Skip to main content
Top
Published in: Journal of Inflammation 1/2017

Open Access 01-12-2017 | Research

Intestinally-restricted Janus Kinase inhibition: a potential approach to maximize the therapeutic index in inflammatory bowel disease therapy

Authors: David T. Beattie, M. Teresa Pulido-Rios, Fei Shen, Melissa Ho, Eva Situ, Pam R. Tsuruda, Patrick Brassil, Melanie Kleinschek, Sharath Hegde

Published in: Journal of Inflammation | Issue 1/2017

Login to get access

Abstract

Background

An unmet need remains for safe and effective treatments to induce and maintain remission in inflammatory bowel disease (IBD) patients. The Janus kinase (JAK) inhibitor, tofacitinib, has demonstrated robust efficacy in ulcerative colitis patients although, like other systemic immunosuppressants, there may be safety concerns associated with its use. This preclinical study evaluated whether modulating intestinal inflammation via local JAK inhibition can provide efficacy without systemic immunosuppression.

Methods

The influence of tofacitinib, dosed orally or intracecally, on oxazolone-induced colitis, oxazolone or interferon-γ (IFNγ)-induced elevation of colonic phosphorylated signal transducer and activator of transcription1 (pSTAT1) levels, and basal splenic natural killer (NK) cell counts was investigated in mice.

Results

Tofacitinib, dosed orally or intracecally, inhibited, with similar efficacy, oxazolone-induced colitis, represented by improvements in the disease activity index and its sub-scores (body weight, stool consistency and blood content). Intracecal dosing of tofacitinib resulted in a higher colon:plasma drug exposure ratio compared to oral dosing. At equieffective oral and intracecal doses, colonic levels of tofacitinib were similar, while the plasma levels for the latter were markedly lower, consistent with a lack of effect on splenic NK cell counts. Tofacitinib, dosed orally, intracecally, or applied to the colonic lumen in vitro, produced dose-dependent, and maximal inhibition of oxazolone or IFNγ-induced STAT1 phosphorylation in the colon.

