Skip to main content
Top
Published in: Journal of Clinical Immunology 3/2024

Open Access 01-03-2024 | Interrupted Aortic Arch | Original Article

Thymic Atrophy and Immune Dysregulation in Infants with Complex Congenital Heart Disease

Authors: Sarah-Jolan Bremer, Annika Boxnick, Laura Glau, Daniel Biermann, Simon A. Joosse, Friederike Thiele, Elena Billeb, Jonathan May, Manuela Kolster, Romy Hackbusch, Mats Ingmar Fortmann, Rainer Kozlik-Feldmann, Michael Hübler, Eva Tolosa, Jörg Siegmar Sachweh, Anna Gieras

Published in: Journal of Clinical Immunology | Issue 3/2024

Login to get access

Abstract

Congenital heart disease (CHD) is the most common birth defect, and up to 50% of infants with CHD require cardiovascular surgery early in life. Current clinical practice often involves thymus resection during cardiac surgery, detrimentally affecting T-cell immunity. However, epidemiological data indicate that CHD patients face an elevated risk for infections and immune-mediated diseases, independent of thymectomy. Hence, we examined whether the cardiac defect impacts thymus function in individuals with CHD. We investigated thymocyte development in 58 infants categorized by CHD complexity. To assess the relationship between CHD complexity and thymic function, we analyzed T-cell development, thymic output, and biomarkers linked to cardiac defects, stress, or inflammation. Patients with highly complex CHD exhibit thymic atrophy, resulting in low frequencies of recent thymic emigrants in peripheral blood, even prior to thymectomy. Elevated plasma cortisol levels were detected in all CHD patients, while high NT-proBNP and IL-6 levels were associated with thymic atrophy. Our findings reveal an association between complex CHD and thymic atrophy, resulting in reduced thymic output. Consequently, thymus preservation during cardiovascular surgery could significantly enhance immune function and the long-term health of CHD patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Miller JFAP. The function of the thymus and its impact on modern medicine. Science. 2020;369(6503):1–8. Miller JFAP. The function of the thymus and its impact on modern medicine. Science. 2020;369(6503):1–8.
2.
go back to reference Hogquist KA, Baldwin TA, Jameson SC. Central tolerance: learning self-control in the thymus. Nat Rev Immunol. 2005;5(10):772–82.PubMed Hogquist KA, Baldwin TA, Jameson SC. Central tolerance: learning self-control in the thymus. Nat Rev Immunol. 2005;5(10):772–82.PubMed
3.
go back to reference Sauce D, Appay V. Altered thymic activity in early life: how does it affect the immune system in young adults? Curr Opin Immunol. 2011;23(4):543–8.PubMed Sauce D, Appay V. Altered thymic activity in early life: how does it affect the immune system in young adults? Curr Opin Immunol. 2011;23(4):543–8.PubMed
4.
go back to reference Deya-Martinez A, Flinn AM, Gennery AR. Neonatal thymectomy in children—accelerating the immunologic clock? J Allergy Clin Immunol. 2020;146(2):236–43.PubMed Deya-Martinez A, Flinn AM, Gennery AR. Neonatal thymectomy in children—accelerating the immunologic clock? J Allergy Clin Immunol. 2020;146(2):236–43.PubMed
5.
go back to reference Luo M, Xu L, Qian Z, Sun X. Infection-associated thymic atrophy Front Immunol. 2021;12:1–21. Luo M, Xu L, Qian Z, Sun X. Infection-associated thymic atrophy Front Immunol. 2021;12:1–21.
6.
go back to reference Nunes-Alves C, Nobrega C, Behar SM, Correia-Neves M. Tolerance has its limits: how the thymus copes with infection. Trends Immunol. 2013;34(10):1–19. Nunes-Alves C, Nobrega C, Behar SM, Correia-Neves M. Tolerance has its limits: how the thymus copes with infection. Trends Immunol. 2013;34(10):1–19.
7.
go back to reference Savino W. The thymus is a common target organ in infectious diseases. PLoS Pathog. 2006;2(6):472–83. Savino W. The thymus is a common target organ in infectious diseases. PLoS Pathog. 2006;2(6):472–83.
8.
go back to reference Savino W. The thymus gland is a target in malnutrition. Eur J Clin Nutr. 2002;56:S46–9.PubMed Savino W. The thymus gland is a target in malnutrition. Eur J Clin Nutr. 2002;56:S46–9.PubMed
9.
go back to reference Jenkins KJ, Botto LD, Correa A, Foster E, Kupiec JK, Marino BS, et al. Public health approach to improve outcomes for congenital heart disease across the life span. J Am Heart Assoc. 2019;8(8):1–9. Jenkins KJ, Botto LD, Correa A, Foster E, Kupiec JK, Marino BS, et al. Public health approach to improve outcomes for congenital heart disease across the life span. J Am Heart Assoc. 2019;8(8):1–9.
