ultrasound Obstet Gynecol. 2003;21(4):347–53.CrossRef
17.
go back to reference Faro C, Benoit B, Wegrzyn P, Chaoui R, Nicolaides KH. Three-dimensional sonographic description of the fetal frontal bones and metopic suture. Ultrasound Obstet Gynecol. 2005;26(6):618–21.CrossRef Faro C, Benoit B, Wegrzyn P, Chaoui R, Nicolaides KH. Three-dimensional sonographic description of the fetal frontal bones and metopic suture. Ultrasound Obstet Gynecol. 2005;26(6):618–21.CrossRef
18.
go back to reference Helfer TM, Peixoto AB, Tonni G, Araujo Junior E. Craniosynostosis: prenatal diagnosis by 2D/3D ultrasound, magnetic resonance imaging and computed tomography. Med Ultrason. 2016;18(3):378–85.CrossRef Helfer TM, Peixoto AB, Tonni G, Araujo Junior E. Craniosynostosis: prenatal diagnosis by 2D/3D ultrasound, magnetic resonance imaging and computed tomography. Med Ultrason. 2016;18(3):378–85.CrossRef
19.
go back to reference Ruano R, Molho M, Roume J, Ville Y. Prenatal diagnosis of fetal skeletal dysplasias by combining two-dimensional and three-dimensional ultrasound and intrauterine three-dimensional helical computer tomography. Ultrasound Obstet Gynecol. 2004;24(2):134–40.CrossRef Ruano R, Molho M, Roume J, Ville Y. Prenatal diagnosis of fetal skeletal dysplasias by combining two-dimensional and three-dimensional ultrasound and intrauterine three-dimensional helical computer tomography. Ultrasound Obstet Gynecol. 2004;24(2):134–40.CrossRef
20.
go back to reference International Society for Prenatal D. Society for M, fetal M, perinatal quality F: joint position statement from the International Society for Prenatal Diagnosis (ISPD), the Society for Maternal Fetal Medicine (SMFM), and the Perinatal Quality Foundation (PQF) on the use of genome-wide sequencing for fetal diagnosis. Prenat Diagn. 2018;38(1):6–9.CrossRef International Society for Prenatal D. Society for M, fetal M, perinatal quality F: joint position statement from the International Society for Prenatal Diagnosis (ISPD), the Society for Maternal Fetal Medicine (SMFM), and the Perinatal Quality Foundation (PQF) on the use of genome-wide sequencing for fetal diagnosis. Prenat Diagn. 2018;38(1):6–9.CrossRef
21.
go back to reference Monaghan KG, Leach NT, Pekarek D, Prasad P, Rose NC, Practice AP, et al. The use of fetal exome sequencing in prenatal diagnosis: a points to consider document of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2020;22(4):675–80.CrossRef Monaghan KG, Leach NT, Pekarek D, Prasad P, Rose NC, Practice AP, et al. The use of fetal exome sequencing in prenatal diagnosis: a points to consider document of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2020;22(4):675–80.CrossRef
22.
go back to reference Bean LJH, Funke B, Carlston CM, Gannon JL, Kantarci S, Krock BL, et al. Diagnostic gene sequencing panels: from design to report-a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2020;22(3):453–61.CrossRef Bean LJH, Funke B, Carlston CM, Gannon JL, Kantarci S, Krock BL, et al. Diagnostic gene sequencing panels: from design to report-a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2020;22(3):453–61.CrossRef
Metadata
Title
Prenatal diagnosis of Meier-Gorlin syndrome 7: a case presentation
Authors
Xia Li
Lan-Zhen Zhang
Lin Yu
Zhao-Lua Long
An-Yun Lin
Chen-Yu Gou
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Pregnancy and Childbirth / Issue 1/2021
Electronic ISSN: 1471-2393
DOI
https://doi.org/10.1186/s12884-021-03868-5

Other articles of this Issue 1/2021

BMC Pregnancy and Childbirth 1/2021 Go to the issue