Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 1/2017

01-01-2017 | Cataract

“Ant-egg” cataract revisited

Authors: Kåre Clemmensen, Jan J. Enghild, Anders Ivarsen, Ruth Riise, Henrik Vorum, Steffen Heegaard

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 1/2017

Login to get access

Abstract

Purpose

Hereditary congenital cataract varies immensely concerning location and form of the lens opacities. A specific and very rare phenotype is called “ant-egg” cataract first described in 1900. “Ant-eggs” have previously been examined using light microscopy, backscattered electron imaging and X-ray scans and electron microscopy. The purpose of this study was to further characterize “ant-egg” cataract using modern technology and display the history of the “ant-eggs” after cataract extraction.

Methods

“Ant-eggs” were examined using Heidelberg SPECTRALIS Optical Coherence Tomography (OCT)(Heidelberg Engineering, Heidelberg, Germany). Ten “ant-eggs” were extracted; four of these as well as control tissue were analyzed by mass spectrometry (AB Sciex). Proteins were identified and their approximate abundances were determined. Immunohistochemical staining was carried out on the remaining “ant-eggs” for cytokeratin and S100.

Results

In anterior OCT-images, the “ant-egg” structures are localized on the iris. Comparative pictures showed that they stayed in the same location for more than 45 years. Mass spectrometry of “ant-eggs” yielded a proteome of 56 different proteins. Eighteen of the 56 “ant-egg” proteins (32 %) were neither present in our controls nor in a known fetal lens proteome. Among these were cytokeratin and Matrix-Gla protein. Immunohistochemical reactions were positive for cytokeratin and S100.