10.
go back to reference Van Der Bom T, Zomer AC, Zwinderman AH, Meijboom FJ, Bouma BJ, Mulder BJM. The changing epidemiology of congenital heart disease. Nat Rev Cardiol. 2011;8:50–60.PubMed Van Der Bom T, Zomer AC, Zwinderman AH, Meijboom FJ, Bouma BJ, Mulder BJM. The changing epidemiology of congenital heart disease. Nat Rev Cardiol. 2011;8:50–60.PubMed
11.
go back to reference Schwedler G, Lindinger A, Lange PE, Sax U, Olchvary J, Peters B, et al. Frequency and spectrum of congenital heart defects among live births in Germany: a study of the competence network for congenital heart defects. Clin Res Cardiol. 2011;100(12):1111–7.PubMed Schwedler G, Lindinger A, Lange PE, Sax U, Olchvary J, Peters B, et al. Frequency and spectrum of congenital heart defects among live births in Germany: a study of the competence network for congenital heart defects. Clin Res Cardiol. 2011;100(12):1111–7.PubMed
12.
go back to reference Grifka RG. Cyanotic congenital heart disease with increased pulmonary blood flow. Pediatr Clin North Am. 1999;46(2):405–25.PubMed Grifka RG. Cyanotic congenital heart disease with increased pulmonary blood flow. Pediatr Clin North Am. 1999;46(2):405–25.PubMed
13.
go back to reference Antonarakis SE, Skotko BG, Rafii MS, Strydom A, Pape SE, Bianchi DW, et al. Down syndrome. Nat Rev Dis Prim. 2020;6(1):1–20. Antonarakis SE, Skotko BG, Rafii MS, Strydom A, Pape SE, Bianchi DW, et al. Down syndrome. Nat Rev Dis Prim. 2020;6(1):1–20.
14.
go back to reference McDonald-McGinn DM, Sullivan KE, Marino B, Philip N, Swillen A, Vorstman JAS, et al. 22q11.2 deletion syndrome. Nat Rev Dis Prim. 2015;1:1–19. McDonald-McGinn DM, Sullivan KE, Marino B, Philip N, Swillen A, Vorstman JAS, et al. 22q11.2 deletion syndrome. Nat Rev Dis Prim. 2015;1:1–19.
15.
go back to reference Smetanova J, Milota T, Rataj M, Bloomfield M, Sediva A, Klocperk A. Accelerated maturation, exhaustion, and senescence of T cells in 22q11.2 deletion syndrome. J Clin Immunol. 2022;42(2):274–85.PubMed Smetanova J, Milota T, Rataj M, Bloomfield M, Sediva A, Klocperk A. Accelerated maturation, exhaustion, and senescence of T cells in 22q11.2 deletion syndrome. J Clin Immunol. 2022;42(2):274–85.PubMed
16.
go back to reference Yuki K, Koutsogiannaki S. Neutrophil and T cell functions in patients with congenital heart diseases : a review. Pediatr Cardiol. 2021;20:1–5. Yuki K, Koutsogiannaki S. Neutrophil and T cell functions in patients with congenital heart diseases : a review. Pediatr Cardiol. 2021;20:1–5.
17.
go back to reference Zimmerman MS, Smith AGC, Sable CA, Echko MM, Wilner LB, Olsen HE, et al. Global, regional, and national burden of congenital heart disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Child Adolesc Heal. 2020;4(3):185–200. Zimmerman MS, Smith AGC, Sable CA, Echko MM, Wilner LB, Olsen HE, et al. Global, regional, and national burden of congenital heart disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Child Adolesc Heal. 2020;4(3):185–200.
18.
go back to reference Kwan A, Church JA, Cowan MJ, Agarwal R, Kapoor N, Kohn DB, et al. Newborn screening for SCID and T cell lymphopenia in California: results of the first two years. J Allergy Clin Immunol. 2013;132(1):140–50.PubMedPubMedCentral Kwan A, Church JA, Cowan MJ, Agarwal R, Kapoor N, Kohn DB, et al. Newborn screening for SCID and T cell lymphopenia in California: results of the first two years. J Allergy Clin Immunol. 2013;132(1):140–50.PubMedPubMedCentral
19.
go back to reference Kwan A, Abraham RS, Currier R, Brower A, Andruszewski K. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312(7):729–38.PubMedPubMedCentral Kwan A, Abraham RS, Currier R, Brower A, Andruszewski K. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312(7):729–38.PubMedPubMedCentral
20.
21.
go back to reference Nevid M, Richmond GW, Davies S, Patel A, Hackett A, Mahdavinia M. Non-immunologic conditions associated with low TREC values. J Allergy Clin Immunol. 2020;145(2):AB214. Nevid M, Richmond GW, Davies S, Patel A, Hackett A, Mahdavinia M. Non-immunologic conditions associated with low TREC values. J Allergy Clin Immunol. 2020;145(2):AB214.
22.
go back to reference Mauracher AA, Pagliarulo F, Faes L, Vavassori S, Güngör T, Bachmann LM, et al. Clinical communications causes of low neonatal T-cell receptor excision circles: a systematic review. J Allergy Clin Immunol Pract. 2017;5(5):1457-1460.e22.PubMed Mauracher AA, Pagliarulo F, Faes L, Vavassori S, Güngör T, Bachmann LM, et al. Clinical communications causes of low neonatal T-cell receptor excision circles: a systematic review. J Allergy Clin Immunol Pract. 2017;5(5):1457-1460.e22.PubMed
23.
go back to reference Monaco G, Chen H, Poidinger M, Chen J, De Magalhães JP, Larbi A. FlowAI: automatic and interactive anomaly discerning tools for flow cytometry data. Bioinformatics. 2016;32(16):2473–80.PubMed Monaco G, Chen H, Poidinger M, Chen J, De Magalhães JP, Larbi A. FlowAI: automatic and interactive anomaly discerning tools for flow cytometry data. Bioinformatics. 2016;32(16):2473–80.PubMed
24.
go back to reference Bremer SJ, Glau L, Gehbauer C, Boxnick A, Biermann D, Sachweh JS, et al. OMIP 073: Analysis of human thymocyte development with a 14-color flow cytometry panel. Cytom Part A. 2021;99(9):875–9. Bremer SJ, Glau L, Gehbauer C, Boxnick A, Biermann D, Sachweh JS, et al. OMIP 073: Analysis of human thymocyte development with a 14-color flow cytometry panel. Cytom Part A. 2021;99(9):875–9.
