Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 1/2017

01-01-2017 | Retinal Disorders

Intraretinal changes in the presence of epiretinal traction

Authors: Mario R. Romano, Gilda Cennamo, Francesca Amoroso, Daniela Montorio, Carlo Castellani, Michele Reibaldi, Giovanni Cennamo

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 1/2017

Login to get access

Abstract

Background

To determine the correlation between the area of morphological changes on the macular surface, the depth of intraretinal changes and the best-corrected visual acuity (BCVA) in patients with idiopathic epiretinal membrane.

Methods

In this prospective cross-sectional study, 38 patients underwent BCVA testing with a Snellen eye chart. The depth of traction, photoreceptor outer segment layer (PROS) thickness, central macular thickness (CMT) and presence of intraretinal cysts were measured using the Avanti RTVue XR and 3D Widefield Enface OCT instruments. Enface sections were performed at the inner limiting membrane (ILM) line level (ILM offset). Patients were categorized into two groups: in group 1 (n = 21), the depth of traction was within 90 μm from the ILM, and in group 2 (n = 17) it was beyond 90 μm from the ILM. The main outcome measure was the correlation between area of epiretinal traction and BCVA according to the depth of traction.

Results

In group 1, the depth of traction was 55.15 ± 14.28 μm, the area of traction was 38.95 ± 13.63 mm2, PROS thickness was 51.20 ± 7.23 μm, and CMT was 362.65 ± 41.08 μm. In group 2, the depth of traction was 112.24 ± 10.89 μm, the area of traction was 25.18 ± 4.07 mm2, PROS thickness was 50.24 ± 9.01 μm, and mean CMT was 534.29 ± 126.81 μm. Statistically significant differences in depth of traction, area of traction and CMT were found between the two groups (P < 0.001). The relationship between structure and function between the area of traction and BCVA was better explained in group 2 (r = 0.814, P < 0.001).

