Skip to main content
Top
Published in: Sports Medicine 10/2018

01-10-2018 | Review Article

Intra- and Inter-Muscular Variations in Hamstring Architecture and Mechanics and Their Implications for Injury: A Narrative Review

Author: Eleftherios Kellis

Published in: Sports Medicine | Issue 10/2018

Login to get access

Abstract

Understanding the architecture, anatomy, and biomechanics of the hamstrings may assist in explaining the mechanisms that affect and improve their function. The aim of this review is to specifically examine intra- and inter-muscular variations in architecture and mechanical properties of the hamstrings. Of the hamstrings, the long head of the biceps femoris shows the shortest and more pennated fibers. The semimembranosus has a similar muscle architecture with a long head of the biceps femoris but it has a different proximal attachment as well as a different moment arm compared with the long head of the biceps femoris. For the same joint motion, the semitendinosus displays less relative strain than the other hamstrings probably owing to a greater length, longer fascicles and, possibly, a longer tendon. Intra-muscular variations in architecture are documented but their implications are currently unclear. Proximally, the long head of the biceps femoris has shorter and more pennated fibers coupled with a narrower aponeurosis than distally, while the semitendinosus is the only muscle that entails a tendinous inscription. In conclusion, some of the identified intra- and inter-muscular variations in architecture may help explain why some muscles sustain injuries more than others. In the same line, exercises designed for the hamstrings may not provide the same stimulus for all components of this muscle group. Future research could examine whether intervention strategies that target specific muscles or specific areas of the hamstrings may offer additional benefits for injury prevention or rehabilitation of their function.
Literature
1.
go back to reference Schache AG, Dorn TW, Blanch PD, Brown NA, Pandy MG. Mechanics of the human hamstring muscles during sprinting. Med Sci Sport Exerc. 2012;44:647–58.CrossRef Schache AG, Dorn TW, Blanch PD, Brown NA, Pandy MG. Mechanics of the human hamstring muscles during sprinting. Med Sci Sport Exerc. 2012;44:647–58.CrossRef
2.
go back to reference Opar DA, Williams MD, Shield AJ. Hamstring strain injuries: factors that lead to injury and re-injury. Sports Med. 2012;42:209–26.PubMedCrossRef Opar DA, Williams MD, Shield AJ. Hamstring strain injuries: factors that lead to injury and re-injury. Sports Med. 2012;42:209–26.PubMedCrossRef
3.
go back to reference Kellis E. Quantification of quadriceps and hamstring antagonist activity. Sports Med. 1998;25:37–62.PubMedCrossRef Kellis E. Quantification of quadriceps and hamstring antagonist activity. Sports Med. 1998;25:37–62.PubMedCrossRef
4.
go back to reference Askling CM, Heiderscheit BC. Acute hamstring muscle injury: types, rehabilitation, and return to sports. In: Doral M, Karlsson J, editors. Sports injuries: prevention, diagnosis, treatment and rehabilitation. 2nd ed. Berlin, Heidelberg: Springer; 2015. p. 2137–47.CrossRef Askling CM, Heiderscheit BC. Acute hamstring muscle injury: types, rehabilitation, and return to sports. In: Doral M, Karlsson J, editors. Sports injuries: prevention, diagnosis, treatment and rehabilitation. 2nd ed. Berlin, Heidelberg: Springer; 2015. p. 2137–47.CrossRef
5.
go back to reference Lieber RL, Friden J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 2000;23:1647–66.PubMedCrossRef Lieber RL, Friden J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 2000;23:1647–66.PubMedCrossRef
6.
go back to reference Thelen DG, Chumanov ES, Sherry MA, Heiderscheit BC. Neuromusculoskeletal models provide insights into the mechanisms and rehabilitation of hamstring strains. Exerc Sport Sci Rev. 2006;34:135–41.PubMedCrossRef Thelen DG, Chumanov ES, Sherry MA, Heiderscheit BC. Neuromusculoskeletal models provide insights into the mechanisms and rehabilitation of hamstring strains. Exerc Sport Sci Rev. 2006;34:135–41.PubMedCrossRef
7.
go back to reference Delp SL, Zajac FE. Force- and moment-generating capacity of lower-extremity muscles before and after tendon lengthening. Clin Orthop Relat Res. 1992;284:247–59. Delp SL, Zajac FE. Force- and moment-generating capacity of lower-extremity muscles before and after tendon lengthening. Clin Orthop Relat Res. 1992;284:247–59.
8.
go back to reference Ward SR, Eng CM, Smallwood LH, Lieber RL. Are current measurements of lower extremity muscle architecture accurate? Clin Orthop Relat Res. 2009;467:1074–82.PubMedCrossRef Ward SR, Eng CM, Smallwood LH, Lieber RL. Are current measurements of lower extremity muscle architecture accurate? Clin Orthop Relat Res. 2009;467:1074–82.PubMedCrossRef
9.
go back to reference Wickiewicz TJ, Roy RR, Powell PL, Edgerton VR. Muscle architecture of the human lower limb. Clin Orthop Relat Res. 1983;179:317–25.CrossRef Wickiewicz TJ, Roy RR, Powell PL, Edgerton VR. Muscle architecture of the human lower limb. Clin Orthop Relat Res. 1983;179:317–25.CrossRef
10.
go back to reference Friederich JA, Brand RA. Muscle fiber architecture in the human lower limb. J Biomech. 1990;23:91–5.PubMedCrossRef Friederich JA, Brand RA. Muscle fiber architecture in the human lower limb. J Biomech. 1990;23:91–5.PubMedCrossRef
11.
