Skip to main content
Top
Published in: BMC Nephrology 1/2013

Open Access 01-12-2013 | Research article

Intracellular calcium release modulates polycystin-2 trafficking

Authors: Ayako Miyakawa, Cristián Ibarra, Seth Malmersjö, Anita Aperia, Peter Wiklund, Per Uhlén

Published in: BMC Nephrology | Issue 1/2013

Login to get access

Abstract

Background

Polycystin-2 (PC2), encoded by the gene that is mutated in autosomal dominant polycystic kidney disease (ADPKD), functions as a calcium (Ca2+) permeable ion channel. Considerable controversy remains regarding the subcellular localization and signaling function of PC2 in kidney cells.

Methods

We investigated the subcellular PC2 localization by immunocytochemistry and confocal microscopy in primary cultures of human and rat proximal tubule cells after stimulating cytosolic Ca2+ signaling. Plasma membrane (PM) Ca2+ permeability was evaluated by Fura-2 manganese quenching using time-lapse fluorescence microscopy.

Results

We demonstrated that PC2 exhibits a dynamic subcellular localization pattern. In unstimulated human or rat proximal tubule cells, PC2 exhibited a cytosolic/reticular distribution. Treatments with agents that in various ways affect the Ca2+ signaling machinery, those being ATP, bradykinin, ionomycin, CPA or thapsigargin, resulted in increased PC2 immunostaining in the PM. Exposing cells to the steroid hormone ouabain, known to trigger Ca2+ oscillations in kidney cells, caused increased PC2 in the PM and increased PM Ca2+ permeability. Intracellular Ca2+ buffering with BAPTA, inositol 1,4,5-trisphosphate receptor (InsP3R) inhibition with 2-aminoethoxydiphenyl borate (2-APB) or Ca2+/Calmodulin-dependent kinase inhibition with KN-93 completely abolished ouabain-stimulated PC2 translocation to the PM.