Conclusions

We found that intraretinal changes were induced by the ERM, and varied according to the depth of traction measured with en face analysis. In the case of traction deeper than 90 μm, we found a significant correlation between the inner area of the epiretinal traction and BCVA. We believe that retinal stress induced by epiretinal traction is better characterized by combining information provided by sagittal and transverse OCT scans, thus defining its prognostic significance in ERM.
Literature
1.
go back to reference Gass JDM (1996) Macular dysfucntions caused by vitreous and vitreretinal interface abnormalities. Stereoscopic atlas of macular diseases. 4th ed. St. Louis, MO: Mosby 938-951. Gass JDM (1996) Macular dysfucntions caused by vitreous and vitreretinal interface abnormalities. Stereoscopic atlas of macular diseases. 4th ed. St. Louis, MO: Mosby 938-951.
2.
go back to reference Mitchell P, Smith W, Chey T, Wang JJ, Chang A (1997) Prevalence and associations of epiretinal membranes. The Blue Mountains Eye Study, Australia. Ophthalmology 104(6):1033–1040CrossRefPubMed Mitchell P, Smith W, Chey T, Wang JJ, Chang A (1997) Prevalence and associations of epiretinal membranes. The Blue Mountains Eye Study, Australia. Ophthalmology 104(6):1033–1040CrossRefPubMed
3.
go back to reference Aung KZ, Makeyeva G, Adams MK et al (2013) The prevalence and risk factors of epiretinal membranes: the Melbourne Collaborative Cohort Study. Retina 33(5):1026–1034CrossRefPubMed Aung KZ, Makeyeva G, Adams MK et al (2013) The prevalence and risk factors of epiretinal membranes: the Melbourne Collaborative Cohort Study. Retina 33(5):1026–1034CrossRefPubMed
4.
go back to reference Duan XR, Liang YB, Friedman DS et al (2009) Prevalence and associations of epiretinal membranes in a rural Chinese adult population: the Handan Eye Study. Invest Ophthalmol Vis Sci 50(5):2018–2023CrossRefPubMed Duan XR, Liang YB, Friedman DS et al (2009) Prevalence and associations of epiretinal membranes in a rural Chinese adult population: the Handan Eye Study. Invest Ophthalmol Vis Sci 50(5):2018–2023CrossRefPubMed
5.
go back to reference Fraser-Bell S, Guzowski M, Rochtchina E, Wang JJ, Mitchell P (2003) Five-year cumulative incidence and progression of epiretinal membranes: the Blue Mountains Eye Study. Ophthalmology 110(1):34–40CrossRefPubMed Fraser-Bell S, Guzowski M, Rochtchina E, Wang JJ, Mitchell P (2003) Five-year cumulative incidence and progression of epiretinal membranes: the Blue Mountains Eye Study. Ophthalmology 110(1):34–40CrossRefPubMed
6.
go back to reference Fraser-Bell S, Ying-Lai M, Klein R, Varma R (2004) Prevalence and associations of epiretinal membranes in latinos: the Los Angeles Latino Eye Study. Invest Ophthalmol Vis Sci 45(6):1732–1736CrossRefPubMed Fraser-Bell S, Ying-Lai M, Klein R, Varma R (2004) Prevalence and associations of epiretinal membranes in latinos: the Los Angeles Latino Eye Study. Invest Ophthalmol Vis Sci 45(6):1732–1736CrossRefPubMed
7.
go back to reference Kawasaki R, Wang JJ, Aung T et al (2008) Prevalence of age-related macular degeneration in a Malay population: the Singapore Malay Eye Study. Ophthalmology 115(10):1735–1741CrossRefPubMed Kawasaki R, Wang JJ, Aung T et al (2008) Prevalence of age-related macular degeneration in a Malay population: the Singapore Malay Eye Study. Ophthalmology 115(10):1735–1741CrossRefPubMed
8.
go back to reference Kawasaki R, Wang JJ, Ji GJ et al (2008) Prevalence and risk factors for age-related macular degeneration in an adult Japanese population: the Funagata study. Ophthalmology 115(8):1376–1381, 1381 e1371-1372CrossRefPubMed Kawasaki R, Wang JJ, Ji GJ et al (2008) Prevalence and risk factors for age-related macular degeneration in an adult Japanese population: the Funagata study. Ophthalmology 115(8):1376–1381, 1381 e1371-1372CrossRefPubMed
9.