go back to reference Garrett WE, Califf JC, Bassett FH. Histochemical correlates of hamstring injuries. Am J Sports Med. 1984;12:98–103.PubMedCrossRef Garrett WE, Califf JC, Bassett FH. Histochemical correlates of hamstring injuries. Am J Sports Med. 1984;12:98–103.PubMedCrossRef
12.
go back to reference Evangelidis PE, Massey GJ, Ferguson RA, Wheeler PC, Pain MTG, Folland JP. The functional significance of hamstrings composition: is it really a “fast” muscle group? Scand J Med Sci Sports. 2017;27:1181–9.PubMedCrossRef Evangelidis PE, Massey GJ, Ferguson RA, Wheeler PC, Pain MTG, Folland JP. The functional significance of hamstrings composition: is it really a “fast” muscle group? Scand J Med Sci Sports. 2017;27:1181–9.PubMedCrossRef
13.
go back to reference Chleboun GS, France AR, Crill MT, Braddock HK, Howell JN. In vivo measurement of fascicle length and pennation angle of the human biceps femoris muscle. Cells Tissues Organs. 2001;169:401–9.PubMedCrossRef Chleboun GS, France AR, Crill MT, Braddock HK, Howell JN. In vivo measurement of fascicle length and pennation angle of the human biceps femoris muscle. Cells Tissues Organs. 2001;169:401–9.PubMedCrossRef
14.
go back to reference Woodley SJ, Mercer SR. Hamstring muscles: architecture and innervation. Cells Tissues Organs. 2005;179:125–41.PubMedCrossRef Woodley SJ, Mercer SR. Hamstring muscles: architecture and innervation. Cells Tissues Organs. 2005;179:125–41.PubMedCrossRef
15.
go back to reference Kellis E, Galanis N, Natsis K, Kapetanos G. Validity of architectural properties of the hamstring muscles: correlation of ultrasound findings with cadaveric dissection. J Biomech. 2009;42:2549–54.PubMedCrossRef Kellis E, Galanis N, Natsis K, Kapetanos G. Validity of architectural properties of the hamstring muscles: correlation of ultrasound findings with cadaveric dissection. J Biomech. 2009;42:2549–54.PubMedCrossRef
16.
go back to reference Kellis E, Galanis N, Natsis K, Kapetanos G. Muscle architecture variations along the human semitendinosus and biceps femoris (long head) length. J Electromyogr Kinesiol. 2010;20:1237–43.PubMedCrossRef Kellis E, Galanis N, Natsis K, Kapetanos G. Muscle architecture variations along the human semitendinosus and biceps femoris (long head) length. J Electromyogr Kinesiol. 2010;20:1237–43.PubMedCrossRef
17.
go back to reference Kellis E, Galanis N, Kapetanos G, Natsis K. Architectural differences between the hamstring muscles. J Electromyogr Kinesiol. 2012;22:520–6.PubMedCrossRef Kellis E, Galanis N, Kapetanos G, Natsis K. Architectural differences between the hamstring muscles. J Electromyogr Kinesiol. 2012;22:520–6.PubMedCrossRef
18.
go back to reference Makihara Y, Nishino A, Fukubayashi T, Kanamori A. Decrease of knee flexion torque in patients with ACL reconstruction: combined analysis of the architecture and function of the knee flexor muscles. Knee Surg Sports Traumatol Arthrosc. 2006;14:310–7.PubMedCrossRef Makihara Y, Nishino A, Fukubayashi T, Kanamori A. Decrease of knee flexion torque in patients with ACL reconstruction: combined analysis of the architecture and function of the knee flexor muscles. Knee Surg Sports Traumatol Arthrosc. 2006;14:310–7.PubMedCrossRef
19.
go back to reference Butterfield TA. Eccentric exercise in vivo: strain-induced muscle damage and adaptation in a stable system. Exerc Sport Sci Rev. 2010;38:51–60.PubMedCrossRef Butterfield TA. Eccentric exercise in vivo: strain-induced muscle damage and adaptation in a stable system. Exerc Sport Sci Rev. 2010;38:51–60.PubMedCrossRef
20.
go back to reference Arya S, Kulig K. Tendinopathy alters mechanical and material properties of the Achilles tendon. J Appl Physiol. 2010;108:670–5.PubMedCrossRef Arya S, Kulig K. Tendinopathy alters mechanical and material properties of the Achilles tendon. J Appl Physiol. 2010;108:670–5.PubMedCrossRef
21.
go back to reference Griffiths RI. Shortening of muscle fibres during stretch of the active cat medial gastrocnemius muscle: the role of tendon compliance. J Physiol. 1991;436:219–36.PubMedPubMedCentralCrossRef Griffiths RI. Shortening of muscle fibres during stretch of the active cat medial gastrocnemius muscle: the role of tendon compliance. J Physiol. 1991;436:219–36.PubMedPubMedCentralCrossRef
22.
go back to reference Kellis E, Karagiannidis E, Patsika G. Patellar tendon and hamstring moment-arms and cross-sectional area in patients with anterior cruciate ligament reconstruction and controls. Comput Methods Biomech Biomed Eng. 2015;18:1083–9.CrossRef Kellis E, Karagiannidis E, Patsika G. Patellar tendon and hamstring moment-arms and cross-sectional area in patients with anterior cruciate ligament reconstruction and controls. Comput Methods Biomech Biomed Eng. 2015;18:1083–9.CrossRef
23.
go back to reference van der Made AD, Wieldraaijer T, Kerkhoffs GM, Kleipool RP, Engebretsen L, van Dijk CN, et al. The hamstring muscle complex. Knee Surg Sports Traumatol Arthrosc. 2015;23:2115–22.PubMedCrossRef van der Made AD, Wieldraaijer T, Kerkhoffs GM, Kleipool RP, Engebretsen L, van Dijk CN, et al. The hamstring muscle complex. Knee Surg Sports Traumatol Arthrosc. 2015;23:2115–22.PubMedCrossRef
24.
go back to reference Sato K, Nimura A, Yamaguchi K, Akita K. Anatomical study of the proximal origin of hamstring muscles. J Orthop Sci. 2012;17:614–8.PubMedCrossRef Sato K, Nimura A, Yamaguchi K, Akita K. Anatomical study of the proximal origin of hamstring muscles. J Orthop Sci. 2012;17:614–8.PubMedCrossRef
25.
go back to reference Fiorentino NM, Blemker SS. Musculotendon variability influences tissue strains experienced by the biceps femoris long head muscle during high-speed running. J Biomech. 2014;47:3325–33.PubMedPubMedCentralCrossRef Fiorentino NM, Blemker SS. Musculotendon variability influences tissue strains experienced by the biceps femoris long head muscle during high-speed running. J Biomech. 2014;47:3325–33.PubMedPubMedCentralCrossRef
26.
go back to reference Reina N, Abbo O, Gomez-Brouchet A, Chiron P, Moscovici J, Laffosse JM. Anatomy of the bands of the hamstring tendon: how can we improve harvest quality? Knee. 2013;20:90–5.PubMedCrossRef Reina N, Abbo O, Gomez-Brouchet A, Chiron P, Moscovici J, Laffosse JM. Anatomy of the bands of the hamstring tendon: how can we improve harvest quality? Knee. 2013;20:90–5.PubMedCrossRef
27.
go back to reference Beltran L, Ghazikhanian V, Padron M, Beltran J. The proximal hamstring muscle-tendon-bone unit: a review of the normal anatomy, biomechanics, and pathophysiology. Eur J Radiol. 2012;81:3772–9.PubMedCrossRef Beltran L, Ghazikhanian V, Padron M, Beltran J. The proximal hamstring muscle-tendon-bone unit: a review of the normal anatomy, biomechanics, and pathophysiology. Eur J Radiol. 2012;81:3772–9.PubMedCrossRef
28.
go back to reference LaPrade RF, Morgan PM, Wentorf FA, Johansen S, Engebretsen L, et al. The anatomy of the posterior aspect of the knee: an anatomic study. J Bone Joint Surg Am. 2007;89:758–64.PubMed LaPrade RF, Morgan PM, Wentorf FA, Johansen S, Engebretsen L, et al. The anatomy of the posterior aspect of the knee: an anatomic study. J Bone Joint Surg Am. 2007;89:758–64.PubMed
29.
go back to reference Koulouris G, Connell D. Hamstring muscle complex: an imaging review. Radiographics. 2005;25:571–86.PubMedCrossRef Koulouris G, Connell D. Hamstring muscle complex: an imaging review. Radiographics. 2005;25:571–86.PubMedCrossRef
30.
go back to reference van der Krogt MM, Doorenbosch CA, Harlaar J. Validation of hamstrings musculoskeletal modeling by calculating peak hamstrings length at different hip angles. J Biomech. 2008;41:1022–8.PubMedCrossRef van der Krogt MM, Doorenbosch CA, Harlaar J. Validation of hamstrings musculoskeletal modeling by calculating peak hamstrings length at different hip angles. J Biomech. 2008;41:1022–8.PubMedCrossRef
31.
go back to reference Kumazaki T, Ehara Y, Sakai T. Anatomy and physiology of hamstring injury. Int J Sport Med. 2012;33:950–4.CrossRef Kumazaki T, Ehara Y, Sakai T. Anatomy and physiology of hamstring injury. Int J Sport Med. 2012;33:950–4.CrossRef
32.
go back to reference Magnusson SP, Aagaard P, Simonsen EB, Bojsen-Moller E. Passive tensile stress and energy of the human hamstring muscles in vivo. Scand J Med Sci Sports. 2000;10:351–9.PubMedCrossRef Magnusson SP, Aagaard P, Simonsen EB, Bojsen-Moller E. Passive tensile stress and energy of the human hamstring muscles in vivo. Scand J Med Sci Sports. 2000;10:351–9.PubMedCrossRef
33.
go back to reference Visser JJ, Hoogkamer JE, Bobbert MF, Huijing PA, Visser LJ, Hoogkamer JE, et al. Length and moment arm of human leg muscles as a function of knee and hip-joint angles. Eur J Appl Physiol Occup Physiol. 1990;61:453–60.PubMedCrossRef Visser JJ, Hoogkamer JE, Bobbert MF, Huijing PA, Visser LJ, Hoogkamer JE, et al. Length and moment arm of human leg muscles as a function of knee and hip-joint angles. Eur J Appl Physiol Occup Physiol. 1990;61:453–60.PubMedCrossRef
34.
go back to reference Kellis E. Biceps femoris fascicle length during passive stretching. J Electromyogr Kinesiol. 2018;38:119–25.PubMedCrossRef Kellis E. Biceps femoris fascicle length during passive stretching. J Electromyogr Kinesiol. 2018;38:119–25.PubMedCrossRef
35.
go back to reference van Wingerden JP, Vleeming A, Snijders CJ, Stoeckart R. A functional-anatomical approach to the spine-pelvis mechanism: interaction between the biceps femoris muscle and the sacrotuberous ligament. Eur Spin J. 1993;2:140–4.CrossRef van Wingerden JP, Vleeming A, Snijders CJ, Stoeckart R. A functional-anatomical approach to the spine-pelvis mechanism: interaction between the biceps femoris muscle and the sacrotuberous ligament. Eur Spin J. 1993;2:140–4.CrossRef
36.
go back to reference Hennessy L, Watson WS. Flexibility and posture assessment in relation to hamstring injury. Br J Sports Med. 1993;27:243–6.CrossRef Hennessy L, Watson WS. Flexibility and posture assessment in relation to hamstring injury. Br J Sports Med. 1993;27:243–6.CrossRef
37.
go back to reference Franz JR, Paylo KW, Dicharry J, Riley PO, Kerrigan DC. Changes in the coordination of hip and pelvis kinematics with mode of locomotion. Gait Posture. 2009;29:494–8.PubMedCrossRef Franz JR, Paylo KW, Dicharry J, Riley PO, Kerrigan DC. Changes in the coordination of hip and pelvis kinematics with mode of locomotion. Gait Posture. 2009;29:494–8.PubMedCrossRef
38.
go back to reference Thelen DG, Lenz AL, Francis C, Lenhart RL, Hernández A. Empirical assessment of dynamic hamstring function during human walking. J Biomech. 2013;46:1255–61.PubMedPubMedCentralCrossRef Thelen DG, Lenz AL, Francis C, Lenhart RL, Hernández A. Empirical assessment of dynamic hamstring function during human walking. J Biomech. 2013;46:1255–61.PubMedPubMedCentralCrossRef
39.
go back to reference Brughelli M, Cronin J, Mendiguchia J, Kinsella D, Nosaka K. Contralateral leg deficits in kinetic and kinematic variables during running in Australian rules football players with previous hamstring injuries. J Strength Cond Res. 2010;24:2539–44.PubMedCrossRef Brughelli M, Cronin J, Mendiguchia J, Kinsella D, Nosaka K. Contralateral leg deficits in kinetic and kinematic variables during running in Australian rules football players with previous hamstring injuries. J Strength Cond Res. 2010;24:2539–44.PubMedCrossRef
40.
go back to reference Nakamura M, Hasegawa S, Umegaki H, Nishishita S, Kobayashi T, Fujita K, et al. The difference in passive tension applied to the muscles composing the hamstrings: comparison among muscles using ultrasound shear wave elastography. Man Ther. 2016;24:1–6.PubMedCrossRef Nakamura M, Hasegawa S, Umegaki H, Nishishita S, Kobayashi T, Fujita K, et al. The difference in passive tension applied to the muscles composing the hamstrings: comparison among muscles using ultrasound shear wave elastography. Man Ther. 2016;24:1–6.PubMedCrossRef
41.
go back to reference Umegaki H, Ikezoe T, Nakamura M, Nishishita S, Kobayashi T, Fujita K, et al. The effect of hip rotation on shear elastic modulus of the medial and lateral hamstrings during stretching. Man Ther. 2015;20:134–7.PubMedCrossRef Umegaki H, Ikezoe T, Nakamura M, Nishishita S, Kobayashi T, Fujita K, et al. The effect of hip rotation on shear elastic modulus of the medial and lateral hamstrings during stretching. Man Ther. 2015;20:134–7.PubMedCrossRef
42.
43.
go back to reference Miyamoto N, Hirata K, Kanehisa H. Effects of hamstring stretching on passive muscle stiffness vary between hip flexion and knee extension maneuvers. Scand J Med Sci Sports. 2017;27:99–106.PubMedCrossRef Miyamoto N, Hirata K, Kanehisa H. Effects of hamstring stretching on passive muscle stiffness vary between hip flexion and knee extension maneuvers. Scand J Med Sci Sports. 2017;27:99–106.PubMedCrossRef
44.
go back to reference Zajac FE. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng. 1989;17:359–411.PubMed Zajac FE. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng. 1989;17:359–411.PubMed
45.
go back to reference Diong J, Herbert RD, Kwah LK, Clarke JL, Harvey LA. Mechanisms of increased passive compliance of hamstring muscle-tendon units after spinal cord injury. Clin Biomech. 2012;27:893–8.CrossRef Diong J, Herbert RD, Kwah LK, Clarke JL, Harvey LA. Mechanisms of increased passive compliance of hamstring muscle-tendon units after spinal cord injury. Clin Biomech. 2012;27:893–8.CrossRef
46.
go back to reference Herbert RD, Moseley AM, Butler JE, Gandevia SC. Change in length of relaxed muscle fascicles and tendons with knee and ankle movement in humans. J Physiol. 2002;539:637–45.PubMedPubMedCentralCrossRef Herbert RD, Moseley AM, Butler JE, Gandevia SC. Change in length of relaxed muscle fascicles and tendons with knee and ankle movement in humans. J Physiol. 2002;539:637–45.PubMedPubMedCentralCrossRef
47.
go back to reference Whitehead NP, Gregory JE, Morgan DL, Proske U. Passive mechanical properties of the medial gastrocnemius muscle of the cat. J Physiol. 2001;536:893–903.PubMedPubMedCentralCrossRef Whitehead NP, Gregory JE, Morgan DL, Proske U. Passive mechanical properties of the medial gastrocnemius muscle of the cat. J Physiol. 2001;536:893–903.PubMedPubMedCentralCrossRef
48.
go back to reference Magnusson SP, Hansen P, Aagaard P, Brond J, Dyhre-Poulsen P, Bojsen-Moller J, et al. Differential strain patterns of the human gastrocnemius aponeurosis and free tendon, in vivo. Acta Physiol Scand. 2003;177:185–95.PubMedCrossRef Magnusson SP, Hansen P, Aagaard P, Brond J, Dyhre-Poulsen P, Bojsen-Moller J, et al. Differential strain patterns of the human gastrocnemius aponeurosis and free tendon, in vivo. Acta Physiol Scand. 2003;177:185–95.PubMedCrossRef
49.
go back to reference Muraoka T, Muramatsu T, Takeshita D, Kawakami Y, Fukunaga T. Length change of human gastrocnemius aponeurosis and tendon during passive joint motion. Cells Tissues Organs. 2002;171:260–8.PubMedCrossRef Muraoka T, Muramatsu T, Takeshita D, Kawakami Y, Fukunaga T. Length change of human gastrocnemius aponeurosis and tendon during passive joint motion. Cells Tissues Organs. 2002;171:260–8.PubMedCrossRef
50.
go back to reference Kellis E. Biceps femoris and semitendinosus tendon/aponeurosis strain during passive and active (isometric) conditions. J Electromyogr Kinesiol. 2016;26:111–9.PubMedCrossRef Kellis E. Biceps femoris and semitendinosus tendon/aponeurosis strain during passive and active (isometric) conditions. J Electromyogr Kinesiol. 2016;26:111–9.PubMedCrossRef
51.
go back to reference Hoang P, Saboisky JP, Gandevia SC, Herbert RD. Passive mechanical properties of gastrocnemius in people with multiple sclerosis. Clin Biomech. 2009;24:291–8.CrossRef Hoang P, Saboisky JP, Gandevia SC, Herbert RD. Passive mechanical properties of gastrocnemius in people with multiple sclerosis. Clin Biomech. 2009;24:291–8.CrossRef
52.
go back to reference Silder A, Whittington B, Heiderscheit B, Thelen DG. Identification of passive elastic joint moment-angle relationships in the lower extremity. J Biomech. 2007;40:2628–35.PubMedPubMedCentralCrossRef Silder A, Whittington B, Heiderscheit B, Thelen DG. Identification of passive elastic joint moment-angle relationships in the lower extremity. J Biomech. 2007;40:2628–35.PubMedPubMedCentralCrossRef
53.
go back to reference Fiorentino NM, Epstein FH, Blemker SS. Activation and aponeurosis morphology affect in vivo muscle tissue strains near the myotendinous junction. J Biomech. 2012;45:647–52.PubMedPubMedCentralCrossRef Fiorentino NM, Epstein FH, Blemker SS. Activation and aponeurosis morphology affect in vivo muscle tissue strains near the myotendinous junction. J Biomech. 2012;45:647–52.PubMedPubMedCentralCrossRef
54.
go back to reference Bennett HJ, Rider PM, Domire ZJ, DeVita P, Kulas AS. Heterogeneous fascicle behavior within the biceps femoris long head at different muscle activation levels. J Biomech. 2014;47:3050–5.PubMedCrossRef Bennett HJ, Rider PM, Domire ZJ, DeVita P, Kulas AS. Heterogeneous fascicle behavior within the biceps femoris long head at different muscle activation levels. J Biomech. 2014;47:3050–5.PubMedCrossRef
55.
go back to reference Arnold AS, Salinas S, Asakawa DJ, Delp SL. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput Aided Surg. 2000;5:108–19.PubMedCrossRef Arnold AS, Salinas S, Asakawa DJ, Delp SL. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput Aided Surg. 2000;5:108–19.PubMedCrossRef
56.
go back to reference English AW, Wolf SL, Segal RL. Compartmentalization of muscles and their motor nuclei: the partitioning hypothesis. Phys Ther. 1993;73:857–67.PubMedCrossRef English AW, Wolf SL, Segal RL. Compartmentalization of muscles and their motor nuclei: the partitioning hypothesis. Phys Ther. 1993;73:857–67.PubMedCrossRef
57.
go back to reference Peters SE. Structure and function of skeletal muscle. Am Zool. 1989;29:221–34.CrossRef Peters SE. Structure and function of skeletal muscle. Am Zool. 1989;29:221–34.CrossRef
58.
go back to reference Richmond FJR. Elements of style in neuromuscular architecture. Am Zool. 1998;38:S729–42.CrossRef Richmond FJR. Elements of style in neuromuscular architecture. Am Zool. 1998;38:S729–42.CrossRef
59.
go back to reference Chu LW, Pei CK, Chiu A, Liu K, Chu MM, Wong S, et al. Risk factors for falls in hospitalized older medical patients. J Gerontol A Biol Sci Med Sci. 1999;54:M38–43.PubMedCrossRef Chu LW, Pei CK, Chiu A, Liu K, Chu MM, Wong S, et al. Risk factors for falls in hospitalized older medical patients. J Gerontol A Biol Sci Med Sci. 1999;54:M38–43.PubMedCrossRef
60.
go back to reference Murphy K, Roy RR, Bodine SC. Recruitment of the proximal and distal portions of the cat semitendinosus during running and jumping. Med Sci Sport Exerc. 1981;13:127–8.CrossRef Murphy K, Roy RR, Bodine SC. Recruitment of the proximal and distal portions of the cat semitendinosus during running and jumping. Med Sci Sport Exerc. 1981;13:127–8.CrossRef
61.
go back to reference Bodine SC, Roy RR, Meadows DA, Zernicke RF, Sacks RD, Fournier M, et al. Architectural, histochemical, and contractile characteristics of a unique biarticular muscle: the cat semitendinosus. J Neurophysiol. 1982;48:192–201.PubMedCrossRef Bodine SC, Roy RR, Meadows DA, Zernicke RF, Sacks RD, Fournier M, et al. Architectural, histochemical, and contractile characteristics of a unique biarticular muscle: the cat semitendinosus. J Neurophysiol. 1982;48:192–201.PubMedCrossRef
62.
go back to reference Chanaud CM, Macpherson JM. Functionally complex muscles of the cat hindlimb. III. Differential activation within biceps femoris during postural perturbations. Exp Brain Res. 1991;85:271–80.PubMedCrossRef Chanaud CM, Macpherson JM. Functionally complex muscles of the cat hindlimb. III. Differential activation within biceps femoris during postural perturbations. Exp Brain Res. 1991;85:271–80.PubMedCrossRef
63.
go back to reference Bardeen CR. Development and variation of the nerves and the musculature of the inferior extremity and of neighboring regions of the trunk in man. Am J Anat. 1906;6:259–390.CrossRef Bardeen CR. Development and variation of the nerves and the musculature of the inferior extremity and of neighboring regions of the trunk in man. Am J Anat. 1906;6:259–390.CrossRef
64.
go back to reference Barrett B. The length and mode of termination of individual muscle fibres in the human sartorius and posterior femoral muscles. Acta Anat. 1962;48:242–57.PubMedCrossRef Barrett B. The length and mode of termination of individual muscle fibres in the human sartorius and posterior femoral muscles. Acta Anat. 1962;48:242–57.PubMedCrossRef
65.
go back to reference Kellis E, Galanis N, Natsis K, Kapetanos G. In vivo and in vitro examination of the tendinous inscription of the human semitendinosus muscle. Cells Tissues Organs. 2012;195:365–76.PubMedCrossRef Kellis E, Galanis N, Natsis K, Kapetanos G. In vivo and in vitro examination of the tendinous inscription of the human semitendinosus muscle. Cells Tissues Organs. 2012;195:365–76.PubMedCrossRef
66.
go back to reference Lee TC, O’Driscoll KJ, McGettigan P, Moraes D, Ramphall S, O’Brien M. The site of the tendinous interruption in semitendinosus in man. J Anat. 1988;157:229–31.PubMedPubMedCentral Lee TC, O’Driscoll KJ, McGettigan P, Moraes D, Ramphall S, O’Brien M. The site of the tendinous interruption in semitendinosus in man. J Anat. 1988;157:229–31.PubMedPubMedCentral
67.
go back to reference Markee JE, Logue JT Jr, Williams M, Stanton WB, Wrenn RN, Walker LB. Two-joint muscles of the thigh. J Bone Joint Surg Am. 1955;37-A1:125–42.CrossRef Markee JE, Logue JT Jr, Williams M, Stanton WB, Wrenn RN, Walker LB. Two-joint muscles of the thigh. J Bone Joint Surg Am. 1955;37-A1:125–42.CrossRef
68.
go back to reference Kellis E, Balidou A. In vivo examination of the morphology of the tendinous inscription of the human semitendinosus muscle: gender and joint position effects. J Morphol. 2014;275:57–64.PubMedCrossRef Kellis E, Balidou A. In vivo examination of the morphology of the tendinous inscription of the human semitendinosus muscle: gender and joint position effects. J Morphol. 2014;275:57–64.PubMedCrossRef
69.
go back to reference Haberfehlner H, Maas H, Harlaar J, Becher JG, Buizer AI, Jaspers RT. Freehand three-dimensional ultrasound to assess semitendinosus muscle morphology. J Anat. 2016;229:591–9.PubMedPubMedCentralCrossRef Haberfehlner H, Maas H, Harlaar J, Becher JG, Buizer AI, Jaspers RT. Freehand three-dimensional ultrasound to assess semitendinosus muscle morphology. J Anat. 2016;229:591–9.PubMedPubMedCentralCrossRef
70.
go back to reference Monti RJ, Roy RR, Reggie Edgerton V. Role of motor unit structure in defining function. Muscle Nerve. 2001;24:848–66.PubMedCrossRef Monti RJ, Roy RR, Reggie Edgerton V. Role of motor unit structure in defining function. Muscle Nerve. 2001;24:848–66.PubMedCrossRef
71.
go back to reference Kubota J, Ono T, Araki M, Torii S, Okuwaki T, Fukubayashi T. Non-uniform changes in magnetic resonance measurements of the semitendinosus muscle following intensive eccentric exercise. Eur J Appl Physiol. 2007;101:713–20.PubMedCrossRef Kubota J, Ono T, Araki M, Torii S, Okuwaki T, Fukubayashi T. Non-uniform changes in magnetic resonance measurements of the semitendinosus muscle following intensive eccentric exercise. Eur J Appl Physiol. 2007;101:713–20.PubMedCrossRef
72.
go back to reference English AW, Weeks OI. An anatomical and functional analysis of cat biceps femoris and semitendinosus muscles. J Morphol. 1987;191:161–75.PubMedCrossRef English AW, Weeks OI. An anatomical and functional analysis of cat biceps femoris and semitendinosus muscles. J Morphol. 1987;191:161–75.PubMedCrossRef
74.
go back to reference Kellis E, Patsika G, Karagiannidis E. Strain and elongation of the human semitendinosus muscle-tendon unit. J Electromyogr Kinesiol. 2013;23:1384–90.PubMedCrossRef Kellis E, Patsika G, Karagiannidis E. Strain and elongation of the human semitendinosus muscle-tendon unit. J Electromyogr Kinesiol. 2013;23:1384–90.PubMedCrossRef
75.
go back to reference Huijing PA. Epimuscular myofascial force transmission: a historical review and implications for new research. International Society of Biomechanics Muybridge Award Lecture, Taipei, 2007. J Biomech. 2009;42:9–21.PubMedCrossRef Huijing PA. Epimuscular myofascial force transmission: a historical review and implications for new research. International Society of Biomechanics Muybridge Award Lecture, Taipei, 2007. J Biomech. 2009;42:9–21.PubMedCrossRef
76.
go back to reference Ahn AN, Monti RJ, Biewener AA. In vivo and in vitro heterogeneity of segment length changes in the semimembranosus muscle of the toad. J Physiol. 2003;549:877–88.PubMedPubMedCentralCrossRef Ahn AN, Monti RJ, Biewener AA. In vivo and in vitro heterogeneity of segment length changes in the semimembranosus muscle of the toad. J Physiol. 2003;549:877–88.PubMedPubMedCentralCrossRef
77.
go back to reference Scott SH, Engstrom CE, Loeb GE. Morphometry of human thigh muscles: determination of fascicle architecture by magnetic resonance imaging. J Anat. 1993;182:249–57.PubMedPubMedCentral Scott SH, Engstrom CE, Loeb GE. Morphometry of human thigh muscles: determination of fascicle architecture by magnetic resonance imaging. J Anat. 1993;182:249–57.PubMedPubMedCentral
78.
go back to reference Blazevich AJ, Gill ND, Zhou S. Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo. J Anat. 2006;209:289–310.PubMedPubMedCentralCrossRef Blazevich AJ, Gill ND, Zhou S. Intra- and intermuscular variation in human quadriceps femoris architecture assessed in vivo. J Anat. 2006;209:289–310.PubMedPubMedCentralCrossRef
79.
go back to reference Rehorn MR, Blemker SS. The effects of aponeurosis geometry on strain injury susceptibility explored with a 3D muscle model. J Biomech. 2010;43:2574–81.PubMedPubMedCentralCrossRef Rehorn MR, Blemker SS. The effects of aponeurosis geometry on strain injury susceptibility explored with a 3D muscle model. J Biomech. 2010;43:2574–81.PubMedPubMedCentralCrossRef
80.
81.
go back to reference Higham TE, Biewener AA. Functional and architectural complexity within and between muscles: regional variation and intermuscular force transmission. Philos Trans R Soc Lond B Biol Sci. 2011;366:1477–87.PubMedPubMedCentralCrossRef Higham TE, Biewener AA. Functional and architectural complexity within and between muscles: regional variation and intermuscular force transmission. Philos Trans R Soc Lond B Biol Sci. 2011;366:1477–87.PubMedPubMedCentralCrossRef
83.
go back to reference Evangelidis PE, Massey GJ, Pain MTG, Folland JP. Biceps femoris aponeurosis size: a potential risk factor for strain injury? Med Sci Sport Exerc. 2015;47:1383–9.CrossRef Evangelidis PE, Massey GJ, Pain MTG, Folland JP. Biceps femoris aponeurosis size: a potential risk factor for strain injury? Med Sci Sport Exerc. 2015;47:1383–9.CrossRef
84.
go back to reference Blackburn JT, Pamukoff DN. Geometric and architectural contributions to hamstring musculotendinous stiffness. Clin Biomech. 2014;29:105–10.CrossRef Blackburn JT, Pamukoff DN. Geometric and architectural contributions to hamstring musculotendinous stiffness. Clin Biomech. 2014;29:105–10.CrossRef
85.
go back to reference Tilp M, Steib S, Herzog W. Length changes of human tibialis anterior central aponeurosis during passive movements and isometric, concentric, and eccentric contractions. Eur J Appl Physiol. 2012;112:1485–94.PubMedCrossRef Tilp M, Steib S, Herzog W. Length changes of human tibialis anterior central aponeurosis during passive movements and isometric, concentric, and eccentric contractions. Eur J Appl Physiol. 2012;112:1485–94.PubMedCrossRef
86.
go back to reference Zuurbier CJ, Everard AJ, van der Wees P, Huijing PA. Length-force characteristics of the aponeurosis in the passive and active muscle condition and in the isolated condition. J Biomech. 1994;27:445–53.PubMedCrossRef Zuurbier CJ, Everard AJ, van der Wees P, Huijing PA. Length-force characteristics of the aponeurosis in the passive and active muscle condition and in the isolated condition. J Biomech. 1994;27:445–53.PubMedCrossRef
87.
go back to reference Thelen DG, Chumanov ES, Best TM, Swanson SC, Heiderscheit BC. Simulation of biceps femoris musculotendon mechanics during the swing phase of sprinting. Med Sci Sport Exerc. 2005;37:1931–8.CrossRef Thelen DG, Chumanov ES, Best TM, Swanson SC, Heiderscheit BC. Simulation of biceps femoris musculotendon mechanics during the swing phase of sprinting. Med Sci Sport Exerc. 2005;37:1931–8.CrossRef
89.
go back to reference Dolman B, Verrall G, Reid I. Physical principles demonstrate that the biceps femoris muscle relative to the other hamstring muscles exerts the most force: implications for hamstring muscle strain injuries. Muscles Ligaments Tendons J. 2014;4:371–7.PubMedPubMedCentral Dolman B, Verrall G, Reid I. Physical principles demonstrate that the biceps femoris muscle relative to the other hamstring muscles exerts the most force: implications for hamstring muscle strain injuries. Muscles Ligaments Tendons J. 2014;4:371–7.PubMedPubMedCentral
90.
go back to reference Kellis E, Galanis N, Chrysanthou C, Kofotolis N. Use of ultrasound to monitor biceps femoris mechanical adaptations after injury in a professional soccer player. J Sport Sci Med. 2016;15:75–9. Kellis E, Galanis N, Chrysanthou C, Kofotolis N. Use of ultrasound to monitor biceps femoris mechanical adaptations after injury in a professional soccer player. J Sport Sci Med. 2016;15:75–9.
92.
go back to reference Schoenfeld BJ, Contreras B, Tiryaki-Sonmez G, Wilson JM, Kolber MJ, Peterson MD. Regional differences in muscle activation during hamstrings exercise. J Strength Cond Res. 2014;29:159–64.CrossRef Schoenfeld BJ, Contreras B, Tiryaki-Sonmez G, Wilson JM, Kolber MJ, Peterson MD. Regional differences in muscle activation during hamstrings exercise. J Strength Cond Res. 2014;29:159–64.CrossRef
93.
go back to reference Hegyi A, Péter A, Finni T, Cronin NJ. Region-dependent hamstrings activity in Nordic hamstring exercise and stiff-leg deadlift defined with high-density electromyography. Scand J Med Sci Sports. 2018;28:992–1000.PubMedCrossRef Hegyi A, Péter A, Finni T, Cronin NJ. Region-dependent hamstrings activity in Nordic hamstring exercise and stiff-leg deadlift defined with high-density electromyography. Scand J Med Sci Sports. 2018;28:992–1000.PubMedCrossRef
94.
go back to reference Ono T, Higashihara A, Fukubayashi T. Hamstring functions during hip-extension exercise assessed with electromyography and magnetic resonance imaging. Res Sports Med. 2011;19:42–52.PubMedCrossRef Ono T, Higashihara A, Fukubayashi T. Hamstring functions during hip-extension exercise assessed with electromyography and magnetic resonance imaging. Res Sports Med. 2011;19:42–52.PubMedCrossRef
95.
go back to reference Alexander RM, Vernon A. The dimensions of knee and ankle muscles and the forces they exert. J Hum Mov Stud. 1975;1:115–23. Alexander RM, Vernon A. The dimensions of knee and ankle muscles and the forces they exert. J Hum Mov Stud. 1975;1:115–23.
96.
go back to reference Klein Horsman MD, Koopman HFJM, van der Helm FCT, Poliascu Prose L, Veeger HEJ. Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin Biomech. 2007;22:239–47.CrossRef Klein Horsman MD, Koopman HFJM, van der Helm FCT, Poliascu Prose L, Veeger HEJ. Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin Biomech. 2007;22:239–47.CrossRef
97.
go back to reference Spoor CW, van Leeuwen JL, de Windt FH, Huson A. A model study of muscle forces and joint-force direction in normal and dysplastic neonatal hips. J Biomech. 1989;22:873–84.PubMedCrossRef Spoor CW, van Leeuwen JL, de Windt FH, Huson A. A model study of muscle forces and joint-force direction in normal and dysplastic neonatal hips. J Biomech. 1989;22:873–84.PubMedCrossRef
98.
go back to reference Delp SL, Loan JP, Hoy MG, Zajac FE, Topp EL, Rosen JM. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng. 1990;37:757–67.PubMedCrossRef Delp SL, Loan JP, Hoy MG, Zajac FE, Topp EL, Rosen JM. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng. 1990;37:757–67.PubMedCrossRef
99.
go back to reference Pierrynowski MR, Morrison JB. A physiological model for the evaluation of muscular forces in human locomotion: theoretical aspects. Math Biosci. 1985;75:69–101.CrossRef Pierrynowski MR, Morrison JB. A physiological model for the evaluation of muscular forces in human locomotion: theoretical aspects. Math Biosci. 1985;75:69–101.CrossRef
100.
go back to reference Timmins RG, Shield AJ, Williams MD, Lorenzen C, Opar DA. Biceps femoris long head architecture: a reliability and retrospective injury study. Med Sci Sport Exerc. 2015;47:905–13.CrossRef Timmins RG, Shield AJ, Williams MD, Lorenzen C, Opar DA. Biceps femoris long head architecture: a reliability and retrospective injury study. Med Sci Sport Exerc. 2015;47:905–13.CrossRef
101.
go back to reference Potier TG, Alexander CM, Seynnes OR. Effects of eccentric strength training on biceps femoris muscle architecture and knee joint range of movement. Eur J Appl Physiol. 2009;105:939–44.PubMedCrossRef Potier TG, Alexander CM, Seynnes OR. Effects of eccentric strength training on biceps femoris muscle architecture and knee joint range of movement. Eur J Appl Physiol. 2009;105:939–44.PubMedCrossRef
102.
go back to reference Timmins RG, Bourne MN, Shield AJ, Williams MD, Lorenzen C, Opar DA. Biceps femoris architecture and strength in athletes with a previous anterior cruciate ligament reconstruction. Med Sci Sport Exerc. 2016;48:337–45.CrossRef Timmins RG, Bourne MN, Shield AJ, Williams MD, Lorenzen C, Opar DA. Biceps femoris architecture and strength in athletes with a previous anterior cruciate ligament reconstruction. Med Sci Sport Exerc. 2016;48:337–45.CrossRef
Metadata
Title
Intra- and Inter-Muscular Variations in Hamstring Architecture and Mechanics and Their Implications for Injury: A Narrative Review
Author
Eleftherios Kellis
Publication date
01-10-2018
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 10/2018
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-018-0975-4

Other articles of this Issue 10/2018

Sports Medicine 10/2018 Go to the issue