25.
go back to reference R Core Team. R: A language and environment for statistical computing. [Internet]. Vienna; Austria.: R Foundation for Statistical Computing; 2019. https://www.r-project.org/. Accessed 07.12.2022 R Core Team. R: A language and environment for statistical computing. [Internet]. Vienna; Austria.: R Foundation for Statistical Computing; 2019. https://​www.​r-project.​org/​. Accessed 07.12.2022
29.
go back to reference Geva T, Martins JD, Wald RM. Atrial septal defects. Lancet. 2014;383(9932):1921–32.PubMed Geva T, Martins JD, Wald RM. Atrial septal defects. Lancet. 2014;383(9932):1921–32.PubMed
30.
go back to reference Penny DJ, Vick GW. Ventricular septal defect. Lancet. 2011;377(9771):1103–12.PubMed Penny DJ, Vick GW. Ventricular septal defect. Lancet. 2011;377(9771):1103–12.PubMed
31.
go back to reference Calkoen EE, Hazekamp MG, Blom NA, Elders BBLJ, Gittenberger-De Groot AC, Haak MC, et al. Atrioventricular septal defect: from embryonic development to long-term follow-up. Int J Cardiol. 2016;202:784–95.PubMed Calkoen EE, Hazekamp MG, Blom NA, Elders BBLJ, Gittenberger-De Groot AC, Haak MC, et al. Atrioventricular septal defect: from embryonic development to long-term follow-up. Int J Cardiol. 2016;202:784–95.PubMed
32.
go back to reference Apitz C, Webb GD, Redington AN. Tetralogy of Fallot. Lancet. 2009;374:1462–71.PubMed Apitz C, Webb GD, Redington AN. Tetralogy of Fallot. Lancet. 2009;374:1462–71.PubMed
33.
go back to reference Warnes CA. Transposition of the great arteries. Circulation. 2006;114(24):2699–709.PubMed Warnes CA. Transposition of the great arteries. Circulation. 2006;114(24):2699–709.PubMed
34.
go back to reference Anderson RH, Spicer DE, Crucean A. Clarification of the definition of hypoplastic left heart syndrome. Nat Rev Cardiol. 2021;18(3):147–8.PubMed Anderson RH, Spicer DE, Crucean A. Clarification of the definition of hypoplastic left heart syndrome. Nat Rev Cardiol. 2021;18(3):147–8.PubMed
35.
go back to reference Jonas RA. Management of interrupted aortic arch. Semin Thorac Cardiovasc Surg. 2015;27(2):177–88.PubMed Jonas RA. Management of interrupted aortic arch. Semin Thorac Cardiovasc Surg. 2015;27(2):177–88.PubMed
36.
go back to reference Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, et al. Genetic basis for congenital heart disease: revisited: a scientific statement from the American Heart Association. Circulation. 2018;138(21):e653-711.PubMedPubMedCentral Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, et al. Genetic basis for congenital heart disease: revisited: a scientific statement from the American Heart Association. Circulation. 2018;138(21):e653-711.PubMedPubMedCentral
37.
go back to reference Marcovecchio GE, Bortolomai I, Ferrua F, Fontana E, Imberti L, Conforti E, et al. Thymic epithelium abnormalities in DiGeorge and Down syndrome patients contribute to dysregulation in T cell development. Front Immunol. 2019;10(447):1–15. Marcovecchio GE, Bortolomai I, Ferrua F, Fontana E, Imberti L, Conforti E, et al. Thymic epithelium abnormalities in DiGeorge and Down syndrome patients contribute to dysregulation in T cell development. Front Immunol. 2019;10(447):1–15.
38.
go back to reference McKie PM, Burnett JC. NT-proBNP: the gold standard biomarker in heart failure. J Am Coll Cardiol. 2016;68(22):2437–9.PubMed McKie PM, Burnett JC. NT-proBNP: the gold standard biomarker in heart failure. J Am Coll Cardiol. 2016;68(22):2437–9.PubMed
39.
go back to reference Hamm CW, Ravkilde J, Gerhardt W, Jørgensen P, Peheim E, Ljungdahl L, et al. The prognostic value of serum troponin T in unstable angina. N Engl J Med. 1992;326:146–50. Hamm CW, Ravkilde J, Gerhardt W, Jørgensen P, Peheim E, Ljungdahl L, et al. The prognostic value of serum troponin T in unstable angina. N Engl J Med. 1992;326:146–50.
40.
go back to reference Abiko M, Inai K, Shimada E, Asagai S, Nakanishi T. The prognostic value of high sensitivity cardiac troponin T in patients with congenital heart disease. J Cardiol. 2018;71(4):389–93.PubMed Abiko M, Inai K, Shimada E, Asagai S, Nakanishi T. The prognostic value of high sensitivity cardiac troponin T in patients with congenital heart disease. J Cardiol. 2018;71(4):389–93.PubMed
41.
go back to reference Taves MD, Ashwell JD. Glucocorticoids in T cell development, differentiation and function. Nat Rev Immunol. 2021;21(4):233–43.PubMed Taves MD, Ashwell JD. Glucocorticoids in T cell development, differentiation and function. Nat Rev Immunol. 2021;21(4):233–43.PubMed
42.
go back to reference Diepenbruck I, Much CC, Krumbholz A, Kolster M, Thieme R, Thieme D, et al. Effect of prenatal steroid treatment on the developing immune system. J Mol Med. 2013;91(11):1293–302.PubMed Diepenbruck I, Much CC, Krumbholz A, Kolster M, Thieme R, Thieme D, et al. Effect of prenatal steroid treatment on the developing immune system. J Mol Med. 2013;91(11):1293–302.PubMed
43.
go back to reference Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol. 2015;16(5):448–57.PubMed Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol. 2015;16(5):448–57.PubMed
44.
go back to reference Feng Y, Ye D, Wang Z, Pan H, Lu X, Wang M, et al. The role of interleukin-6 family members in cardiovascular diseases. Front Cardiovasc Med. 2022;9:1–12. Feng Y, Ye D, Wang Z, Pan H, Lu X, Wang M, et al. The role of interleukin-6 family members in cardiovascular diseases. Front Cardiovasc Med. 2022;9:1–12.