go back to reference Kawasaki R, Wang JJ, Mitchell P et al (2008) Racial difference in the prevalence of epiretinal membrane between Caucasians and Asians. Br J Ophthalmol 92(10):1320–1324CrossRefPubMed Kawasaki R, Wang JJ, Mitchell P et al (2008) Racial difference in the prevalence of epiretinal membrane between Caucasians and Asians. Br J Ophthalmol 92(10):1320–1324CrossRefPubMed
10.
go back to reference Kawasaki R, Wang JJ, Sato H et al (2009) Prevalence and associations of epiretinal membranes in an adult Japanese population: the Funagata study. Eye (Lond) 23(5):1045–1051CrossRef Kawasaki R, Wang JJ, Sato H et al (2009) Prevalence and associations of epiretinal membranes in an adult Japanese population: the Funagata study. Eye (Lond) 23(5):1045–1051CrossRef
11.
go back to reference Koh V, Cheung CY, Wong WL et al (2012) Prevalence and risk factors of epiretinal membrane in Asian Indians. Invest Ophthalmol Vis Sci 53(2):1018–1022CrossRefPubMed Koh V, Cheung CY, Wong WL et al (2012) Prevalence and risk factors of epiretinal membrane in Asian Indians. Invest Ophthalmol Vis Sci 53(2):1018–1022CrossRefPubMed
12.
go back to reference Li Y, Xu L, Wang YX, You QS, Yang H, Jonas JB (2008) Prevalence of age-related maculopathy in the adult population in China: the Beijing eye study. Am J Ophthalmol 146(2):329CrossRefPubMed Li Y, Xu L, Wang YX, You QS, Yang H, Jonas JB (2008) Prevalence of age-related maculopathy in the adult population in China: the Beijing eye study. Am J Ophthalmol 146(2):329CrossRefPubMed
13.
go back to reference McCarty DJ, Mukesh BN, Chikani V et al (2005) Prevalence and associations of epiretinal membranes in the visual impairment project. Am J Ophthalmol 140(2):288–294CrossRefPubMed McCarty DJ, Mukesh BN, Chikani V et al (2005) Prevalence and associations of epiretinal membranes in the visual impairment project. Am J Ophthalmol 140(2):288–294CrossRefPubMed
14.
go back to reference Ng CH, Cheung N, Wang JJ et al (2011) Prevalence and risk factors for epiretinal membranes in a multi-ethnic United States population. Ophthalmology 118(4):694–699CrossRefPubMed Ng CH, Cheung N, Wang JJ et al (2011) Prevalence and risk factors for epiretinal membranes in a multi-ethnic United States population. Ophthalmology 118(4):694–699CrossRefPubMed
15.
go back to reference Xie XW, Xu L, Wang YX, Jonas JB (2008) Prevalence and associated factors of diabetic retinopathy. The Beijing Eye Study 2006. Graefes Arch Clin Exp Ophthalmol 246(11):1519–1526CrossRefPubMed Xie XW, Xu L, Wang YX, Jonas JB (2008) Prevalence and associated factors of diabetic retinopathy. The Beijing Eye Study 2006. Graefes Arch Clin Exp Ophthalmol 246(11):1519–1526CrossRefPubMed
16.
go back to reference You Q, Xu L, Jonas JB (2008) Prevalence and associations of epiretinal membranes in adult Chinese: the Beijing Eye Study. Eye (Lond) 22(7):874–879CrossRef You Q, Xu L, Jonas JB (2008) Prevalence and associations of epiretinal membranes in adult Chinese: the Beijing Eye Study. Eye (Lond) 22(7):874–879CrossRef
17.
go back to reference You QS, Xu L, Jonas JB (2008) Prevalence of crowded optic discs in adult Chinese. The Beijing Eye Study. Graefes Arch Clin Exp Ophthalmol 246(9):1291–1293CrossRefPubMed You QS, Xu L, Jonas JB (2008) Prevalence of crowded optic discs in adult Chinese. The Beijing Eye Study. Graefes Arch Clin Exp Ophthalmol 246(9):1291–1293CrossRefPubMed
18.
go back to reference You QS, Xu L, Wang YX, Jonas JB (2009) Prevalence of optic disc drusen in an adult Chinese population: the Beijing Eye Study. Acta Ophthalmol 87(2):227–228CrossRefPubMed You QS, Xu L, Wang YX, Jonas JB (2009) Prevalence of optic disc drusen in an adult Chinese population: the Beijing Eye Study. Acta Ophthalmol 87(2):227–228CrossRefPubMed
19.