Conclusions

These novel findings demonstrate intracellular Ca2+-dependent PC2 trafficking in human and rat kidney cells, which may provide new insight into cyst formations in ADPKD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Harris PC: Molecular basis of polycystic kidney disease: PKD1, PKD2 and PKHD1. Curr Opin Nephrol Hypertens. 2002, 11 (3): 309-314. 10.1097/00041552-200205000-00007.CrossRefPubMed Harris PC: Molecular basis of polycystic kidney disease: PKD1, PKD2 and PKHD1. Curr Opin Nephrol Hypertens. 2002, 11 (3): 309-314. 10.1097/00041552-200205000-00007.CrossRefPubMed
3.
go back to reference Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S: Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol. 2002, 4 (3): 191-197. 10.1038/ncb754.CrossRefPubMed Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S: Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol. 2002, 4 (3): 191-197. 10.1038/ncb754.CrossRefPubMed
4.
go back to reference Anyatonwu GI, Ehrlich BE: Calcium signaling and polycystin-2. Biochem Biophys Res Commun. 2004, 322 (4): 1364-1373. 10.1016/j.bbrc.2004.08.043.CrossRefPubMed Anyatonwu GI, Ehrlich BE: Calcium signaling and polycystin-2. Biochem Biophys Res Commun. 2004, 322 (4): 1364-1373. 10.1016/j.bbrc.2004.08.043.CrossRefPubMed
5.
go back to reference Gonzalez-Perrett S, Kim K, Ibarra C, Damiano AE, Zotta E, Batelli M, Harris PC, Reisin IL, Arnaout MA, Cantiello HF: Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2 + −permeable nonselective cation channel. Proc Natl Acad Sci U S A. 2001, 98 (3): 1182-1187. 10.1073/pnas.98.3.1182.CrossRefPubMed Gonzalez-Perrett S, Kim K, Ibarra C, Damiano AE, Zotta E, Batelli M, Harris PC, Reisin IL, Arnaout MA, Cantiello HF: Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2 + −permeable nonselective cation channel. Proc Natl Acad Sci U S A. 2001, 98 (3): 1182-1187. 10.1073/pnas.98.3.1182.CrossRefPubMed
6.
go back to reference Luo Y, Vassilev PM, Li X, Kawanabe Y, Zhou J: Native polycystin 2 functions as a plasma membrane Ca2 + −permeable cation channel in renal epithelia. Mol Cell Biol. 2003, 23 (7): 2600-2607. 10.1128/MCB.23.7.2600-2607.2003.CrossRefPubMedPubMedCentral Luo Y, Vassilev PM, Li X, Kawanabe Y, Zhou J: Native polycystin 2 functions as a plasma membrane Ca2 + −permeable cation channel in renal epithelia. Mol Cell Biol. 2003, 23 (7): 2600-2607. 10.1128/MCB.23.7.2600-2607.2003.CrossRefPubMedPubMedCentral
7.
go back to reference Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ: Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet. 2003, 33 (2): 129-137. 10.1038/ng1076.CrossRefPubMed Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ: Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet. 2003, 33 (2): 129-137. 10.1038/ng1076.CrossRefPubMed
8.
9.
go back to reference Uhlen P, Fritz N: Biochemistry of calcium oscillations. Biochem Biophys Res Commun. 2010, 396 (1): 28-32. 10.1016/j.bbrc.2010.02.117.CrossRefPubMed Uhlen P, Fritz N: Biochemistry of calcium oscillations. Biochem Biophys Res Commun. 2010, 396 (1): 28-32. 10.1016/j.bbrc.2010.02.117.CrossRefPubMed
10.
go back to reference Abdul-Majeed S, Nauli SM: Calcium-mediated mechanisms of cystic expansion. Biochim Biophys Acta. 1812, 10: 1281-1290. Abdul-Majeed S, Nauli SM: Calcium-mediated mechanisms of cystic expansion. Biochim Biophys Acta. 1812, 10: 1281-1290.
11.
