Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2021

Open Access 01-12-2021 | Interferon | Research article

Echinacea purpurea (L.) Moench treatment of monocytes promotes tonic interferon signaling, increased innate immunity gene expression and DNA repeat hypermethylated silencing of endogenous retroviral sequences

Authors: Ken Declerck, Claudina Perez Novo, Lisa Grielens, Guy Van Camp, Andreas Suter, Wim Vanden Berghe

Published in: BMC Complementary Medicine and Therapies | Issue 1/2021

Login to get access

Abstract

Background

Herbal remedies of Echinacea purpurea tinctures are widely used today to reduce common cold respiratory tract infections.

Methods

Transcriptome, epigenome and kinome profiling allowed a systems biology level characterisation of genomewide immunomodulatory effects of a standardized Echinacea purpurea (L.) Moench extract in THP1 monocytes.

Results

Gene expression and DNA methylation analysis revealed that Echinaforce® treatment triggers antiviral innate immunity pathways, involving tonic IFN signaling, activation of pattern recognition receptors, chemotaxis and immunometabolism. Furthermore, phosphopeptide based kinome activity profiling and pharmacological inhibitor experiments with filgotinib confirm a key role for Janus Kinase (JAK)-1 dependent gene expression changes in innate immune signaling. Finally, Echinaforce® treatment induces DNA hypermethylation at intergenic CpG, long/short interspersed nuclear DNA repeat elements (LINE, SINE) or long termininal DNA repeats (LTR). This changes transcription of flanking endogenous retroviral sequences (HERVs), involved in an evolutionary conserved (epi) genomic protective response against viral infections.