go back to reference Zhu XF, Peng JJ, Zou HD et al (2012) Prevalence and risk factors of idiopathic epiretinal membranes in Beixinjing blocks, Shanghai, China. PLoS One 7(12):e51445CrossRefPubMedPubMedCentral Zhu XF, Peng JJ, Zou HD et al (2012) Prevalence and risk factors of idiopathic epiretinal membranes in Beixinjing blocks, Shanghai, China. PLoS One 7(12):e51445CrossRefPubMedPubMedCentral
20.
go back to reference Klein R, Klein BE, Wang Q, Moss SE (1994) The epidemiology of epiretinal membranes. Trans Am Ophthalmol Soc 92:403–425, discussion 425-430PubMedPubMedCentral Klein R, Klein BE, Wang Q, Moss SE (1994) The epidemiology of epiretinal membranes. Trans Am Ophthalmol Soc 92:403–425, discussion 425-430PubMedPubMedCentral
22.
go back to reference Sebag J, Gupta P, Rosen RR, Garcia P, Sadun AA (2007) Macular holes and macular pucker: the role of vitreoschisis as imaged by optical coherence tomography/scanning laser ophthalmoscopy. Trans Am Ophthalmol Soc 105:121–129, discusion 129-131PubMedPubMedCentral Sebag J, Gupta P, Rosen RR, Garcia P, Sadun AA (2007) Macular holes and macular pucker: the role of vitreoschisis as imaged by optical coherence tomography/scanning laser ophthalmoscopy. Trans Am Ophthalmol Soc 105:121–129, discusion 129-131PubMedPubMedCentral
23.
go back to reference Rutka JT, Murakami M, Dirks PB et al (1997) Role of glial filaments in cells and tumors of glial origin: a review. J Neurosurg 87(3):420–430CrossRefPubMed Rutka JT, Murakami M, Dirks PB et al (1997) Role of glial filaments in cells and tumors of glial origin: a review. J Neurosurg 87(3):420–430CrossRefPubMed
24.
go back to reference Bringmann A, Pannicke T, Grosche J et al (2006) Muller cells in the healthy and diseased retina. Prog Retin Eye Res 25(4):397–424CrossRefPubMed Bringmann A, Pannicke T, Grosche J et al (2006) Muller cells in the healthy and diseased retina. Prog Retin Eye Res 25(4):397–424CrossRefPubMed
25.
go back to reference Hiscott PS, Grierson I, Trombetta CJ, Rahi AH, Marshall J, McLeod D (1984) Retinal and epiretinal glia--an immunohistochemical study. Br J Ophthalmol 68(10):698–707CrossRefPubMedPubMedCentral Hiscott PS, Grierson I, Trombetta CJ, Rahi AH, Marshall J, McLeod D (1984) Retinal and epiretinal glia--an immunohistochemical study. Br J Ophthalmol 68(10):698–707CrossRefPubMedPubMedCentral
26.
go back to reference Lu YB, Iandiev I, Hollborn M et al (2011) Reactive glial cells: increased stiffness correlates with increased intermediate filament expression. FASEB J 25(2):624–631CrossRefPubMed Lu YB, Iandiev I, Hollborn M et al (2011) Reactive glial cells: increased stiffness correlates with increased intermediate filament expression. FASEB J 25(2):624–631CrossRefPubMed
27.
go back to reference Reichenbach A, Bringmann A (2010) Muller cells in the healthy retina. Muller cells in the healthy and diseased retina. London, UK: Springer Science+Business media 53-55. Reichenbach A, Bringmann A (2010) Muller cells in the healthy retina. Muller cells in the healthy and diseased retina. London, UK: Springer Science+Business media 53-55.
28.
go back to reference Kenawy N, Wong D, Stappler T et al (2010) Does the presence of an epiretinal membrane alter the cleavage plane during internal limiting membrane peeling? Ophthalmology 117(2):320–323 e321CrossRefPubMed Kenawy N, Wong D, Stappler T et al (2010) Does the presence of an epiretinal membrane alter the cleavage plane during internal limiting membrane peeling? Ophthalmology 117(2):320–323 e321CrossRefPubMed
29.
go back to reference Zhang Z, Dong F, Zhao C et al (2015) Natural course of vitreomacular traction syndrome observed by spectral-domain optical coherence tomography. Can J Ophthalmol 50(2):172–179CrossRefPubMed Zhang Z, Dong F, Zhao C et al (2015) Natural course of vitreomacular traction syndrome observed by spectral-domain optical coherence tomography. Can J Ophthalmol 50(2):172–179CrossRefPubMed
30.