go back to reference Uhlen P, Laestadius A, Jahnukainen T, Soderblom T, Backhed F, Celsi G, Brismar H, Normark S, Aperia A, Richter-Dahlfors A: Alpha-haemolysin of uropathogenic E. coli induces Ca2+ oscillations in renal epithelial cells. Nature. 2000, 405 (6787): 694-697. 10.1038/35015091.CrossRefPubMed Uhlen P, Laestadius A, Jahnukainen T, Soderblom T, Backhed F, Celsi G, Brismar H, Normark S, Aperia A, Richter-Dahlfors A: Alpha-haemolysin of uropathogenic E. coli induces Ca2+ oscillations in renal epithelial cells. Nature. 2000, 405 (6787): 694-697. 10.1038/35015091.CrossRefPubMed
12.
go back to reference Kaplan JH: Biochemistry of Na, K-ATPase. Annu Rev Biochem. 2002, 71: 511-535. 10.1146/annurev.biochem.71.102201.141218.CrossRefPubMed Kaplan JH: Biochemistry of Na, K-ATPase. Annu Rev Biochem. 2002, 71: 511-535. 10.1146/annurev.biochem.71.102201.141218.CrossRefPubMed
13.
go back to reference Cai Y, Maeda Y, Cedzich A, Torres VE, Wu G, Hayashi T, Mochizuki T, Park JH, Witzgall R, Somlo S: Identification and characterization of polycystin-2, the PKD2 gene product. J Biol Chem. 1999, 274 (40): 28557-28565. 10.1074/jbc.274.40.28557.CrossRefPubMed Cai Y, Maeda Y, Cedzich A, Torres VE, Wu G, Hayashi T, Mochizuki T, Park JH, Witzgall R, Somlo S: Identification and characterization of polycystin-2, the PKD2 gene product. J Biol Chem. 1999, 274 (40): 28557-28565. 10.1074/jbc.274.40.28557.CrossRefPubMed
14.
go back to reference Aizman O, Uhlen P, Lal M, Brismar H, Aperia A: Ouabain, a steroid hormone that signals with slow calcium oscillations. Proc Natl Acad Sci U S A. 2001, 98 (23): 13420-13424. 10.1073/pnas.221315298.CrossRefPubMedPubMedCentral Aizman O, Uhlen P, Lal M, Brismar H, Aperia A: Ouabain, a steroid hormone that signals with slow calcium oscillations. Proc Natl Acad Sci U S A. 2001, 98 (23): 13420-13424. 10.1073/pnas.221315298.CrossRefPubMedPubMedCentral
15.
go back to reference Miyakawa-Naito A, Uhlen P, Lal M, Aizman O, Mikoshiba K, Brismar H, Zelenin S, Aperia A: Cell signaling microdomain with Na,K-ATPase and inositol 1,4,5-trisphosphate receptor generates calcium oscillations. J Biol Chem. 2003, 278 (50): 50355-50361. 10.1074/jbc.M305378200.CrossRefPubMed Miyakawa-Naito A, Uhlen P, Lal M, Aizman O, Mikoshiba K, Brismar H, Zelenin S, Aperia A: Cell signaling microdomain with Na,K-ATPase and inositol 1,4,5-trisphosphate receptor generates calcium oscillations. J Biol Chem. 2003, 278 (50): 50355-50361. 10.1074/jbc.M305378200.CrossRefPubMed
16.
go back to reference Unwin RJ, Bailey MA, Burnstock G: Purinergic signaling along the renal tubule: the current state of play. News Physiol Sci. 2003, 18: 237-241.PubMed Unwin RJ, Bailey MA, Burnstock G: Purinergic signaling along the renal tubule: the current state of play. News Physiol Sci. 2003, 18: 237-241.PubMed
17.
go back to reference Stayner C, Zhou J: Polycystin channels and kidney disease. Trends Pharmacol Sci. 2001, 22 (11): 543-546. 10.1016/S0165-6147(00)01832-0.CrossRefPubMed Stayner C, Zhou J: Polycystin channels and kidney disease. Trends Pharmacol Sci. 2001, 22 (11): 543-546. 10.1016/S0165-6147(00)01832-0.CrossRefPubMed
18.
go back to reference Chen XZ, Segal Y, Basora N, Guo L, Peng JB, Babakhanlou H, Vassilev PM, Brown EM, Hediger MA, Zhou J: Transport function of the naturally occurring pathogenic polycystin-2 mutant, R742X. Biochem Biophys Res Commun. 2001, 282 (5): 1251-1256. 10.1006/bbrc.2001.4720.CrossRefPubMed Chen XZ, Segal Y, Basora N, Guo L, Peng JB, Babakhanlou H, Vassilev PM, Brown EM, Hediger MA, Zhou J: Transport function of the naturally occurring pathogenic polycystin-2 mutant, R742X. Biochem Biophys Res Commun. 2001, 282 (5): 1251-1256. 10.1006/bbrc.2001.4720.CrossRefPubMed