45.
go back to reference Braunwald E. Metabolic biomarkers in heart failure. Heart Fail Clin. 2018;14(1):109–18. Braunwald E. Metabolic biomarkers in heart failure. Heart Fail Clin. 2018;14(1):109–18.
46.
go back to reference Gudmundsdottir J, Söderling J, Berggren H, Óskarsdóttir S, Neovius M, Stephansson O, et al. Long-term clinical effects of early thymectomy: associations with autoimmune diseases, cancer, infections, and atopic diseases. J Allergy Clin Immunol. 2018;141(6):2294–7.PubMed Gudmundsdottir J, Söderling J, Berggren H, Óskarsdóttir S, Neovius M, Stephansson O, et al. Long-term clinical effects of early thymectomy: associations with autoimmune diseases, cancer, infections, and atopic diseases. J Allergy Clin Immunol. 2018;141(6):2294–7.PubMed
47.
go back to reference Karazisi C, Dellborg M, Mellgren K, Giang KW, Skoglund K, Eriksson P, et al. Risk of cancer in young and older patients with congenital heart disease and the excess risk of cancer by syndromes, organ transplantation and cardiac surgery: Swedish health registry study (1930–2017). Lancet Reg Heal - Eur. 2022;18:1–8. Karazisi C, Dellborg M, Mellgren K, Giang KW, Skoglund K, Eriksson P, et al. Risk of cancer in young and older patients with congenital heart disease and the excess risk of cancer by syndromes, organ transplantation and cardiac surgery: Swedish health registry study (1930–2017). Lancet Reg Heal - Eur. 2022;18:1–8.
48.
go back to reference Campolo J, Annoni G, Giaccardi M, Andreassi MG. Congenital heart disease and the risk of cancer: an update on the genetic etiology, radiation exposure damage, and future research strategies. J Cardiovasc Dev Dis. 2022;9:245. Campolo J, Annoni G, Giaccardi M, Andreassi MG. Congenital heart disease and the risk of cancer: an update on the genetic etiology, radiation exposure damage, and future research strategies. J Cardiovasc Dev Dis. 2022;9:245.
49.
go back to reference Kampitsi CE, Mogensen H, Feychting M, Tettamanti G. The relationship between congenital heart disease and cancer in Swedish children: a population-based cohort study. PLoS Med. 2022;19(2):1–13. Kampitsi CE, Mogensen H, Feychting M, Tettamanti G. The relationship between congenital heart disease and cancer in Swedish children: a population-based cohort study. PLoS Med. 2022;19(2):1–13.
50.
go back to reference Halnon NJ, Jamieson B, Plunkett M, Kitchen CMR, Pham T, Krogstad P. Thymic function and impaired maintenance of peripheral T cell populations in children with congenital heart disease and surgical thymectomy. Pediatr Res. 2005;57(1):42–8.PubMed Halnon NJ, Jamieson B, Plunkett M, Kitchen CMR, Pham T, Krogstad P. Thymic function and impaired maintenance of peripheral T cell populations in children with congenital heart disease and surgical thymectomy. Pediatr Res. 2005;57(1):42–8.PubMed
51.
go back to reference Kurobe H, Tominaga T, Sugano M, Hayabuchi Y, Egawa Y, Takahama Y, et al. Complete but not partial thymectomy in early infancy reduces T-cell – mediated immune response: three-year tracing study after pediatric cardiac surgery. J Thorac Cardiovasc Surg. 2013;145(3):656–62.PubMed Kurobe H, Tominaga T, Sugano M, Hayabuchi Y, Egawa Y, Takahama Y, et al. Complete but not partial thymectomy in early infancy reduces T-cell – mediated immune response: three-year tracing study after pediatric cardiac surgery. J Thorac Cardiovasc Surg. 2013;145(3):656–62.PubMed
52.
go back to reference Sauce D, Larsen M, Fastenackels S, Duperrier A, Keller M, Grubeck-Loebenstein B, et al. Evidence of premature immune aging in patients thymectomized during early childhood. J Clin Invest. 2009Oct 1;119(10):3070–8.PubMedPubMedCentral Sauce D, Larsen M, Fastenackels S, Duperrier A, Keller M, Grubeck-Loebenstein B, et al. Evidence of premature immune aging in patients thymectomized during early childhood. J Clin Invest. 2009Oct 1;119(10):3070–8.PubMedPubMedCentral
53.
go back to reference Duah M, Li L, Shen J, Lan Q, Pan B, Xu K. Thymus degeneration and regeneration. Front Immunol. 2021;12:1–17. Duah M, Li L, Shen J, Lan Q, Pan B, Xu K. Thymus degeneration and regeneration. Front Immunol. 2021;12:1–17.