go back to reference Kim JH, Kang SW, Kong MG, Ha HS (2013) Assessment of retinal layers and visual rehabilitation after epiretinal membrane removal. Graefes Arch Clin Exp Ophthalmol 251(4):1055–1064CrossRefPubMed Kim JH, Kang SW, Kong MG, Ha HS (2013) Assessment of retinal layers and visual rehabilitation after epiretinal membrane removal. Graefes Arch Clin Exp Ophthalmol 251(4):1055–1064CrossRefPubMed
31.
go back to reference Dyer MA, Cepko CL (2000) Control of Muller glial cell proliferation and activation following retinal injury. Nat Neurosci 3(9):873–880CrossRefPubMed Dyer MA, Cepko CL (2000) Control of Muller glial cell proliferation and activation following retinal injury. Nat Neurosci 3(9):873–880CrossRefPubMed
32.
go back to reference Francke M, Faude F, Pannicke T et al (2001) Electrophysiology of rabbit Muller (glial) cells in experimental retinal detachment and PVR. Invest Ophthalmol Vis Sci 42(5):1072–1079PubMed Francke M, Faude F, Pannicke T et al (2001) Electrophysiology of rabbit Muller (glial) cells in experimental retinal detachment and PVR. Invest Ophthalmol Vis Sci 42(5):1072–1079PubMed
33.
go back to reference Mamballikalathil I, Mann C, Guidry C (2000) Tractional force generation by porcine Muller cells: paracrine stimulation by retinal pigment epithelium. Invest Ophthalmol Vis Sci 41(2):529–536PubMed Mamballikalathil I, Mann C, Guidry C (2000) Tractional force generation by porcine Muller cells: paracrine stimulation by retinal pigment epithelium. Invest Ophthalmol Vis Sci 41(2):529–536PubMed
34.
go back to reference McGillem GS, Dacheux RF (1998) Migration of retinal microglia in experimental proliferative vitreoretinopathy. Exp Eye Res 67(3):371–375CrossRefPubMed McGillem GS, Dacheux RF (1998) Migration of retinal microglia in experimental proliferative vitreoretinopathy. Exp Eye Res 67(3):371–375CrossRefPubMed
35.
go back to reference Erickson PA, Fisher SK, Guerin CJ, Anderson DH, Kaska DD (1987) Glial fibrillary acidic protein increases in Muller cells after retinal detachment. Exp Eye Res 44(1):37–48CrossRefPubMed Erickson PA, Fisher SK, Guerin CJ, Anderson DH, Kaska DD (1987) Glial fibrillary acidic protein increases in Muller cells after retinal detachment. Exp Eye Res 44(1):37–48CrossRefPubMed
36.
go back to reference Lewis GP, Fisher SK (2003) Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression. Int Rev Cytol 230:263–290CrossRefPubMed Lewis GP, Fisher SK (2003) Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression. Int Rev Cytol 230:263–290CrossRefPubMed
37.
go back to reference Lewis GP, Guerin CJ, Anderson DH, Matsumoto B, Fisher SK (1994) Rapid changes in the expression of glial cell proteins caused by experimental retinal detachment. Am J Ophthalmol 118(3):368–376CrossRefPubMed Lewis GP, Guerin CJ, Anderson DH, Matsumoto B, Fisher SK (1994) Rapid changes in the expression of glial cell proteins caused by experimental retinal detachment. Am J Ophthalmol 118(3):368–376CrossRefPubMed
38.
go back to reference Charteris DG, Downie J, Aylward GW, Sethi C, Luthert P (2007) Intraretinal and periretinal pathology in anterior proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol 245(1):93–100CrossRefPubMed Charteris DG, Downie J, Aylward GW, Sethi C, Luthert P (2007) Intraretinal and periretinal pathology in anterior proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol 245(1):93–100CrossRefPubMed
39.
go back to reference McLeod D, Hiscott PS, Grierson I (1987) Age-related cellular proliferation at the vitreoretinal juncture. Eye (Lond) 1(Pt 2):263–281CrossRef McLeod D, Hiscott PS, Grierson I (1987) Age-related cellular proliferation at the vitreoretinal juncture. Eye (Lond) 1(Pt 2):263–281CrossRef
40.