19.
go back to reference Reynolds DM, Hayashi T, Cai Y, Veldhuisen B, Watnick TJ, Lens XM, Mochizuki T, Qian F, Maeda Y, Li L: Aberrant splicing in the PKD2 gene as a cause of polycystic kidney disease. J Am Soc Nephrol. 1999, 10 (11): 2342-2351.PubMed Reynolds DM, Hayashi T, Cai Y, Veldhuisen B, Watnick TJ, Lens XM, Mochizuki T, Qian F, Maeda Y, Li L: Aberrant splicing in the PKD2 gene as a cause of polycystic kidney disease. J Am Soc Nephrol. 1999, 10 (11): 2342-2351.PubMed
20.
go back to reference Ong AC, Harris PC: Molecular pathogenesis of ADPKD: the polycystin complex gets complex. Kidney Int. 2005, 67 (4): 1234-1247. 10.1111/j.1523-1755.2005.00201.x.CrossRefPubMed Ong AC, Harris PC: Molecular pathogenesis of ADPKD: the polycystin complex gets complex. Kidney Int. 2005, 67 (4): 1234-1247. 10.1111/j.1523-1755.2005.00201.x.CrossRefPubMed
21.
go back to reference Newby LJ, Streets AJ, Zhao Y, Harris PC, Ward CJ, Ong AC: Identification, characterization, and localization of a novel kidney polycystin-1-polycystin-2 complex. J Biol Chem. 2002, 277 (23): 20763-20773. 10.1074/jbc.M107788200.CrossRefPubMed Newby LJ, Streets AJ, Zhao Y, Harris PC, Ward CJ, Ong AC: Identification, characterization, and localization of a novel kidney polycystin-1-polycystin-2 complex. J Biol Chem. 2002, 277 (23): 20763-20773. 10.1074/jbc.M107788200.CrossRefPubMed
22.
go back to reference Foggensteiner L, Bevan AP, Thomas R, Coleman N, Boulter C, Bradley J, Ibraghimov-Beskrovnaya O, Klinger K, Sandford R: Cellular and subcellular distribution of polycystin-2, the protein product of the PKD2 gene. J Am Soc Nephrol. 2000, 11 (5): 814-827.PubMed Foggensteiner L, Bevan AP, Thomas R, Coleman N, Boulter C, Bradley J, Ibraghimov-Beskrovnaya O, Klinger K, Sandford R: Cellular and subcellular distribution of polycystin-2, the protein product of the PKD2 gene. J Am Soc Nephrol. 2000, 11 (5): 814-827.PubMed
23.
go back to reference Obermuller N, Gallagher AR, Cai Y, Gassler N, Gretz N, Somlo S, Witzgall R: The rat pkd2 protein assumes distinct subcellular distributions in different organs. Am J Physiol. 1999, 277 (6 Pt 2): F914-F925.PubMed Obermuller N, Gallagher AR, Cai Y, Gassler N, Gretz N, Somlo S, Witzgall R: The rat pkd2 protein assumes distinct subcellular distributions in different organs. Am J Physiol. 1999, 277 (6 Pt 2): F914-F925.PubMed
24.
go back to reference Ong AC, Wagner B: Detection of proximal tubular motile cilia in a patient with renal sarcoidosis associated with hypercalcemia. Am J Kidney Dis. 2005, 45 (6): 1096-1099. 10.1053/j.ajkd.2005.02.019.CrossRefPubMed Ong AC, Wagner B: Detection of proximal tubular motile cilia in a patient with renal sarcoidosis associated with hypercalcemia. Am J Kidney Dis. 2005, 45 (6): 1096-1099. 10.1053/j.ajkd.2005.02.019.CrossRefPubMed
25.
go back to reference Scheffers MS, Le H, van der Bent P, Leonhard W, Prins F, Spruit L, Breuning MH, de Heer E, Peters DJ: Distinct subcellular expression of endogenous polycystin-2 in the plasma membrane and Golgi apparatus of MDCK cells. Hum Mol Genet. 2002, 11 (1): 59-67. 10.1093/hmg/11.1.59.CrossRefPubMed Scheffers MS, Le H, van der Bent P, Leonhard W, Prins F, Spruit L, Breuning MH, de Heer E, Peters DJ: Distinct subcellular expression of endogenous polycystin-2 in the plasma membrane and Golgi apparatus of MDCK cells. Hum Mol Genet. 2002, 11 (1): 59-67. 10.1093/hmg/11.1.59.CrossRefPubMed
26.