54.
go back to reference Neidenbach RC, Lummert E, Vigl M, Zachoval R, Fischereder M, Engelhardt A, et al. Non-cardiac comorbidities in adults with inherited and congenital heart disease: report from a single center experience of more than 800 consecutive patients. Cardiovasc Diagn Ther. 2018;8(4):423–31.PubMedPubMedCentral Neidenbach RC, Lummert E, Vigl M, Zachoval R, Fischereder M, Engelhardt A, et al. Non-cardiac comorbidities in adults with inherited and congenital heart disease: report from a single center experience of more than 800 consecutive patients. Cardiovasc Diagn Ther. 2018;8(4):423–31.PubMedPubMedCentral
55.
go back to reference Maurer SJ, Bauer UMM, Baumgartner H, Uebing A, Walther C, Tutarel O. Acquired comorbidities in adults with congenital heart disease: an analysis of the German National Register for congenital heart defects. J Clin Med. 2021;10(2):1–10. Maurer SJ, Bauer UMM, Baumgartner H, Uebing A, Walther C, Tutarel O. Acquired comorbidities in adults with congenital heart disease: an analysis of the German National Register for congenital heart defects. J Clin Med. 2021;10(2):1–10.
56.
go back to reference Varga I, Pospisilova V, Galfiova P, Polak S. Thymic Hassall’s bodies of children with congenital heart defects. Bratisl Lek List. 2010;111(10):552–7. Varga I, Pospisilova V, Galfiova P, Polak S. Thymic Hassall’s bodies of children with congenital heart defects. Bratisl Lek List. 2010;111(10):552–7.
57.
go back to reference Ceyran AB, Şenol S, Güzelmeriç F, Tunçer E, Tongut A, Özbek B, et al. Effects of hypoxia and its relationship with apoptosis, stem cells, and angiogenesis on the thymus of children with congenital heart defects: a morphological and immunohistochemical study. Int J Clin Exp Pathol. 2015;8(7):8038–47.PubMedPubMedCentral Ceyran AB, Şenol S, Güzelmeriç F, Tunçer E, Tongut A, Özbek B, et al. Effects of hypoxia and its relationship with apoptosis, stem cells, and angiogenesis on the thymus of children with congenital heart defects: a morphological and immunohistochemical study. Int J Clin Exp Pathol. 2015;8(7):8038–47.PubMedPubMedCentral
58.
go back to reference Mestanova V, Varga I, Adamkov M. Impaired histomorphology might provoke cell cycle regulators alteration in thymus of children with various congenital heart defects. Med Hypotheses. 2020;1:138. Mestanova V, Varga I, Adamkov M. Impaired histomorphology might provoke cell cycle regulators alteration in thymus of children with various congenital heart defects. Med Hypotheses. 2020;1:138.
59.
go back to reference Clambey ET, McNamee EN, Westrich JA, Glover LE, Campbell EL, Jedlicka P, et al. Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc Natl Acad Sci U S A. 2012;109(41):2784. Clambey ET, McNamee EN, Westrich JA, Glover LE, Campbell EL, Jedlicka P, et al. Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc Natl Acad Sci U S A. 2012;109(41):2784.
60.
go back to reference Xu R, Wang F, Yang H, Wang Z. Action sites and clinical application of HIF-1α inhibitors. Molecules. 2022;27(11):1–14. Xu R, Wang F, Yang H, Wang Z. Action sites and clinical application of HIF-1α inhibitors. Molecules. 2022;27(11):1–14.
61.
go back to reference Lahm H, Jia M, Dreßen M, Wirth F, Puluca N, Gilsbach R, et al. Congenital heart disease risk loci identified by genome-wide association study in European patients. J Clin Invest. 2021;131(2):16–9. Lahm H, Jia M, Dreßen M, Wirth F, Puluca N, Gilsbach R, et al. Congenital heart disease risk loci identified by genome-wide association study in European patients. J Clin Invest. 2021;131(2):16–9.
62.
go back to reference Bhalla P, Wysocki CA, van Oers NSC. Molecular insights into the causes of human thymic hypoplasia with animal models. Front Immunol. 2020;11:830. Bhalla P, Wysocki CA, van Oers NSC. Molecular insights into the causes of human thymic hypoplasia with animal models. Front Immunol. 2020;11:830.
63.
go back to reference Zhou WZ, Li W, Shen H, Wang RW, Chen W, Zhang Y, et al. CHDbase: a comprehensive knowledgebase for congenital heart disease-related genes and clinical manifestations. Genomics Proteomics Bioinforma. 2023;21:216–27. Zhou WZ, Li W, Shen H, Wang RW, Chen W, Zhang Y, et al. CHDbase: a comprehensive knowledgebase for congenital heart disease-related genes and clinical manifestations. Genomics Proteomics Bioinforma. 2023;21:216–27.
64.
go back to reference Mustillo PJ, Sullivan KE, Chinn IK, Notarangelo LD, Haddad E, Davies EG, et al. Clinical practice guidelines for the immunological management of chromosome 22q11.2 deletion syndrome and other defects in thymic development. J Clin Immunol. 2023;43(2):247–70.PubMedPubMedCentral Mustillo PJ, Sullivan KE, Chinn IK, Notarangelo LD, Haddad E, Davies EG, et al. Clinical practice guidelines for the immunological management of chromosome 22q11.2 deletion syndrome and other defects in thymic development. J Clin Immunol. 2023;43(2):247–70.PubMedPubMedCentral
65.
go back to reference Zhang Z, Huynh T, Baldini A. Mesodermal expression of Tbx1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development. Development. 2006;133(18):3587–95.PubMed Zhang Z, Huynh T, Baldini A. Mesodermal expression of Tbx1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development. Development. 2006;133(18):3587–95.PubMed
66.
go back to reference Vitelli F, Huynh T, Baldini A. Gain of function of Tbx1 affects pharyngeal and heart development in the mouse. Genesis. 2009;47(3):1–14. Vitelli F, Huynh T, Baldini A. Gain of function of Tbx1 affects pharyngeal and heart development in the mouse. Genesis. 2009;47(3):1–14.