Conclusions

Localized colonic JAK inhibition, by intracecal delivery of tofacitinib, provides colonic target engagement and efficacy in a mouse colitis model at doses which do not impact splenic NK cell counts. Intestinal targeting of JAK may permit separation of local anti-inflammatory activity from systemic immunosuppression, and thus provide a larger therapeutic index compared to systemic JAK inhibitors.
Literature
1.
go back to reference Lonnfors S, Vermeire S, Greco M, et al. IBD and health-related quality of life - Discovering the true impact. J Crohn's Colitis. 2014;8:1281–6.CrossRef Lonnfors S, Vermeire S, Greco M, et al. IBD and health-related quality of life - Discovering the true impact. J Crohn's Colitis. 2014;8:1281–6.CrossRef
3.
go back to reference Chang S, Hanauer S. Optimizing pharmacologic management of inflammatory bowel disease. Exp Rev Clin Pharmacol. 2017;10:595–607.CrossRef Chang S, Hanauer S. Optimizing pharmacologic management of inflammatory bowel disease. Exp Rev Clin Pharmacol. 2017;10:595–607.CrossRef
4.
go back to reference Bernal I, Domenech E, Garcia-Planella E, et al. Opportunistic infections in patients with inflammatory bowel disease undergoing immunosuppressive therapy. Gastroenterol Hepatol. 2003;26:19–22.CrossRefPubMed Bernal I, Domenech E, Garcia-Planella E, et al. Opportunistic infections in patients with inflammatory bowel disease undergoing immunosuppressive therapy. Gastroenterol Hepatol. 2003;26:19–22.CrossRefPubMed
5.
go back to reference Bewtra M, Lewis JD. Update on the risk of lymphoma following immunosuppressive therapy for inflammatory bowel disease. Exp Rev Clin Immunol. 2010;6:621–31.CrossRef Bewtra M, Lewis JD. Update on the risk of lymphoma following immunosuppressive therapy for inflammatory bowel disease. Exp Rev Clin Immunol. 2010;6:621–31.CrossRef
6.
go back to reference Rahier JF. Management of IBD patients with current immunosuppressive therapy and concurrent infections. Dig Dis. 2015;33:50–6.CrossRefPubMed Rahier JF. Management of IBD patients with current immunosuppressive therapy and concurrent infections. Dig Dis. 2015;33:50–6.CrossRefPubMed
7.
go back to reference Ben-Horin S, Kopylov U, Chowers Y. Optimizing anti-TNF treatments in inflammatory bowel disease. Autoimmunity Rev. 2014;13:24–30.CrossRef Ben-Horin S, Kopylov U, Chowers Y. Optimizing anti-TNF treatments in inflammatory bowel disease. Autoimmunity Rev. 2014;13:24–30.CrossRef
8.
go back to reference Filipski KJ, Varma MV, El-Kattan AF, et al. Intestinal targeting of drugs: rational design approaches and challenges. Curr Topics Med Chem. 2013;13:776–802.CrossRef Filipski KJ, Varma MV, El-Kattan AF, et al. Intestinal targeting of drugs: rational design approaches and challenges. Curr Topics Med Chem. 2013;13:776–802.CrossRef
9.
go back to reference Fyfe MCT. Non-systemic intestine-targeted drugs. Progress Med Chem. 2016;55:1–44.CrossRef Fyfe MCT. Non-systemic intestine-targeted drugs. Progress Med Chem. 2016;55:1–44.CrossRef
10.
go back to reference Chapman NJ, Brown ML, Phillips SF, et al. Distribution of mesalamine enemas in patients with active distal ulcerative colitis. Mayo Clin Proceedings. 1992;67:245–8.CrossRef Chapman NJ, Brown ML, Phillips SF, et al. Distribution of mesalamine enemas in patients with active distal ulcerative colitis. Mayo Clin Proceedings. 1992;67:245–8.CrossRef
11.
go back to reference Jacobsen BA, Abildgaard K, Rasmussen HH, et al. Availability of mesalazine (5-aminosalicylic acid) from enemas and suppositories during steady-state conditions. Scand J Gastroenterol. 1991;26:374–8.CrossRefPubMed Jacobsen BA, Abildgaard K, Rasmussen HH, et al. Availability of mesalazine (5-aminosalicylic acid) from enemas and suppositories during steady-state conditions. Scand J Gastroenterol. 1991;26:374–8.CrossRefPubMed
12.
go back to reference Sachar DB. The safety of sulfasalazine: the gastroenterologists’ experience. J Rheumatol. 1988;15(suppl 16):14–6. Sachar DB. The safety of sulfasalazine: the gastroenterologists’ experience. J Rheumatol. 1988;15(suppl 16):14–6.
14.
go back to reference Jovani M, Danese S. Vedolizumab for the treatment of IBD: a selective therapeutic approach targeting pathogenic α4β7 cells. Curr Drug Targets. 2013;14:1433–43.CrossRefPubMed Jovani M, Danese S. Vedolizumab for the treatment of IBD: a selective therapeutic approach targeting pathogenic α4β7 cells. Curr Drug Targets. 2013;14:1433–43.CrossRefPubMed
15.
go back to reference Coskun M, Salem M, Pedersen J, Nielsen OH. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacol Res. 2013;76:1–8.CrossRefPubMed Coskun M, Salem M, Pedersen J, Nielsen OH. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacol Res. 2013;76:1–8.CrossRefPubMed
16.
go back to reference Hebenstreit D, Horejs-Hoeck J, Duschl A. JAK/STAT-dependent gene regulation by cytokines. Drug News Perspect. 2005;18:243–9.CrossRefPubMed Hebenstreit D, Horejs-Hoeck J, Duschl A. JAK/STAT-dependent gene regulation by cytokines. Drug News Perspect. 2005;18:243–9.CrossRefPubMed
17.
go back to reference Sandborn WJ, Ghosh S, Panes J, et al. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. New Eng J Med. 2012;367:616–24.CrossRefPubMed Sandborn WJ, Ghosh S, Panes J, et al. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. New Eng J Med. 2012;367:616–24.CrossRefPubMed
18.
go back to reference Sandborn WJ, Su C, Sands BE, et al. Tofacitinib as induction and maintenance therapy for ulcerative colitis. New Eng J Med. 2017;376:1723–36.CrossRefPubMed Sandborn WJ, Su C, Sands BE, et al. Tofacitinib as induction and maintenance therapy for ulcerative colitis. New Eng J Med. 2017;376:1723–36.CrossRefPubMed
19.
go back to reference Kaur K, Kalra S, Kaushal S. Systematic review of tofacitinib: a new drug for the management of rheumatoid arthritis. Clin Therap. 2014;36:1074–86.CrossRef Kaur K, Kalra S, Kaushal S. Systematic review of tofacitinib: a new drug for the management of rheumatoid arthritis. Clin Therap. 2014;36:1074–86.CrossRef
20.
go back to reference Sonomoto K, Yamaoka K, Kubo S, et al. Effects of tofacitinib on lymphocytes in rheumatoid arthritis: relation to efficacy and infectious adverse events. Prev Rheumatol. 2014;53:914–8.CrossRef Sonomoto K, Yamaoka K, Kubo S, et al. Effects of tofacitinib on lymphocytes in rheumatoid arthritis: relation to efficacy and infectious adverse events. Prev Rheumatol. 2014;53:914–8.CrossRef
21.
go back to reference Boirivant M, Fuss IJ, Chu A, et al. Oxazolone colitis: a murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J Exp Med. 1998;188:1929–39.CrossRefPubMedPubMedCentral Boirivant M, Fuss IJ, Chu A, et al. Oxazolone colitis: a murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J Exp Med. 1998;188:1929–39.CrossRefPubMedPubMedCentral
23.
go back to reference Ball DJ, Kawabata TT, Vogel WM, et al. Changes in T and B lymphocyte subsets with Tofacitinib do not translate from nonclinical species to humans. Ann Rheum Dis. 2014;73:964–5.CrossRef Ball DJ, Kawabata TT, Vogel WM, et al. Changes in T and B lymphocyte subsets with Tofacitinib do not translate from nonclinical species to humans. Ann Rheum Dis. 2014;73:964–5.CrossRef
24.
go back to reference Van Vollenhoven R, Tanaka Y, Riese R, et al. Relationship between NK cell count and important safety events in rheumatoid arthritis patients treated with Tofacitinib. Arthritis Rheum. 2014;66:S220.CrossRef Van Vollenhoven R, Tanaka Y, Riese R, et al. Relationship between NK cell count and important safety events in rheumatoid arthritis patients treated with Tofacitinib. Arthritis Rheum. 2014;66:S220.CrossRef
26.
go back to reference Nocturne G, Tahmasebi F, Boudaoud S, et al. Tofacitinib is associated with an impaired function of NK cells and a defective immunosurveillance against b-cell lymphomas. Arthritis Rheum. 2016;68:3513–6. Nocturne G, Tahmasebi F, Boudaoud S, et al. Tofacitinib is associated with an impaired function of NK cells and a defective immunosurveillance against b-cell lymphomas. Arthritis Rheum. 2016;68:3513–6.
27.
go back to reference Van Vollenhoven R, Choy E, Lee EB, et al. Tofacitinib, an oral janus kinase inhibitor, in the treatment of rheumatoid arthritis: changes in lymphocytes and lymphocyte subset counts and reversibility after up to 8 years of tofacitinib treatment. Ann Rheum Dis. 2016;75:258. Van Vollenhoven R, Choy E, Lee EB, et al. Tofacitinib, an oral janus kinase inhibitor, in the treatment of rheumatoid arthritis: changes in lymphocytes and lymphocyte subset counts and reversibility after up to 8 years of tofacitinib treatment. Ann Rheum Dis. 2016;75:258.
28.
go back to reference Moolenbeek C, Ruitenberg EJ. The ‘Swiss roll’: a simple technique for histological studies of the rodent intestine. Lab Animal. 1981;15:57–9.CrossRef Moolenbeek C, Ruitenberg EJ. The ‘Swiss roll’: a simple technique for histological studies of the rodent intestine. Lab Animal. 1981;15:57–9.CrossRef
29.
go back to reference Dowty ME, Lin J, Ryder TF, et al. The pharmacokinetics, metabolism, and clearance mechanisms of tofacitinib, a Janus kinase inhibitor, in humans. Drug Met Dispos. 2014;42:759–73.CrossRef Dowty ME, Lin J, Ryder TF, et al. The pharmacokinetics, metabolism, and clearance mechanisms of tofacitinib, a Janus kinase inhibitor, in humans. Drug Met Dispos. 2014;42:759–73.CrossRef
30.
go back to reference Krishnaswami S, Boy M, Chow V, et al. Safety, tolerability, and pharmacokinetics of single oral doses of tofacitinib, a Janus kinase inhibitor, in healthy volunteers. Clin Pharmacol Drug Devel. 2015;4:83–8.CrossRef Krishnaswami S, Boy M, Chow V, et al. Safety, tolerability, and pharmacokinetics of single oral doses of tofacitinib, a Janus kinase inhibitor, in healthy volunteers. Clin Pharmacol Drug Devel. 2015;4:83–8.CrossRef
31.
go back to reference Kasaian MT, Page KM, Fish S, et al. Therapeutic activity of an interleukin-4/interleukin-13 dual antagonist on oxazolone-induced colitis in mice. Immunol. 2014;143:416–27.CrossRef Kasaian MT, Page KM, Fish S, et al. Therapeutic activity of an interleukin-4/interleukin-13 dual antagonist on oxazolone-induced colitis in mice. Immunol. 2014;143:416–27.CrossRef
32.
go back to reference Leon AJ, Gomez E, Garrote JA, et al. High levels of proinflammatory cytokines, but not markers of tissue injury, in unaffected intestinal areas from patients with IBD. Mediators Inflamm 2009; p. 1-10. article 580450. Leon AJ, Gomez E, Garrote JA, et al. High levels of proinflammatory cytokines, but not markers of tissue injury, in unaffected intestinal areas from patients with IBD. Mediators Inflamm 2009; p. 1-10. article 580450.
Metadata
Title
Intestinally-restricted Janus Kinase inhibition: a potential approach to maximize the therapeutic index in inflammatory bowel disease therapy
Authors
David T. Beattie
M. Teresa Pulido-Rios
Fei Shen
Melissa Ho
Eva Situ
Pam R. Tsuruda
Patrick Brassil
Melanie Kleinschek
Sharath Hegde
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Inflammation / Issue 1/2017
Electronic ISSN: 1476-9255
DOI
https://doi.org/10.1186/s12950-017-0175-2

Other articles of this Issue 1/2017

Journal of Inflammation 1/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.