Conclusions

Altogether, our results suggest that Echinaforce® phytochemicals strengthen antiviral innate immunity through tonic IFN regulation of pattern recognition and chemokine gene expression and DNA repeat hypermethylated silencing of HERVs in monocytes. These results suggest that immunomodulation by Echinaforce® treatment holds promise to reduce symptoms and duration of infection episodes of common cold corona viruses (CoV), Severe Acute Respiratory Syndrome (SARS)-CoV, and new occurring strains such as SARS-CoV-2, with strongly impaired interferon (IFN) response and weak innate antiviral defense.
Appendix
Available only for authorised users
Literature
1.
go back to reference Barnes J, et al. Echinacea species (Echinacea angustifolia (DC.) Hell., Echinacea pallida (Nutt.) Nutt.,Echinacea purpurea (L.) Moench): a review of their chemistry, pharmacology and clinical properties. J Pharm Pharmacol. 2005;57(8):929–54.PubMedCrossRef Barnes J, et al. Echinacea species (Echinacea angustifolia (DC.) Hell., Echinacea pallida (Nutt.) Nutt.,Echinacea purpurea (L.) Moench): a review of their chemistry, pharmacology and clinical properties. J Pharm Pharmacol. 2005;57(8):929–54.PubMedCrossRef
6.
go back to reference Hudson JB. Applications of the phytomedicine Echinacea purpurea (purple coneflower) in infectious diseases. J Biomed Biotechnol. 2012:769896. Hudson JB. Applications of the phytomedicine Echinacea purpurea (purple coneflower) in infectious diseases. J Biomed Biotechnol. 2012:769896.
7.
go back to reference Chicca A, et al. Synergistic immunomopharmacological effects of N-alkylamides in Echinacea purpurea herbal extracts. Int Immunopharmacol. 2009;9(7–8):850–8.PubMedCrossRef Chicca A, et al. Synergistic immunomopharmacological effects of N-alkylamides in Echinacea purpurea herbal extracts. Int Immunopharmacol. 2009;9(7–8):850–8.PubMedCrossRef
8.
go back to reference Dalby-Brown L, et al. Synergistic antioxidative effects of alkamides, caffeic acid derivatives, and polysaccharide fractions from Echinacea purpurea on in vitro oxidation of human low-density lipoproteins. J Agric Food Chem. 2005;53(24):9413–23.PubMedCrossRef Dalby-Brown L, et al. Synergistic antioxidative effects of alkamides, caffeic acid derivatives, and polysaccharide fractions from Echinacea purpurea on in vitro oxidation of human low-density lipoproteins. J Agric Food Chem. 2005;53(24):9413–23.PubMedCrossRef
9.
go back to reference Signer J, et al. In vitro virucidal activity of Echinaforce(R), an Echinacea purpurea preparation, against coronaviruses, including common cold coronavirus 229E and SARS-CoV-2. Virol J. 2020;17(1):136.PubMedPubMedCentralCrossRef Signer J, et al. In vitro virucidal activity of Echinaforce(R), an Echinacea purpurea preparation, against coronaviruses, including common cold coronavirus 229E and SARS-CoV-2. Virol J. 2020;17(1):136.PubMedPubMedCentralCrossRef
10.
go back to reference Ritchie MR, et al. Effects of Echinaforce(R) treatment on ex vivo-stimulated blood cells. Phytomedicine. 2011;18(10):826–31.PubMedCrossRef Ritchie MR, et al. Effects of Echinaforce(R) treatment on ex vivo-stimulated blood cells. Phytomedicine. 2011;18(10):826–31.PubMedCrossRef
11.
go back to reference Sharma M, et al. Induction of multiple pro-inflammatory cytokines by respiratory viruses and reversal by standardized Echinacea, a potent antiviral herbal extract. Antivir Res. 2009;83(2):165–70.PubMedCrossRef Sharma M, et al. Induction of multiple pro-inflammatory cytokines by respiratory viruses and reversal by standardized Echinacea, a potent antiviral herbal extract. Antivir Res. 2009;83(2):165–70.PubMedCrossRef
12.
go back to reference Sharma SM, et al. Bactericidal and anti-inflammatory properties of a standardized Echinacea extract (Echinaforce): dual actions against respiratory bacteria. Phytomedicine. 2010;17(8–9):563–8.PubMedCrossRef Sharma SM, et al. Bactericidal and anti-inflammatory properties of a standardized Echinacea extract (Echinaforce): dual actions against respiratory bacteria. Phytomedicine. 2010;17(8–9):563–8.PubMedCrossRef
14.
go back to reference Pleschka S, et al. Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian influenza virus (H5N1, H7N7) and swine-origin H1N1 (S-OIV). Virol J. 2009;6:197.PubMedPubMedCentralCrossRef Pleschka S, et al. Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian influenza virus (H5N1, H7N7) and swine-origin H1N1 (S-OIV). Virol J. 2009;6:197.PubMedPubMedCentralCrossRef
17.