go back to reference Gupta P, Sadun AA, Sebag J (2008) Multifocal retinal contraction in macular pucker analyzed by combined optical coherence tomography/scanning laser ophthalmoscopy. Retina 28(3):447–452CrossRefPubMed Gupta P, Sadun AA, Sebag J (2008) Multifocal retinal contraction in macular pucker analyzed by combined optical coherence tomography/scanning laser ophthalmoscopy. Retina 28(3):447–452CrossRefPubMed
41.
go back to reference Shiono A, Kogo J, Klose G et al (2013) Photoreceptor outer segment length: a prognostic factor for idiopathic epiretinal membrane surgery. Ophthalmology 120(4):788–794CrossRefPubMed Shiono A, Kogo J, Klose G et al (2013) Photoreceptor outer segment length: a prognostic factor for idiopathic epiretinal membrane surgery. Ophthalmology 120(4):788–794CrossRefPubMed
42.
go back to reference Michalewski J, Michalewska Z, Cisiecki S, Nawrocki J (2007) Morphologically functional correlations of macular pathology connected with epiretinal membrane formation in spectral optical coherence tomography (SOCT). Graefes Arch Clin Exp Ophthalmol 245(11):1623–1631CrossRefPubMed Michalewski J, Michalewska Z, Cisiecki S, Nawrocki J (2007) Morphologically functional correlations of macular pathology connected with epiretinal membrane formation in spectral optical coherence tomography (SOCT). Graefes Arch Clin Exp Ophthalmol 245(11):1623–1631CrossRefPubMed
43.
go back to reference Mitamura Y, Hirano K, Baba T, Yamamoto S (2009) Correlation of visual recovery with presence of photoreceptor inner/outer segment junction in optical coherence images after epiretinal membrane surgery. Br J Ophthalmol 93(2):171–175CrossRefPubMed Mitamura Y, Hirano K, Baba T, Yamamoto S (2009) Correlation of visual recovery with presence of photoreceptor inner/outer segment junction in optical coherence images after epiretinal membrane surgery. Br J Ophthalmol 93(2):171–175CrossRefPubMed
44.
go back to reference Falkner-Radler CI, Glittenberg C, Hagen S, Benesch T, Binder S (2010) Spectral-domain optical coherence tomography for monitoring epiretinal membrane surgery. Ophthalmology 117(4):798–805CrossRefPubMed Falkner-Radler CI, Glittenberg C, Hagen S, Benesch T, Binder S (2010) Spectral-domain optical coherence tomography for monitoring epiretinal membrane surgery. Ophthalmology 117(4):798–805CrossRefPubMed
45.
go back to reference Inoue M, Morita S, Watanabe Y et al (2010) Inner segment/outer segment junction assessed by spectral-domain optical coherence tomography in patients with idiopathic epiretinal membrane. Am J Ophthalmol 150(6):834–839CrossRefPubMed Inoue M, Morita S, Watanabe Y et al (2010) Inner segment/outer segment junction assessed by spectral-domain optical coherence tomography in patients with idiopathic epiretinal membrane. Am J Ophthalmol 150(6):834–839CrossRefPubMed
46.
go back to reference Okamoto F, Sugiura Y, Okamoto Y, Hiraoka T, Oshika T (2012) Associations between metamorphopsia and foveal microstructure in patients with epiretinal membrane. Invest Ophthalmol Vis Sci 53(11):6770–6775CrossRefPubMed Okamoto F, Sugiura Y, Okamoto Y, Hiraoka T, Oshika T (2012) Associations between metamorphopsia and foveal microstructure in patients with epiretinal membrane. Invest Ophthalmol Vis Sci 53(11):6770–6775CrossRefPubMed
47.
go back to reference Duker JS, Kaiser PK, Binder S et al (2013) The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 120(12):2611–2619CrossRefPubMed Duker JS, Kaiser PK, Binder S et al (2013) The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 120(12):2611–2619CrossRefPubMed
Metadata
Title
Intraretinal changes in the presence of epiretinal traction
Authors
Mario R. Romano
Gilda Cennamo
Francesca Amoroso
Daniela Montorio
Carlo Castellani
Michele Reibaldi
Giovanni Cennamo
Publication date
01-01-2017
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 1/2017
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-016-3413-z

Other articles of this Issue 1/2017

Graefe's Archive for Clinical and Experimental Ophthalmology 1/2017 Go to the issue