go back to reference Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB: Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Current biology: CB. 2002, 12 (11): R378-R380. 10.1016/S0960-9822(02)00877-1.CrossRefPubMed Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB: Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Current biology: CB. 2002, 12 (11): R378-R380. 10.1016/S0960-9822(02)00877-1.CrossRefPubMed
27.
go back to reference Yoder BK, Hou X, Guay-Woodford LM: The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol. 2002, 13 (10): 2508-2516. 10.1097/01.ASN.0000029587.47950.25.CrossRefPubMed Yoder BK, Hou X, Guay-Woodford LM: The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol. 2002, 13 (10): 2508-2516. 10.1097/01.ASN.0000029587.47950.25.CrossRefPubMed
28.
go back to reference Delmas P, Nauli SM, Li X, Coste B, Osorio N, Crest M, Brown DA, Zhou J: Gating of the polycystin ion channel signaling complex in neurons and kidney cells. FASEB J. 2004, 18 (6): 740-742.PubMed Delmas P, Nauli SM, Li X, Coste B, Osorio N, Crest M, Brown DA, Zhou J: Gating of the polycystin ion channel signaling complex in neurons and kidney cells. FASEB J. 2004, 18 (6): 740-742.PubMed
29.
go back to reference Petri ET, Celic A, Kennedy SD, Ehrlich BE, Boggon TJ, Hodsdon ME: Structure of the EF-hand domain of polycystin-2 suggests a mechanism for Ca2 + −dependent regulation of polycystin-2 channel activity. Proc Natl Acad Sci U S A. 2010, 107 (20): 9176-9181. 10.1073/pnas.0912295107.CrossRefPubMedPubMedCentral Petri ET, Celic A, Kennedy SD, Ehrlich BE, Boggon TJ, Hodsdon ME: Structure of the EF-hand domain of polycystin-2 suggests a mechanism for Ca2 + −dependent regulation of polycystin-2 channel activity. Proc Natl Acad Sci U S A. 2010, 107 (20): 9176-9181. 10.1073/pnas.0912295107.CrossRefPubMedPubMedCentral
30.
go back to reference Sammels E, Devogelaere B, Mekahli D, Bultynck G, Missiaen L, Parys JB, Cai Y, Somlo S, De Smedt H: Polycystin-2 activation by inositol 1,4,5-trisphosphate-induced Ca2+ release requires its direct association with the inositol 1,4,5-trisphosphate receptor in a signaling microdomain. J Biol Chem. 2010, 285 (24): 18794-18805. 10.1074/jbc.M109.090662.CrossRefPubMedPubMedCentral Sammels E, Devogelaere B, Mekahli D, Bultynck G, Missiaen L, Parys JB, Cai Y, Somlo S, De Smedt H: Polycystin-2 activation by inositol 1,4,5-trisphosphate-induced Ca2+ release requires its direct association with the inositol 1,4,5-trisphosphate receptor in a signaling microdomain. J Biol Chem. 2010, 285 (24): 18794-18805. 10.1074/jbc.M109.090662.CrossRefPubMedPubMedCentral
31.
go back to reference Vassilev PM, Guo L, Chen XZ, Segal Y, Peng JB, Basora N, Babakhanlou H, Cruger G, Kanazirska M, Ye C: Polycystin-2 is a novel cation channel implicated in defective intracellular Ca(2+) homeostasis in polycystic kidney disease. Biochem Biophys Res Commun. 2001, 282 (1): 341-350. 10.1006/bbrc.2001.4554.CrossRefPubMed Vassilev PM, Guo L, Chen XZ, Segal Y, Peng JB, Basora N, Babakhanlou H, Cruger G, Kanazirska M, Ye C: Polycystin-2 is a novel cation channel implicated in defective intracellular Ca(2+) homeostasis in polycystic kidney disease. Biochem Biophys Res Commun. 2001, 282 (1): 341-350. 10.1006/bbrc.2001.4554.CrossRefPubMed
32.
go back to reference Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L, Sukhatme VP, Guggino WB, Germino GG: Co-assembly of polycystin-1 and −2 produces unique cation-permeable currents. Nature. 2000, 408 (6815): 990-994. 10.1038/35050128.CrossRefPubMed Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L, Sukhatme VP, Guggino WB, Germino GG: Co-assembly of polycystin-1 and −2 produces unique cation-permeable currents. Nature. 2000, 408 (6815): 990-994. 10.1038/35050128.CrossRefPubMed