67.
go back to reference Vitelli F, Morishima M, Taddei I, Lindsay EA, Baldini A. Tbx1 mutation causes multiple cardiovascular defects and disrupts neural crest and cranial nerve migratory pathways. Hum Mol Genet. 2002;11(8):915–22.PubMed Vitelli F, Morishima M, Taddei I, Lindsay EA, Baldini A. Tbx1 mutation causes multiple cardiovascular defects and disrupts neural crest and cranial nerve migratory pathways. Hum Mol Genet. 2002;11(8):915–22.PubMed
68.
go back to reference Weijerman ME, Van Furth AM, Van Der Mooren MD, Van Weissenbruch MM, Rammeloo L, Broers CJM, et al. Prevalence of congenital heart defects and persistent pulmonary hypertension of the neonate with Down syndrome. Eur J Pediatr. 2010;169(10):1195–9.PubMedPubMedCentral Weijerman ME, Van Furth AM, Van Der Mooren MD, Van Weissenbruch MM, Rammeloo L, Broers CJM, et al. Prevalence of congenital heart defects and persistent pulmonary hypertension of the neonate with Down syndrome. Eur J Pediatr. 2010;169(10):1195–9.PubMedPubMedCentral
69.
go back to reference Erhardt S, Zheng M, Zhao X, Le TP, Findley TO, Wang J. The cardiac neural crest cells in heart development and congenital heart defects. J Cardiovasc Dev Dis. 2021;8(89):1–13. Erhardt S, Zheng M, Zhao X, Le TP, Findley TO, Wang J. The cardiac neural crest cells in heart development and congenital heart defects. J Cardiovasc Dev Dis. 2021;8(89):1–13.
70.
71.
go back to reference Brandstadter JD, Maillard I. Notch signalling in T cell homeostasis and differentiation. Open Biol. 2019;9(11):1–11. Brandstadter JD, Maillard I. Notch signalling in T cell homeostasis and differentiation. Open Biol. 2019;9(11):1–11.
72.
go back to reference Pala F, Notarangelo LD, Bosticardo M. Inborn errors of immunity associated with defects of thymic development. Pediatr Allergy Immunol. 2022;33(8):1–11. Pala F, Notarangelo LD, Bosticardo M. Inborn errors of immunity associated with defects of thymic development. Pediatr Allergy Immunol. 2022;33(8):1–11.
73.
go back to reference Cirillo E, Prencipe MR, Giardino G, Romano R, Scalia G, Genesio R, et al. Clinical phenotype, immunological abnormalities, and genomic findings in patients with DiGeorge spectrum phenotype without 22q112 Deletion. J Allergy Clin Immunol Pract. 2020;8:3112–20. Cirillo E, Prencipe MR, Giardino G, Romano R, Scalia G, Genesio R, et al. Clinical phenotype, immunological abnormalities, and genomic findings in patients with DiGeorge spectrum phenotype without 22q112 Deletion. J Allergy Clin Immunol Pract. 2020;8:3112–20.
74.
go back to reference Du Q, de la Morena MT, van Oers NSC. The genetics and epigenetics of 22q11.2 deletion syndrome. Front Genet. 2020;10:1–16. Du Q, de la Morena MT, van Oers NSC. The genetics and epigenetics of 22q11.2 deletion syndrome. Front Genet. 2020;10:1–16.
75.
go back to reference Romano R, Cillo F, Moracas C, Pignata L, Nannola C, Toriello E, et al. Epigenetic alterations in inborn errors of immunity. J Clin Med. 2022;11(5):1261. Romano R, Cillo F, Moracas C, Pignata L, Nannola C, Toriello E, et al. Epigenetic alterations in inborn errors of immunity. J Clin Med. 2022;11(5):1261.
76.
go back to reference Fulcoli FG, Franzese M, Liu X, Zhang Z, Angelini C, Baldini A. Rebalancing gene haploinsufficiency in vivo by targeting chromatin. Nat Commun. 2016;7:1–11. Fulcoli FG, Franzese M, Liu X, Zhang Z, Angelini C, Baldini A. Rebalancing gene haploinsufficiency in vivo by targeting chromatin. Nat Commun. 2016;7:1–11.
77.
go back to reference Liu S, Joseph KS, Lisonkova S, Rouleau J, Van Den Hof M, Sauve R, et al. Association between maternal chronic conditions and congenital heart defects: a population-based cohort study. Circulation. 2013;128(6):583–9.PubMed Liu S, Joseph KS, Lisonkova S, Rouleau J, Van Den Hof M, Sauve R, et al. Association between maternal chronic conditions and congenital heart defects: a population-based cohort study. Circulation. 2013;128(6):583–9.PubMed
78.
go back to reference Jenkins KJ, Correa A, Feinstein JA, Botto L, Britt AE, Daniels SR, et al. Noninherited risk factors and congenital cardiovascular defects: current knowledge - a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young. Circulation. 2007;115(23):2995–3014.PubMed Jenkins KJ, Correa A, Feinstein JA, Botto L, Britt AE, Daniels SR, et al. Noninherited risk factors and congenital cardiovascular defects: current knowledge - a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young. Circulation. 2007;115(23):2995–3014.PubMed
79.
go back to reference Dolk H, McCullough N, Callaghan S, Casey F, Craig B, Given J, et al. Risk factors for congenital heart disease: The Baby Hearts Study, a population-based case-control study. PLoS ONE. 2020;15(2):1–22. Dolk H, McCullough N, Callaghan S, Casey F, Craig B, Given J, et al. Risk factors for congenital heart disease: The Baby Hearts Study, a population-based case-control study. PLoS ONE. 2020;15(2):1–22.