go back to reference Woelkart K, et al. Bioavailability and pharmacokinetics of Echinacea purpurea preparations and their interaction with the immune system. Int J Clin Pharmacol Ther. 2006;44(9):401–8.PubMedCrossRef Woelkart K, et al. Bioavailability and pharmacokinetics of Echinacea purpurea preparations and their interaction with the immune system. Int J Clin Pharmacol Ther. 2006;44(9):401–8.PubMedCrossRef
18.
go back to reference Sharma M, et al. The potential use of Echinacea in acne: control of Propionibacterium acnes growth and inflammation. Phytother Res. 2011;25(4):517–21.PubMedCrossRef Sharma M, et al. The potential use of Echinacea in acne: control of Propionibacterium acnes growth and inflammation. Phytother Res. 2011;25(4):517–21.PubMedCrossRef
20.
go back to reference Vimalanathan S, et al. Prevention of influenza virus induced bacterial superinfection by standardized Echinacea purpurea, via regulation of surface receptor expression in human bronchial epithelial cells. Virus Res. 2017;233:51–9.PubMedCrossRef Vimalanathan S, et al. Prevention of influenza virus induced bacterial superinfection by standardized Echinacea purpurea, via regulation of surface receptor expression in human bronchial epithelial cells. Virus Res. 2017;233:51–9.PubMedCrossRef
21.
go back to reference Vimalanathan S, Schoop R, Hudson J. High-potency anti-influenza therapy by a combination of Echinacea purpurea fresh herb and root tinctures. J Appl Pharmaceut Sci. 2013;3:1–5. Vimalanathan S, Schoop R, Hudson J. High-potency anti-influenza therapy by a combination of Echinacea purpurea fresh herb and root tinctures. J Appl Pharmaceut Sci. 2013;3:1–5.
22.
go back to reference Brinkeborn RM, Shah DV, Degenring FH. Echinaforce and other Echinacea fresh plant preparations in the treatment of the common cold. A randomized, placebo controlled, double-blind clinical trial. Phytomedicine. 1999;6(1):1–6.PubMedCrossRef Brinkeborn RM, Shah DV, Degenring FH. Echinaforce and other Echinacea fresh plant preparations in the treatment of the common cold. A randomized, placebo controlled, double-blind clinical trial. Phytomedicine. 1999;6(1):1–6.PubMedCrossRef
23.
go back to reference Jawad M, et al. Safety and efficacy profile of Echinacea purpurea to prevent common cold episodes: A randomized, double-blind, Pacebo-Controlled Trial. Evid Based Complement Alternat Med. 2012:841315. Jawad M, et al. Safety and efficacy profile of Echinacea purpurea to prevent common cold episodes: A randomized, double-blind, Pacebo-Controlled Trial. Evid Based Complement Alternat Med. 2012:841315.
26.
go back to reference Pugh ND, Jackson CR, Pasco DS. Total bacterial load within Echinacea purpurea, determined using a new PCR-based quantification method, is correlated with LPS levels and in vitro macrophage activity. Planta Med. 2013;79(1):9–14.PubMed Pugh ND, Jackson CR, Pasco DS. Total bacterial load within Echinacea purpurea, determined using a new PCR-based quantification method, is correlated with LPS levels and in vitro macrophage activity. Planta Med. 2013;79(1):9–14.PubMed
27.
go back to reference Pugh ND, et al. The majority of in vitro macrophage activation exhibited by extracts of some immune enhancing botanicals is due to bacterial lipoproteins and lipopolysaccharides. Int Immunopharmacol. 2008;8(7):1023–32.PubMedPubMedCentralCrossRef Pugh ND, et al. The majority of in vitro macrophage activation exhibited by extracts of some immune enhancing botanicals is due to bacterial lipoproteins and lipopolysaccharides. Int Immunopharmacol. 2008;8(7):1023–32.PubMedPubMedCentralCrossRef
28.
go back to reference Tamta H, et al. Variability in in vitro macrophage activation by commercially diverse bulk echinacea plant material is predominantly due to bacterial lipoproteins and lipopolysaccharides. J Agric Food Chem. 2008;56(22):10552–6.PubMedPubMedCentralCrossRef Tamta H, et al. Variability in in vitro macrophage activation by commercially diverse bulk echinacea plant material is predominantly due to bacterial lipoproteins and lipopolysaccharides. J Agric Food Chem. 2008;56(22):10552–6.PubMedPubMedCentralCrossRef
29.
go back to reference Todd DA, et al. Ethanolic Echinacea purpurea extracts contain a mixture of cytokine-suppressive and cytokine-inducing compounds, including some that originate from Endophytic Bacteria. PLoS One. 2015;10(5):e0124276.PubMedPubMedCentralCrossRef Todd DA, et al. Ethanolic Echinacea purpurea extracts contain a mixture of cytokine-suppressive and cytokine-inducing compounds, including some that originate from Endophytic Bacteria. PLoS One. 2015;10(5):e0124276.PubMedPubMedCentralCrossRef
30.
go back to reference Dunning MJ, et al. Beadarray: R classes and methods for Illumina bead-based data. Bioinformatics. 2007;23(16):2183–4.PubMedCrossRef Dunning MJ, et al. Beadarray: R classes and methods for Illumina bead-based data. Bioinformatics. 2007;23(16):2183–4.PubMedCrossRef
31.
go back to reference Barbosa-Morais NL, et al. A re-annotation pipeline for Illumina BeadArrays: improving the interpretation of gene expression data. Nucleic Acids Res. 2010;38(3):e17.PubMedCrossRef Barbosa-Morais NL, et al. A re-annotation pipeline for Illumina BeadArrays: improving the interpretation of gene expression data. Nucleic Acids Res. 2010;38(3):e17.PubMedCrossRef
32.
33.
go back to reference Reiner A, Yekutieli D, Benjamini Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics. 2003;19(3):368–75.PubMedCrossRef Reiner A, Yekutieli D, Benjamini Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics. 2003;19(3):368–75.PubMedCrossRef
34.
go back to reference Dunning M, L.A.a.E.M., illuminaHumanv4.db: Illumina HumanHT12v4 annotation data (chip illuminaHumanv4). 2015, R package version 1.26.0. Dunning M, L.A.a.E.M., illuminaHumanv4.db: Illumina HumanHT12v4 annotation data (chip illuminaHumanv4). 2015, R package version 1.26.0.
36.
go back to reference Zhou Y, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1–10. Zhou Y, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1–10.
38.
go back to reference Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003;4:2.CrossRef Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003;4:2.CrossRef
44.
go back to reference Teschendorff AE, et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics. 2013;29(2):189–96.PubMedCrossRef Teschendorff AE, et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics. 2013;29(2):189–96.PubMedCrossRef
45.
go back to reference Hansen KD, IlluminaHumanMethylationEPICmanifest: Manifest for Illumina's EPIC methylation arrays. 2016, R package version 0.3.0. Hansen KD, IlluminaHumanMethylationEPICmanifest: Manifest for Illumina's EPIC methylation arrays. 2016, R package version 0.3.0.
46.
go back to reference Milenkovic D, et al. Dietary flavanols modulate the transcription of genes associated with cardiovascular pathology without changes in their DNA methylation state. PLoS One. 2014;9(4):e95527.PubMedPubMedCentralCrossRef Milenkovic D, et al. Dietary flavanols modulate the transcription of genes associated with cardiovascular pathology without changes in their DNA methylation state. PLoS One. 2014;9(4):e95527.PubMedPubMedCentralCrossRef
48.
go back to reference Milenkovic D, et al. A systems biology network analysis of nutri (epi) genomic changes in endothelial cells exposed to epicatechin metabolites. Sci Rep. 2018;8(1):15487.PubMedPubMedCentralCrossRef Milenkovic D, et al. A systems biology network analysis of nutri (epi) genomic changes in endothelial cells exposed to epicatechin metabolites. Sci Rep. 2018;8(1):15487.PubMedPubMedCentralCrossRef
49.
go back to reference Michalska A, et al. A positive feedback amplifier circuit that regulates interferon (IFN)-stimulated gene expression and controls type I and type II IFN responses. Front Immunol. 2018;9:1135.PubMedPubMedCentralCrossRef Michalska A, et al. A positive feedback amplifier circuit that regulates interferon (IFN)-stimulated gene expression and controls type I and type II IFN responses. Front Immunol. 2018;9:1135.PubMedPubMedCentralCrossRef
50.
go back to reference Mogensen TH. IRF and STAT transcription factors - from basic biology to roles in infection, protective immunity, and primary Immunodeficiencies. Front Immunol. 2018;9:3047.PubMedCrossRef Mogensen TH. IRF and STAT transcription factors - from basic biology to roles in infection, protective immunity, and primary Immunodeficiencies. Front Immunol. 2018;9:3047.PubMedCrossRef
51.
go back to reference Verhelst J, et al. Interferon-inducible protein Mx1 inhibits influenza virus by interfering with functional viral ribonucleoprotein complex assembly. J Virol. 2012;86(24):13445–55.PubMedPubMedCentralCrossRef Verhelst J, et al. Interferon-inducible protein Mx1 inhibits influenza virus by interfering with functional viral ribonucleoprotein complex assembly. J Virol. 2012;86(24):13445–55.PubMedPubMedCentralCrossRef
52.
53.
go back to reference Smith SE, et al. Interferon-induced transmembrane protein 1 restricts replication of viruses that enter cells via the plasma membrane. J Virol. 2019;93(6):e02003-18(1–13). Smith SE, et al. Interferon-induced transmembrane protein 1 restricts replication of viruses that enter cells via the plasma membrane. J Virol. 2019;93(6):e02003-18(1–13).
55.
go back to reference Szklarczyk D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.PubMedCrossRef Szklarczyk D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.PubMedCrossRef
57.
go back to reference Hussein HAM, Akula SM. miRNA-36 inhibits KSHV, EBV, HSV-2 infection of cells via stifling expression of interferon induced transmembrane protein 1 (IFITM1). Sci Rep. 2017;7(1):17972.PubMedPubMedCentralCrossRef Hussein HAM, Akula SM. miRNA-36 inhibits KSHV, EBV, HSV-2 infection of cells via stifling expression of interferon induced transmembrane protein 1 (IFITM1). Sci Rep. 2017;7(1):17972.PubMedPubMedCentralCrossRef
60.
65.
go back to reference Meffre E, Iwasaki A. Interferon deficiency can lead to severe COVID. Nature. 2020;587(7834):374–6.PubMedCrossRef Meffre E, Iwasaki A. Interferon deficiency can lead to severe COVID. Nature. 2020;587(7834):374–6.PubMedCrossRef
66.
go back to reference Stertz S, Hale BG. Interferon system deficiencies exacerbating severe pandemic virus infections. Trends Microbiol. 2021. Stertz S, Hale BG. Interferon system deficiencies exacerbating severe pandemic virus infections. Trends Microbiol. 2021.
67.
go back to reference Bastard P, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585. Bastard P, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585.
68.
go back to reference Zhang Q, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585. Zhang Q, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585.
69.
go back to reference Lopez L, et al. Dysregulated Interferon Response Underlying Severe COVID-19. Viruses. 2020:12. Lopez L, et al. Dysregulated Interferon Response Underlying Severe COVID-19. Viruses. 2020:12.
74.
go back to reference Arsenault R, Griebel P, Napper S. Peptide arrays for kinome analysis: new opportunities and remaining challenges. Proteomics. 2011;11(24):4595–609.PubMedCrossRef Arsenault R, Griebel P, Napper S. Peptide arrays for kinome analysis: new opportunities and remaining challenges. Proteomics. 2011;11(24):4595–609.PubMedCrossRef
76.
go back to reference Labots M, et al. Evaluation of a tyrosine kinase peptide microarray for tyrosine kinase inhibitor therapy selection in cancer. Exp Mol Med. 2016;48(12):e279.PubMedPubMedCentralCrossRef Labots M, et al. Evaluation of a tyrosine kinase peptide microarray for tyrosine kinase inhibitor therapy selection in cancer. Exp Mol Med. 2016;48(12):e279.PubMedPubMedCentralCrossRef
79.
go back to reference Kar UK, Joosten LAB. Training the trainable cells of the immune system and beyond. Nat Immunol. 2020;21(2):115–9.PubMedCrossRef Kar UK, Joosten LAB. Training the trainable cells of the immune system and beyond. Nat Immunol. 2020;21(2):115–9.PubMedCrossRef
81.
82.
go back to reference Szarc Vel Szic K, et al. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenet. 2015;7:33.CrossRef Szarc Vel Szic K, et al. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenet. 2015;7:33.CrossRef
85.
go back to reference Milagro FI, et al. Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol Asp Med. 2013;34(4):782–812.CrossRef Milagro FI, et al. Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol Asp Med. 2013;34(4):782–812.CrossRef
86.
go back to reference Remely M, et al. Therapeutic perspectives of epigenetically active nutrients. Br J Pharmacol. 2015;172(11):2756–68.PubMedCrossRef Remely M, et al. Therapeutic perspectives of epigenetically active nutrients. Br J Pharmacol. 2015;172(11):2756–68.PubMedCrossRef
87.
go back to reference Koch A, et al. Analysis of DNA methylation in cancer: location revisited. Nat Rev Clin Oncol. 2018;15(7):459–66.PubMedCrossRef Koch A, et al. Analysis of DNA methylation in cancer: location revisited. Nat Rev Clin Oncol. 2018;15(7):459–66.PubMedCrossRef
88.
go back to reference Milenkovic D, et al. (−)-Epicatechin metabolites promote vascular health through epigenetic reprogramming of endothelial-immune cell signaling and reversing systemic low-grade inflammation. Biochem Pharmacol. 2019:113699. Milenkovic D, et al. (−)-Epicatechin metabolites promote vascular health through epigenetic reprogramming of endothelial-immune cell signaling and reversing systemic low-grade inflammation. Biochem Pharmacol. 2019:113699.
92.
go back to reference Pulloor NK, et al. Human genome-wide RNAi screen identifies an essential role for inositol pyrophosphates in type-I interferon response. PLoS Pathog. 2014;10(2):e1003981.PubMedPubMedCentralCrossRef Pulloor NK, et al. Human genome-wide RNAi screen identifies an essential role for inositol pyrophosphates in type-I interferon response. PLoS Pathog. 2014;10(2):e1003981.PubMedPubMedCentralCrossRef
102.
go back to reference Piasecka A, Jedrzejczak-Rey N, Bednarek P. Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. New Phytol. 2015;206(3):948–64.PubMedCrossRef Piasecka A, Jedrzejczak-Rey N, Bednarek P. Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. New Phytol. 2015;206(3):948–64.PubMedCrossRef
103.
go back to reference Kamada R, et al. Interferon stimulation creates chromatin marks and establishes transcriptional memory. Proc Natl Acad Sci U S A. 2018;115(39):E9162–71.PubMedPubMedCentralCrossRef Kamada R, et al. Interferon stimulation creates chromatin marks and establishes transcriptional memory. Proc Natl Acad Sci U S A. 2018;115(39):E9162–71.PubMedPubMedCentralCrossRef
105.
go back to reference Tang BM, et al. A novel immune biomarker IFI27 discriminates between influenza and bacteria in patients with suspected respiratory infection. Eur Respir J. 2017;49(6):1602098(1–12). Tang BM, et al. A novel immune biomarker IFI27 discriminates between influenza and bacteria in patients with suspected respiratory infection. Eur Respir J. 2017;49(6):1602098(1–12).
106.
go back to reference Zhao X, et al. IFITM genes, variants, and their roles in the control and pathogenesis of viral infections. Front Microbiol. 2018;9:3228.PubMedCrossRef Zhao X, et al. IFITM genes, variants, and their roles in the control and pathogenesis of viral infections. Front Microbiol. 2018;9:3228.PubMedCrossRef
109.
go back to reference Andrilenas KK, et al. DNA-binding landscape of IRF3, IRF5 and IRF7 dimers: implications for dimer-specific gene regulation. Nucleic Acids Res. 2018;46(5):2509–20.PubMedPubMedCentralCrossRef Andrilenas KK, et al. DNA-binding landscape of IRF3, IRF5 and IRF7 dimers: implications for dimer-specific gene regulation. Nucleic Acids Res. 2018;46(5):2509–20.PubMedPubMedCentralCrossRef
112.
go back to reference Roesler J, et al. Application of purified polysaccharides from cell cultures of the plant Echinacea purpurea to test subjects mediates activation of the phagocyte system. Int J Immunopharmacol. 1991;13(7):931–41.PubMedCrossRef Roesler J, et al. Application of purified polysaccharides from cell cultures of the plant Echinacea purpurea to test subjects mediates activation of the phagocyte system. Int J Immunopharmacol. 1991;13(7):931–41.PubMedCrossRef
113.
go back to reference Sokol CL, Luster AD. The chemokine system in innate immunity. Cold Spring Harb Perspect Biol. 2015;7(5):a016303(1–19). Sokol CL, Luster AD. The chemokine system in innate immunity. Cold Spring Harb Perspect Biol. 2015;7(5):a016303(1–19).
114.
go back to reference Yuan J, et al. CXCL10 inhibits viral replication through recruitment of natural killer cells in coxsackievirus B3-induced myocarditis. Circ Res. 2009;104(5):628–38.PubMedCrossRef Yuan J, et al. CXCL10 inhibits viral replication through recruitment of natural killer cells in coxsackievirus B3-induced myocarditis. Circ Res. 2009;104(5):628–38.PubMedCrossRef
117.
go back to reference Yin SY, et al. Stimulatory effect of Echinacea purpurea extract on the trafficking activity of mouse dendritic cells: revealed by genomic and proteomic analyses. BMC Genomics. 2010;11:612.PubMedPubMedCentralCrossRef Yin SY, et al. Stimulatory effect of Echinacea purpurea extract on the trafficking activity of mouse dendritic cells: revealed by genomic and proteomic analyses. BMC Genomics. 2010;11:612.PubMedPubMedCentralCrossRef
118.
go back to reference Sharma M, Arnason JT, Hudson JB. Echinacea extracts modulate the production of multiple transcription factors in uninfected cells and rhinovirus-infected cells. Phytother Res. 2006;20(12):1074–9.PubMedCrossRef Sharma M, Arnason JT, Hudson JB. Echinacea extracts modulate the production of multiple transcription factors in uninfected cells and rhinovirus-infected cells. Phytother Res. 2006;20(12):1074–9.PubMedCrossRef
119.
go back to reference Cech NB, et al. Echinacea and its alkylamides: effects on the influenza A-induced secretion of cytokines, chemokines, and PGE (2) from RAW 264.7 macrophage-like cells. Int Immunopharmacol. 2010;10(10):1268–78.PubMedCrossRef Cech NB, et al. Echinacea and its alkylamides: effects on the influenza A-induced secretion of cytokines, chemokines, and PGE (2) from RAW 264.7 macrophage-like cells. Int Immunopharmacol. 2010;10(10):1268–78.PubMedCrossRef
121.
go back to reference Wu YH, et al. Avocado (Persea americana) fruit extract (2R,4R)-1,2,4-trihydroxyheptadec-16-yne inhibits dengue virus replication via upregulation of NF-kappaB-dependent induction of antiviral interferon responses. Sci Rep. 2019;9(1):423.PubMedPubMedCentralCrossRef Wu YH, et al. Avocado (Persea americana) fruit extract (2R,4R)-1,2,4-trihydroxyheptadec-16-yne inhibits dengue virus replication via upregulation of NF-kappaB-dependent induction of antiviral interferon responses. Sci Rep. 2019;9(1):423.PubMedPubMedCentralCrossRef
122.
123.
go back to reference Raniga K, Liang C. Interferons: reprogramming the metabolic network against viral infection. Viruses. 2018;10(1):36(1–21). Raniga K, Liang C. Interferons: reprogramming the metabolic network against viral infection. Viruses. 2018;10(1):36(1–21).
125.
go back to reference Zhang Y, et al. The in vivo ISGylome links ISG15 to metabolic pathways and autophagy upon listeria monocytogenes infection. Nat Commun. 2019;10(1):5383.PubMedPubMedCentralCrossRef Zhang Y, et al. The in vivo ISGylome links ISG15 to metabolic pathways and autophagy upon listeria monocytogenes infection. Nat Commun. 2019;10(1):5383.PubMedPubMedCentralCrossRef
126.
go back to reference Albert M, et al. ISG15, a small molecule with huge implications: regulation of mitochondrial homeostasis. Viruses. 2018;10(11):629(1–18). Albert M, et al. ISG15, a small molecule with huge implications: regulation of mitochondrial homeostasis. Viruses. 2018;10(11):629(1–18).
131.
go back to reference Takahashi-Tezuka M, et al. Tec tyrosine kinase links the cytokine receptors to PI-3 kinase probably through JAK. Oncogene. 1997;14(19):2273–82.PubMedCrossRef Takahashi-Tezuka M, et al. Tec tyrosine kinase links the cytokine receptors to PI-3 kinase probably through JAK. Oncogene. 1997;14(19):2273–82.PubMedCrossRef
132.
go back to reference Yamashita Y, et al. Tec and Jak2 kinases cooperate to mediate cytokine-driven activation of c-fos transcription. Blood. 1998;91(5):1496–507.PubMedCrossRef Yamashita Y, et al. Tec and Jak2 kinases cooperate to mediate cytokine-driven activation of c-fos transcription. Blood. 1998;91(5):1496–507.PubMedCrossRef
133.
135.
go back to reference Zwolanek F, et al. The non-receptor tyrosine kinase Tec controls assembly and activity of the noncanonical caspase-8 inflammasome. PLoS Pathog. 2014;10(12):e1004525.PubMedPubMedCentralCrossRef Zwolanek F, et al. The non-receptor tyrosine kinase Tec controls assembly and activity of the noncanonical caspase-8 inflammasome. PLoS Pathog. 2014;10(12):e1004525.PubMedPubMedCentralCrossRef
138.
go back to reference Jongstra-Bilen J, et al. Dual functions of Bruton's tyrosine kinase and Tec kinase during Fcgamma receptor-induced signaling and phagocytosis. J Immunol. 2008;181(1):288–98.PubMedCrossRef Jongstra-Bilen J, et al. Dual functions of Bruton's tyrosine kinase and Tec kinase during Fcgamma receptor-induced signaling and phagocytosis. J Immunol. 2008;181(1):288–98.PubMedCrossRef
140.
go back to reference Mikkelsen SS, et al. RIG-I-mediated activation of p38 MAPK is essential for viral induction of interferon and activation of dendritic cells: dependence on TRAF2 and TAK1. J Biol Chem. 2009;284(16):10774–82.PubMedPubMedCentralCrossRef Mikkelsen SS, et al. RIG-I-mediated activation of p38 MAPK is essential for viral induction of interferon and activation of dendritic cells: dependence on TRAF2 and TAK1. J Biol Chem. 2009;284(16):10774–82.PubMedPubMedCentralCrossRef
141.
go back to reference Wang CY, et al. Genomics and proteomics of immune modulatory effects of a butanol fraction of echinacea purpurea in human dendritic cells. BMC Genomics. 2008;9:479.PubMedPubMedCentralCrossRef Wang CY, et al. Genomics and proteomics of immune modulatory effects of a butanol fraction of echinacea purpurea in human dendritic cells. BMC Genomics. 2008;9:479.PubMedPubMedCentralCrossRef
142.
go back to reference Li Y, et al. Echinacea pupurea extracts promote murine dendritic cell maturation by activation of JNK, p38 MAPK and NF-kappaB pathways. Dev Comp Immunol. 2017;73:21–6.PubMedCrossRef Li Y, et al. Echinacea pupurea extracts promote murine dendritic cell maturation by activation of JNK, p38 MAPK and NF-kappaB pathways. Dev Comp Immunol. 2017;73:21–6.PubMedCrossRef
143.
go back to reference Sullivan AM, et al. Echinacea-induced macrophage activation. Immunopharmacol Immunotoxicol. 2008;30(3):553–74.PubMedCrossRef Sullivan AM, et al. Echinacea-induced macrophage activation. Immunopharmacol Immunotoxicol. 2008;30(3):553–74.PubMedCrossRef
144.
go back to reference Fu A, et al. Echinacea purpurea extract polarizes M1 macrophages in murine bone marrow-derived macrophages through the activation of JNK. J Cell Biochem. 2017;118(9):2664–71.PubMedCrossRef Fu A, et al. Echinacea purpurea extract polarizes M1 macrophages in murine bone marrow-derived macrophages through the activation of JNK. J Cell Biochem. 2017;118(9):2664–71.PubMedCrossRef
145.
go back to reference Yu JS, et al. Celastrol inhibits dengue virus replication via up-regulating type I interferon and downstream interferon-stimulated responses. Antivir Res. 2017;137:49–57.PubMedCrossRef Yu JS, et al. Celastrol inhibits dengue virus replication via up-regulating type I interferon and downstream interferon-stimulated responses. Antivir Res. 2017;137:49–57.PubMedCrossRef
146.
148.
go back to reference Greenberg MVC, Bourc'his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019;20(10):590–607.PubMedCrossRef Greenberg MVC, Bourc'his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019;20(10):590–607.PubMedCrossRef
150.
go back to reference Chiappinelli KB, et al. Inhibiting DNA methylation causes an interferon response in Cancer via dsRNA including endogenous retroviruses. Cell. 2015;162(5):974–86.PubMedPubMedCentralCrossRef Chiappinelli KB, et al. Inhibiting DNA methylation causes an interferon response in Cancer via dsRNA including endogenous retroviruses. Cell. 2015;162(5):974–86.PubMedPubMedCentralCrossRef
152.
go back to reference Leonova KI, et al. p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs. Proc Natl Acad Sci U S A. 2013;110(1):E89–98.PubMedCrossRef Leonova KI, et al. p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs. Proc Natl Acad Sci U S A. 2013;110(1):E89–98.PubMedCrossRef
153.
go back to reference Licht JD. DNA methylation inhibitors in Cancer therapy: the immunity dimension. Cell. 2015;162(5):938–9.PubMedCrossRef Licht JD. DNA methylation inhibitors in Cancer therapy: the immunity dimension. Cell. 2015;162(5):938–9.PubMedCrossRef
154.
155.
156.
go back to reference Sun X, et al. Transcription factor profiling reveals molecular choreography and key regulators of human retrotransposon expression. Proc Natl Acad Sci U S A. 2018;115(24):E5526–35.PubMedPubMedCentralCrossRef Sun X, et al. Transcription factor profiling reveals molecular choreography and key regulators of human retrotransposon expression. Proc Natl Acad Sci U S A. 2018;115(24):E5526–35.PubMedPubMedCentralCrossRef
157.
go back to reference Johnson WE. Origins and evolutionary consequences of ancient endogenous retroviruses. Nat Rev Microbiol. 2019;17(6):355–70.PubMedCrossRef Johnson WE. Origins and evolutionary consequences of ancient endogenous retroviruses. Nat Rev Microbiol. 2019;17(6):355–70.PubMedCrossRef
159.
go back to reference Ito J, et al. Systematic identification and characterization of regulatory elements derived from human endogenous retroviruses. PLoS Genet. 2017;13(7):e1006883.PubMedPubMedCentralCrossRef Ito J, et al. Systematic identification and characterization of regulatory elements derived from human endogenous retroviruses. PLoS Genet. 2017;13(7):e1006883.PubMedPubMedCentralCrossRef
160.
go back to reference Hurst TP, Magiorkinis G. Activation of the innate immune response by endogenous retroviruses. J Gen Virol. 2015;96(Pt 6):1207–18.PubMedCrossRef Hurst TP, Magiorkinis G. Activation of the innate immune response by endogenous retroviruses. J Gen Virol. 2015;96(Pt 6):1207–18.PubMedCrossRef
161.
go back to reference Briard B, Place DE, Kanneganti TD. DNA sensing in the innate immune response. Physiology (Bethesda). 2020;35(2):112–24. Briard B, Place DE, Kanneganti TD. DNA sensing in the innate immune response. Physiology (Bethesda). 2020;35(2):112–24.
164.
go back to reference Chuong EB, Elde NC, Feschotte C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science. 2016;351(6277):1083–7.PubMedPubMedCentralCrossRef Chuong EB, Elde NC, Feschotte C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science. 2016;351(6277):1083–7.PubMedPubMedCentralCrossRef
166.
go back to reference Hudson J, Vimalanathan S. Echinacea—A source of potent antivirals for respiratory virus infections. Pharmaceuticals. 2011;4(7):1019–31.PubMedCentralCrossRef Hudson J, Vimalanathan S. Echinacea—A source of potent antivirals for respiratory virus infections. Pharmaceuticals. 2011;4(7):1019–31.PubMedCentralCrossRef
Metadata
Title
Echinacea purpurea (L.) Moench treatment of monocytes promotes tonic interferon signaling, increased innate immunity gene expression and DNA repeat hypermethylated silencing of endogenous retroviral sequences
Authors
Ken Declerck
Claudina Perez Novo
Lisa Grielens
Guy Van Camp
Andreas Suter
Wim Vanden Berghe
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Interferon
Published in
BMC Complementary Medicine and Therapies / Issue 1/2021
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-021-03310-5

Other articles of this Issue 1/2021

BMC Complementary Medicine and Therapies 1/2021 Go to the issue