33.
go back to reference Streets AJ, Moon DJ, Kane ME, Obara T, Ong AC: Identification of an N-terminal glycogen synthase kinase 3 phosphorylation site which regulates the functional localization of polycystin-2 in vivo and in vitro. Hum Mol Genet. 2006, 15 (9): 1465-1473. 10.1093/hmg/ddl070.CrossRefPubMedPubMedCentral Streets AJ, Moon DJ, Kane ME, Obara T, Ong AC: Identification of an N-terminal glycogen synthase kinase 3 phosphorylation site which regulates the functional localization of polycystin-2 in vivo and in vitro. Hum Mol Genet. 2006, 15 (9): 1465-1473. 10.1093/hmg/ddl070.CrossRefPubMedPubMedCentral
34.
go back to reference Kottgen M, Benzing T, Simmen T, Tauber R, Buchholz B, Feliciangeli S, Huber TB, Schermer B, Kramer-Zucker A, Hopker K: Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J. 2005, 24 (4): 705-716. 10.1038/sj.emboj.7600566.CrossRefPubMedPubMedCentral Kottgen M, Benzing T, Simmen T, Tauber R, Buchholz B, Feliciangeli S, Huber TB, Schermer B, Kramer-Zucker A, Hopker K: Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J. 2005, 24 (4): 705-716. 10.1038/sj.emboj.7600566.CrossRefPubMedPubMedCentral
35.
go back to reference Streets AJ, Needham AJ, Gill SK, Ong AC: Protein kinase D-mediated phosphorylation of polycystin-2 (TRPP2) is essential for its effects on cell growth and calcium channel activity. Mol Biol Cell. 2010, 21 (22): 3853-3865. 10.1091/mbc.E10-04-0377.CrossRefPubMedPubMedCentral Streets AJ, Needham AJ, Gill SK, Ong AC: Protein kinase D-mediated phosphorylation of polycystin-2 (TRPP2) is essential for its effects on cell growth and calcium channel activity. Mol Biol Cell. 2010, 21 (22): 3853-3865. 10.1091/mbc.E10-04-0377.CrossRefPubMedPubMedCentral
36.
go back to reference Sohara E, Luo Y, Zhang J, Manning DK, Beier DR, Zhou J: Nek8 regulates the expression and localization of polycystin-1 and polycystin-2. J Am Soc Nephrol. 2008, 19 (3): 469-476. 10.1681/ASN.2006090985.CrossRefPubMedPubMedCentral Sohara E, Luo Y, Zhang J, Manning DK, Beier DR, Zhou J: Nek8 regulates the expression and localization of polycystin-1 and polycystin-2. J Am Soc Nephrol. 2008, 19 (3): 469-476. 10.1681/ASN.2006090985.CrossRefPubMedPubMedCentral
37.
go back to reference Praetorius HA, Spring KR: Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol. 2001, 184 (1): 71-79. 10.1007/s00232-001-0075-4.CrossRefPubMed Praetorius HA, Spring KR: Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol. 2001, 184 (1): 71-79. 10.1007/s00232-001-0075-4.CrossRefPubMed
38.
go back to reference Praetorius HA, Leipziger J: Released nucleotides amplify the cilium-dependent, flow-induced [Ca2+]i response in MDCK cells. Acta Physiol (Oxf). 2009, 197 (3): 241-251. 10.1111/j.1748-1716.2009.02002.x.CrossRef Praetorius HA, Leipziger J: Released nucleotides amplify the cilium-dependent, flow-induced [Ca2+]i response in MDCK cells. Acta Physiol (Oxf). 2009, 197 (3): 241-251. 10.1111/j.1748-1716.2009.02002.x.CrossRef
Metadata
Title
Intracellular calcium release modulates polycystin-2 trafficking
Authors
Ayako Miyakawa
Cristián Ibarra
Seth Malmersjö
Anita Aperia
Peter Wiklund
Per Uhlén
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Nephrology / Issue 1/2013
Electronic ISSN: 1471-2369
DOI
https://doi.org/10.1186/1471-2369-14-34

Other articles of this Issue 1/2013

BMC Nephrology 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.