80.
go back to reference Abqari S, Gupta A, Shahab T, Rabbani MU, Ali SM, Firdaus U. Profile and risk factors for congenital heart defects: a study in a tertiary care hospital. Ann Pediatr Cardiol. 2016;9(3):216–21.PubMedPubMedCentral Abqari S, Gupta A, Shahab T, Rabbani MU, Ali SM, Firdaus U. Profile and risk factors for congenital heart defects: a study in a tertiary care hospital. Ann Pediatr Cardiol. 2016;9(3):216–21.PubMedPubMedCentral
81.
go back to reference Jones CA, Nisenbaum R, De Souza LR, Berger H. Antenatal corticosteroid administration is associated with decreased growth of the fetal thymus: a prospective cohort study. J Perinatol. 2020;40(1):30–8.PubMed Jones CA, Nisenbaum R, De Souza LR, Berger H. Antenatal corticosteroid administration is associated with decreased growth of the fetal thymus: a prospective cohort study. J Perinatol. 2020;40(1):30–8.PubMed
82.
go back to reference Toti P, De Felice C, Stumpo M, Schürfeld K, Di LL, Vatti R, et al. Acute thymic involution in fetuses and neonates with chorioamnionitis. Hum Pathol. 2000;31(9):1121–8.PubMed Toti P, De Felice C, Stumpo M, Schürfeld K, Di LL, Vatti R, et al. Acute thymic involution in fetuses and neonates with chorioamnionitis. Hum Pathol. 2000;31(9):1121–8.PubMed
83.
go back to reference Zeyrek D, Ozturk E, Ozturk A, Cakmak A. Decreased thymus size in full-term newborn infants of smoking mothers. Med Sci Monit. 2008;14(8):CR423-426.PubMed Zeyrek D, Ozturk E, Ozturk A, Cakmak A. Decreased thymus size in full-term newborn infants of smoking mothers. Med Sci Monit. 2008;14(8):CR423-426.PubMed
84.
go back to reference Ansari AR, Liu H. Acute thymic involution and mechanisms for recovery. Arch Immunol Ther Exp (Warsz). 2017;65(5):401–20.PubMed Ansari AR, Liu H. Acute thymic involution and mechanisms for recovery. Arch Immunol Ther Exp (Warsz). 2017;65(5):401–20.PubMed
85.
go back to reference Kong Y, Li Y, Zhang W, Yuan S, Winkler R, Kröhnert U, et al. Sepsis-induced thymic atrophy is associated with defects in early lymphopoiesis. Stem Cells. 2016;34(12):2902–15.PubMed Kong Y, Li Y, Zhang W, Yuan S, Winkler R, Kröhnert U, et al. Sepsis-induced thymic atrophy is associated with defects in early lymphopoiesis. Stem Cells. 2016;34(12):2902–15.PubMed
86.
go back to reference Kuchler L, Sha LK, Giegerich AK, Knape T, Angioni C, Ferreirós N, et al. Elevated intrathymic sphingosine-1-phosphate promotes thymus involution during sepsis. Mol Immunol. 2017;90:255–63.PubMed Kuchler L, Sha LK, Giegerich AK, Knape T, Angioni C, Ferreirós N, et al. Elevated intrathymic sphingosine-1-phosphate promotes thymus involution during sepsis. Mol Immunol. 2017;90:255–63.PubMed
87.
go back to reference Weerkamp F, De Haas EFE, Naber BAE, Comans-Bitter WM, Bogers AJJC, Van Dongen JJM, et al. Age-related changes in the cellular composition of the thymus in children. J Allergy Clin Immunol. 2005;115(4):834–40.PubMed Weerkamp F, De Haas EFE, Naber BAE, Comans-Bitter WM, Bogers AJJC, Van Dongen JJM, et al. Age-related changes in the cellular composition of the thymus in children. J Allergy Clin Immunol. 2005;115(4):834–40.PubMed
89.
go back to reference Caprirolo G, Ghanayem NS, Murkowski K, Nugent ML, Simpson PM, Raff H. Circadian rhythm of salivary cortisol in infants with congenital heart disease. Endocrine. 2013;43(1):214–8.PubMed Caprirolo G, Ghanayem NS, Murkowski K, Nugent ML, Simpson PM, Raff H. Circadian rhythm of salivary cortisol in infants with congenital heart disease. Endocrine. 2013;43(1):214–8.PubMed
90.
go back to reference Mittelstadt PR, Taves MD, Ashwell JD. Cutting edge: de novo glucocorticoid synthesis by thymic epithelial cells regulates antigen-specific thymocyte selection. J Immunol. 2018;200:1988–94.PubMed Mittelstadt PR, Taves MD, Ashwell JD. Cutting edge: de novo glucocorticoid synthesis by thymic epithelial cells regulates antigen-specific thymocyte selection. J Immunol. 2018;200:1988–94.PubMed
91.
go back to reference Taves MD, Mittelstadt PR, Presman DM, Hager GL, Ashwell JD. Single-cell resolution and quantitation of targeted glucocorticoid delivery in the thymus. 2019;26(13):3629–42. Taves MD, Mittelstadt PR, Presman DM, Hager GL, Ashwell JD. Single-cell resolution and quantitation of targeted glucocorticoid delivery in the thymus. 2019;26(13):3629–42.
92.
go back to reference Yilmaz E, Ustundag B, Sen Y, Akarsu S, Kurt ANC, Dogan Y. The levels of ghrelin, TNF-α, and IL-6 in children with cyanotic and acyanotic congenital heart disease. Mediators Inflamm. 2007;32403. Yilmaz E, Ustundag B, Sen Y, Akarsu S, Kurt ANC, Dogan Y. The levels of ghrelin, TNF-α, and IL-6 in children with cyanotic and acyanotic congenital heart disease. Mediators Inflamm. 2007;32403.