Conclusions

This study demonstrates the previously unknown protein composition of the “ant-egg” structures in “ant-egg” cataract. Eighteen of these proteins are not natively found in the human lens. Moreover, “ant-eggs” do not vary over time, after cataract extraction, regarding size and location.
Literature
1.
go back to reference Jaeger W (1965) Ameiseneierkatarakt. Ber Zusammenkunft Dtsch Ophthalmol Ges 66:368–73PubMed Jaeger W (1965) Ameiseneierkatarakt. Ber Zusammenkunft Dtsch Ophthalmol Ges 66:368–73PubMed
2.
go back to reference Stock W (1902) Beitrage zur angeboreren Starbildung. Klin Mbl Augenheilkd 11–18 Stock W (1902) Beitrage zur angeboreren Starbildung. Klin Mbl Augenheilkd 11–18
3.
go back to reference Riedl F (1939) Eigenartige Form von Linsenregeneration (multiple freie Lentoidbildung) bei Cataracta secundaria in einer Familie mit Cataracta pernuclearis hereditaria. Klin Monbl Augenheilkd 103:169–93 Riedl F (1939) Eigenartige Form von Linsenregeneration (multiple freie Lentoidbildung) bei Cataracta secundaria in einer Familie mit Cataracta pernuclearis hereditaria. Klin Monbl Augenheilkd 103:169–93
4.
go back to reference Riise R (1967) Hereditary “ant-egg-cataract”. Acta Ophthalmol 45:341–6CrossRef Riise R (1967) Hereditary “ant-egg-cataract”. Acta Ophthalmol 45:341–6CrossRef
5.
go back to reference Axenfeld K (1900) Lecture. In: Bericht ber die achtundzwanzigste Versammlung der Ophthalmol. Gesellscaft. pp 191–92 Axenfeld K (1900) Lecture. In: Bericht ber die achtundzwanzigste Versammlung der Ophthalmol. Gesellscaft. pp 191–92
6.
go back to reference Schrøder HD, Nissen SH (1979) Ant-egg cataract. An electron microscopic study. Acta Ophthalmol 57:435–42CrossRef Schrøder HD, Nissen SH (1979) Ant-egg cataract. An electron microscopic study. Acta Ophthalmol 57:435–42CrossRef
7.
go back to reference Nissen SH, Schrøder HD (1979) Ant-egg cataract. A study of a family with dominantly inherited congenital (ant-egg) cataract, including a histological examination of the formed elements. Acta Ophthalmol 57:14–9CrossRef Nissen SH, Schrøder HD (1979) Ant-egg cataract. A study of a family with dominantly inherited congenital (ant-egg) cataract, including a histological examination of the formed elements. Acta Ophthalmol 57:14–9CrossRef
8.
go back to reference Hansen L, Yao W, Eiberg H et al (2006) The congenital “ant-egg” cataract phenotype is caused by a missense mutation in connexin46. Mol Vis 12:1033–9PubMed Hansen L, Yao W, Eiberg H et al (2006) The congenital “ant-egg” cataract phenotype is caused by a missense mutation in connexin46. Mol Vis 12:1033–9PubMed
9.
go back to reference Ishihama Y, Oda Y, Tabata T et al (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4:1265–72. doi:10.1074/mcp.M500061-MCP200 CrossRefPubMed Ishihama Y, Oda Y, Tabata T et al (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4:1265–72. doi:10.​1074/​mcp.​M500061-MCP200 CrossRefPubMed
11.
go back to reference Beyer EC, Paul DL, Goodenough DA (1990) Connexin family of gap junction proteins. [Review]. J Membr Biol 116:187–194CrossRefPubMed Beyer EC, Paul DL, Goodenough DA (1990) Connexin family of gap junction proteins. [Review]. J Membr Biol 116:187–194CrossRefPubMed
13.
go back to reference Devi RR, Vijayalakshmi P (2006) Novel mutations in GJA8 associated with autosomal dominant congenital cataract and microcornea. Mol Vis 12:190–195PubMed Devi RR, Vijayalakshmi P (2006) Novel mutations in GJA8 associated with autosomal dominant congenital cataract and microcornea. Mol Vis 12:190–195PubMed
15.
go back to reference Bennett TM, Mackay DS, Knopf HL, Shiels A (2004) A novel missense mutation in the gene for gap-junction protein alpha3 (GJA3) associated with autosomal dominant “nuclear punctate” cataracts linked to chromosome 13q. Mol Vis 10:376–382PubMed Bennett TM, Mackay DS, Knopf HL, Shiels A (2004) A novel missense mutation in the gene for gap-junction protein alpha3 (GJA3) associated with autosomal dominant “nuclear punctate” cataracts linked to chromosome 13q. Mol Vis 10:376–382PubMed
17.
go back to reference Li Y, Wang J, Dong B, Man H (2004) A novel connexin46 (GJA3) mutation in autosomal dominant congenital nuclear pulverulent cataract. Mol Vis 10:668–671PubMed Li Y, Wang J, Dong B, Man H (2004) A novel connexin46 (GJA3) mutation in autosomal dominant congenital nuclear pulverulent cataract. Mol Vis 10:668–671PubMed
18.
go back to reference Rees MI, Watts P, Fenton I et al (2000) Further evidence of autosomal dominant congenital zonular pulverulent cataracts linked to 13q11 (CZP3) and a novel mutation in connexin 46 (GJA3). Hum Genet 106:206–209. doi:10.1007/s004390051029 CrossRefPubMed Rees MI, Watts P, Fenton I et al (2000) Further evidence of autosomal dominant congenital zonular pulverulent cataracts linked to 13q11 (CZP3) and a novel mutation in connexin 46 (GJA3). Hum Genet 106:206–209. doi:10.​1007/​s004390051029 CrossRefPubMed
21.
go back to reference Fox K, Castanha E, Fox A et al (2008) Human K10 epithelial keratin is the most abundant protein in airborne dust of both occupied and unoccupied school rooms. J Environ Monit 10:55–59. doi:10.1039/b714802j CrossRefPubMed Fox K, Castanha E, Fox A et al (2008) Human K10 epithelial keratin is the most abundant protein in airborne dust of both occupied and unoccupied school rooms. J Environ Monit 10:55–59. doi:10.​1039/​b714802j CrossRefPubMed
22.
go back to reference Courtney DG, Poulsen ET, Kennedy S et al (2015) Protein composition of TGFBI-R124C- and TGFBI-R555W-associated aggregates suggests multiple mechanisms leading to lattice and granular corneal dystrophy. Investig Ophthalmol Vis Sci 56:4653–4661. doi:10.1167/iovs.15-16922 CrossRef Courtney DG, Poulsen ET, Kennedy S et al (2015) Protein composition of TGFBI-R124C- and TGFBI-R555W-associated aggregates suggests multiple mechanisms leading to lattice and granular corneal dystrophy. Investig Ophthalmol Vis Sci 56:4653–4661. doi:10.​1167/​iovs.​15-16922 CrossRef
25.
go back to reference Blaydon DC, Ishii Y, O’Toole EA et al (2006) The gene encoding R-spondin 4 (RSPO4), a secreted protein implicated in Wnt signaling, is mutated in inherited anonychia. Nat Genet 38:1245–7. doi:10.1038/ng1883 CrossRefPubMed Blaydon DC, Ishii Y, O’Toole EA et al (2006) The gene encoding R-spondin 4 (RSPO4), a secreted protein implicated in Wnt signaling, is mutated in inherited anonychia. Nat Genet 38:1245–7. doi:10.​1038/​ng1883 CrossRefPubMed
Metadata
Title
“Ant-egg” cataract revisited
Authors
Kåre Clemmensen
Jan J. Enghild
Anders Ivarsen
Ruth Riise
Henrik Vorum
Steffen Heegaard
Publication date
01-01-2017
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 1/2017
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-016-3539-z

Other articles of this Issue 1/2017

Graefe's Archive for Clinical and Experimental Ophthalmology 1/2017 Go to the issue