93.
go back to reference Gu Q, Kong Y, Yu ZB, Bai L, Xiao YB. Hypoxia-induced SOCS3 is limiting STAT3 phosphorylation and NF-κB activation in congenital heart disease. Biochimie. 2011;93(5):909–20.PubMed Gu Q, Kong Y, Yu ZB, Bai L, Xiao YB. Hypoxia-induced SOCS3 is limiting STAT3 phosphorylation and NF-κB activation in congenital heart disease. Biochimie. 2011;93(5):909–20.PubMed
94.
go back to reference Wienecke LM, Cohen S, Bauersachs J, Mebazaa A, Chousterman BG. Immunity and inflammation: the neglected key players in congenital heart disease? Heart Fail Rev. 2022;27(5):1957–71.PubMed Wienecke LM, Cohen S, Bauersachs J, Mebazaa A, Chousterman BG. Immunity and inflammation: the neglected key players in congenital heart disease? Heart Fail Rev. 2022;27(5):1957–71.PubMed
95.
go back to reference Sheu TT, Chiang BL. Lymphopenia, lymphopenia-induced proliferation, and autoimmunity. Int J Mol Sci. 2021;22:1–26. Sheu TT, Chiang BL. Lymphopenia, lymphopenia-induced proliferation, and autoimmunity. Int J Mol Sci. 2021;22:1–26.
96.
go back to reference Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol. 2007;8(9):942–9.PubMed Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol. 2007;8(9):942–9.PubMed
97.
go back to reference Tajima M, Wakita D, Noguchi D, Chamoto K, Yue Z, Fugo K, et al. IL-6-dependent spontaneous proliferation is required for the induction of colitogenic IL-17-producing CD8+ T cells. J Exp Med. 2008;205(5):1019–27.PubMedPubMedCentral Tajima M, Wakita D, Noguchi D, Chamoto K, Yue Z, Fugo K, et al. IL-6-dependent spontaneous proliferation is required for the induction of colitogenic IL-17-producing CD8+ T cells. J Exp Med. 2008;205(5):1019–27.PubMedPubMedCentral
98.
go back to reference Ravkov E, Slev P, Heikal N. Thymic output: assessment of CD4+ recent thymic emigrants and T-cell receptor excision circles in infants. Cytometry B Clin Cytom. 2017;92(4):249–57.PubMed Ravkov E, Slev P, Heikal N. Thymic output: assessment of CD4+ recent thymic emigrants and T-cell receptor excision circles in infants. Cytometry B Clin Cytom. 2017;92(4):249–57.PubMed
99.
go back to reference Speckmann C, Nennstiel U, Hönig M, Albert MH, Ghosh S, Schuetz C, et al. Prospective newborn screening for SCID in Germany: a first analysis by the Pediatric Immunology Working Group (API). J Clin Immunol. 2023;43(5):965–78.PubMedPubMedCentral Speckmann C, Nennstiel U, Hönig M, Albert MH, Ghosh S, Schuetz C, et al. Prospective newborn screening for SCID in Germany: a first analysis by the Pediatric Immunology Working Group (API). J Clin Immunol. 2023;43(5):965–78.PubMedPubMedCentral
100.
go back to reference Gul KA, Strand J, Pettersen RD, Brun H, Abrahamsen TG. T-Cell receptor excision circles in newborns with heart defects. Pediatr Cardiol. 2020;41(4):809–15.PubMedPubMedCentral Gul KA, Strand J, Pettersen RD, Brun H, Abrahamsen TG. T-Cell receptor excision circles in newborns with heart defects. Pediatr Cardiol. 2020;41(4):809–15.PubMedPubMedCentral
101.
go back to reference Davey BT, Elder RW, Cloutier MM, Bennett N, Lee JH, Wang Z, et al. T-Cell receptor excision circles in newborns with congenital heart disease. J Pediatr. 2019;1(213):96-102.e2. Davey BT, Elder RW, Cloutier MM, Bennett N, Lee JH, Wang Z, et al. T-Cell receptor excision circles in newborns with congenital heart disease. J Pediatr. 2019;1(213):96-102.e2.
102.
go back to reference King C, Ilic A, Koelsch K, Sarvetnick N. Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell. 2004;117(2):265–77.PubMed King C, Ilic A, Koelsch K, Sarvetnick N. Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell. 2004;117(2):265–77.PubMed
103.
go back to reference Kooshesh KA, Foy BH, Sykes DB, Gustafsson K, Scadden DT. Health consequences of thymus removal in adults. N Engl J Med. 2023;389(5):406–17.PubMedPubMedCentral Kooshesh KA, Foy BH, Sykes DB, Gustafsson K, Scadden DT. Health consequences of thymus removal in adults. N Engl J Med. 2023;389(5):406–17.PubMedPubMedCentral
Metadata
Title
Thymic Atrophy and Immune Dysregulation in Infants with Complex Congenital Heart Disease
Authors
Sarah-Jolan Bremer
Annika Boxnick
Laura Glau
Daniel Biermann
Simon A. Joosse
Friederike Thiele
Elena Billeb
Jonathan May
Manuela Kolster
Romy Hackbusch
Mats Ingmar Fortmann
Rainer Kozlik-Feldmann
Michael Hübler
Eva Tolosa
Jörg Siegmar Sachweh
Anna Gieras
Publication date
01-03-2024
Publisher
Springer US
Published in
Journal of Clinical Immunology / Issue 3/2024
Print ISSN: 0271-9142
Electronic ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-024-01662-4

Other articles of this Issue 3/2024

Journal of Clinical Immunology 3/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine