Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2021

01-12-2021 | Interferon | Review

Cytosolic sensor STING in mucosal immunity: a master regulator of gut inflammation and carcinogenesis

Authors: Qiongyuan Hu, Quan Zhou, Xuefeng Xia, Lihua Shao, Meng Wang, Xiaofeng Lu, Song Liu, Wenxian Guan

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2021

Login to get access

Abstract

The stimulator of interferon genes (STING) connects microbial cytosolic sensing with host cell effector functions. STING signaling plays a central role in cyclic dinucleotides (CDNs) and DNA sensing to induce secretion of interferons and pro-inflammatory mediators. Although activated STING signaling favors antimicrobial progress and facilitates mucosal would healing, its role in mucosal immunity and gut homeostasis is paradoxical, ranging from positive and negative effects within the gut. In our review, we summarize recent advance of STING signaling in gut homeostasis and inflammation, especially focusing on its molecular basis in mucosal immune response. Deep understanding of the regulatory mechanisms of intestinal STING pathway could promote clinical manipulation of this fundamental signaling as a promising immunomodulatory therapy.
Literature
1.
go back to reference de Jong PR, Gonzalez-Navajas JM, Jansen NJG. The digestive tract as the origin of systemic inflammation. Critical Care 2016, 20. de Jong PR, Gonzalez-Navajas JM, Jansen NJG. The digestive tract as the origin of systemic inflammation. Critical Care 2016, 20.
2.
go back to reference Kurashima Y, Goto Y, Kiyono H. Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation. Eur J Immunol. 2013;43(12):3108–15.PubMedCrossRef Kurashima Y, Goto Y, Kiyono H. Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation. Eur J Immunol. 2013;43(12):3108–15.PubMedCrossRef
3.
go back to reference Hu Q, Ren Y, Slade DA, Zhou Q, Wu X, Huang J, Gu G, Wang G, Ren J, Li J. Damps’ role in inflammatory bowel disease: a paradoxical player of mtDNA-STING signaling pathway in gut homeostasis. Sci Bull. 2019;64(19):1396–8.CrossRef Hu Q, Ren Y, Slade DA, Zhou Q, Wu X, Huang J, Gu G, Wang G, Ren J, Li J. Damps’ role in inflammatory bowel disease: a paradoxical player of mtDNA-STING signaling pathway in gut homeostasis. Sci Bull. 2019;64(19):1396–8.CrossRef
4.
go back to reference Ahn J, Barber GN. Self-DNA, STING-dependent signaling and the origins of autoinflammatory disease. Curr Opin Immunol. 2014;31:121–6.PubMedCrossRef Ahn J, Barber GN. Self-DNA, STING-dependent signaling and the origins of autoinflammatory disease. Curr Opin Immunol. 2014;31:121–6.PubMedCrossRef
5.
go back to reference Ahn J, Ruiz P, Barber GN. Intrinsic Self-DNA Triggers Inflammatory Disease Dependent on STING. J Immunol. 2014;193(9):4634–42.PubMedCrossRef Ahn J, Ruiz P, Barber GN. Intrinsic Self-DNA Triggers Inflammatory Disease Dependent on STING. J Immunol. 2014;193(9):4634–42.PubMedCrossRef
7.
go back to reference Gao DX, Wu JX, Wu YT, Du FH, Aroh C, Yan N, Sun LJ, Chen ZJJ. Cyclic GMP-AMP Synthase Is an Innate Immune Sensor of HIV and Other Retroviruses. Science. 2013;341(6148):903–6.PubMedCrossRef Gao DX, Wu JX, Wu YT, Du FH, Aroh C, Yan N, Sun LJ, Chen ZJJ. Cyclic GMP-AMP Synthase Is an Innate Immune Sensor of HIV and Other Retroviruses. Science. 2013;341(6148):903–6.PubMedCrossRef
8.
go back to reference Li XD, Wu JX, Gao DX, Wang H, Sun LJ, Chen ZJJ. Pivotal Roles of cGAS-cGAMP Signaling in Antiviral Defense and Immune Adjuvant Effects. Science. 2013;341(6152):1390–4.PubMedCrossRef Li XD, Wu JX, Gao DX, Wang H, Sun LJ, Chen ZJJ. Pivotal Roles of cGAS-cGAMP Signaling in Antiviral Defense and Immune Adjuvant Effects. Science. 2013;341(6152):1390–4.PubMedCrossRef
9.
go back to reference Ahn J, Barber GN. STING signaling and host defense against microbial infection. Experimental and Molecular Medicine 2019, 51. Ahn J, Barber GN. STING signaling and host defense against microbial infection. Experimental and Molecular Medicine 2019, 51.
10.
go back to reference Ablasser A, Schmid-Burgk JL, Hemmerling I, Horvath GL, Schmidt T, Latz E, Hornung V. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature. 2013;503(7477):530-+.PubMedPubMedCentralCrossRef Ablasser A, Schmid-Burgk JL, Hemmerling I, Horvath GL, Schmidt T, Latz E, Hornung V. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature. 2013;503(7477):530-+.PubMedPubMedCentralCrossRef
11.
go back to reference Zhou C, Chen X, Planells-Cases R, Chu J, Wang L, Cao L, Li Z, Lopez-Cayuqueo KI, Xie Y, Ye S, et al. Transfer of cGAMP into Bystander Cells via LRRC8 Volume-Regulated Anion Channels Augments STING-Mediated Interferon Responses and Anti-viral Immunity. Immunity. 2020;52(5):767-U305.CrossRef Zhou C, Chen X, Planells-Cases R, Chu J, Wang L, Cao L, Li Z, Lopez-Cayuqueo KI, Xie Y, Ye S, et al. Transfer of cGAMP into Bystander Cells via LRRC8 Volume-Regulated Anion Channels Augments STING-Mediated Interferon Responses and Anti-viral Immunity. Immunity. 2020;52(5):767-U305.CrossRef
12.
go back to reference Yang Q, Shu H-B. Deciphering the pathways to antiviral innate immunity and inflammation. Advances in immunology. 2020;145:1–36.PubMedCrossRef Yang Q, Shu H-B. Deciphering the pathways to antiviral innate immunity and inflammation. Advances in immunology. 2020;145:1–36.PubMedCrossRef
13.
go back to reference Hu Q, Knight PH, Ren Y, Ren H, Zheng J, Wu X, Ren J, Sawyer RG. The emerging role of stimulator of interferons genes signaling in sepsis: Inflammation, autophagy, and cell death. Acta Physiologica 2019, 225(3). Hu Q, Knight PH, Ren Y, Ren H, Zheng J, Wu X, Ren J, Sawyer RG. The emerging role of stimulator of interferons genes signaling in sepsis: Inflammation, autophagy, and cell death. Acta Physiologica 2019, 225(3).
15.
go back to reference Li C, Zhang Y, Liu J, Kang R, Klionsky DJ, Tang D. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy 2020. Li C, Zhang Y, Liu J, Kang R, Klionsky DJ, Tang D. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy 2020.
16.
go back to reference Hopfner K-P, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nature Reviews Molecular Cell Biology 2020. Hopfner K-P, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nature Reviews Molecular Cell Biology 2020.
17.
go back to reference Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol. 2016;17(10):1142–9.PubMedCrossRef Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol. 2016;17(10):1142–9.PubMedCrossRef
18.
go back to reference Pan BS, Perera SA, Piesvaux JA, Presland JP, Schroeder GK, Cumming JN, Trotter BW, Altman MD, Buevich AV, Cash B, et al: An orally available non-nucleotide STING agonist with antitumor activity. Science 2020, 369(6506). Pan BS, Perera SA, Piesvaux JA, Presland JP, Schroeder GK, Cumming JN, Trotter BW, Altman MD, Buevich AV, Cash B, et al: An orally available non-nucleotide STING agonist with antitumor activity. Science 2020, 369(6506).
19.
go back to reference Xu T, Chu Q, Cui J. Rhabdovirus-Inducible MicroRNA-210 Modulates Antiviral Innate Immune Response via Targeting STING/MITA in Fish. J Immunol. 2018;201(3):982–94.PubMedCrossRef Xu T, Chu Q, Cui J. Rhabdovirus-Inducible MicroRNA-210 Modulates Antiviral Innate Immune Response via Targeting STING/MITA in Fish. J Immunol. 2018;201(3):982–94.PubMedCrossRef
20.
go back to reference Shen A, Zheng D, Luo Y, Mou T, Chen Q, Huang Z, Wu Z. MicroRNA-24-3p alleviates hepatic ischemia and reperfusion injury in mice through the repression of STING signaling. Biochem Biophys Res Commun. 2020;522(1):47–52.PubMedCrossRef Shen A, Zheng D, Luo Y, Mou T, Chen Q, Huang Z, Wu Z. MicroRNA-24-3p alleviates hepatic ischemia and reperfusion injury in mice through the repression of STING signaling. Biochem Biophys Res Commun. 2020;522(1):47–52.PubMedCrossRef
21.
go back to reference Yarbrough ML, Zhang K, Sakthivel R, Forst CV, Posner BA, Barber GN, White MA, Fontoura BMA. Primate-specific miR-576-3p sets host defense signalling threshold. Nature Communications 2014, 5. Yarbrough ML, Zhang K, Sakthivel R, Forst CV, Posner BA, Barber GN, White MA, Fontoura BMA. Primate-specific miR-576-3p sets host defense signalling threshold. Nature Communications 2014, 5.
22.
go back to reference Shah AU, Cao Y, Siddique N, Lin J, Yang Q. miR29a and miR378b Influence CpG-Stimulated Dendritic Cells and Regulate cGAS/STING Pathway. Vaccines 2019, 7(4). Shah AU, Cao Y, Siddique N, Lin J, Yang Q. miR29a and miR378b Influence CpG-Stimulated Dendritic Cells and Regulate cGAS/STING Pathway. Vaccines 2019, 7(4).
23.
go back to reference Srikanth S, Woo JS, Wu B, El-Sherbiny YM, Leung J, Chupradit K, Rice L, Seo GJ, Calmettes G, Ramakrishna C, et al. The Ca2 + sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum. Nat Immunol. 2019;20(2):152-+.PubMedPubMedCentralCrossRef Srikanth S, Woo JS, Wu B, El-Sherbiny YM, Leung J, Chupradit K, Rice L, Seo GJ, Calmettes G, Ramakrishna C, et al. The Ca2 + sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum. Nat Immunol. 2019;20(2):152-+.PubMedPubMedCentralCrossRef
24.
go back to reference Zhou Q, Lin H, Wang S, Wang S, Ran Y, Liu Y, Ye W, Xiong X, Zhong B, Shu H-B, et al. The ER-Associated Protein ZDHHC1 Is a Positive Regulator of DNA Virus-Triggered, MITA/STING-Dependent Innate Immune Signaling. Cell Host Microbe. 2014;16(4):450–61.PubMedCrossRef Zhou Q, Lin H, Wang S, Wang S, Ran Y, Liu Y, Ye W, Xiong X, Zhong B, Shu H-B, et al. The ER-Associated Protein ZDHHC1 Is a Positive Regulator of DNA Virus-Triggered, MITA/STING-Dependent Innate Immune Signaling. Cell Host Microbe. 2014;16(4):450–61.PubMedCrossRef
25.
go back to reference Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, Du F, Ren J, Wu Y-T, Grishin NV, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science. 2015;347(6227):1217–7.CrossRef Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, Du F, Ren J, Wu Y-T, Grishin NV, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science. 2015;347(6227):1217–7.CrossRef
26.
go back to reference Zhong B, Yang Y, Li S, Wang Y-Y, Li Y, Diao F, Lei C, He X, Zhang L, Tien P, et al. The Adaptor Protein MITA Links Virus-Sensing Receptors to IRF3 Transcription Factor Activation. Immunity. 2008;29(4):538–50.PubMedCrossRef Zhong B, Yang Y, Li S, Wang Y-Y, Li Y, Diao F, Lei C, He X, Zhang L, Tien P, et al. The Adaptor Protein MITA Links Virus-Sensing Receptors to IRF3 Transcription Factor Activation. Immunity. 2008;29(4):538–50.PubMedCrossRef
27.
go back to reference Konno H, Konno K, Barber GN. Cyclic Dinucleotides Trigger ULK1 (ATG1) Phosphorylation of STING to Prevent Sustained Innate Immune Signaling. Cell. 2013;155(3):688–98.PubMedCrossRef Konno H, Konno K, Barber GN. Cyclic Dinucleotides Trigger ULK1 (ATG1) Phosphorylation of STING to Prevent Sustained Innate Immune Signaling. Cell. 2013;155(3):688–98.PubMedCrossRef
28.
go back to reference Xia T, Yi X-M, Wu X, Shang J, Shu H-B. PTPN1/2-mediated dephosphorylation of MITA/STING promotes its 20S proteasomal degradation and attenuates innate antiviral response. Proc Natl Acad Sci USA. 2019;116(40):20063–9.PubMedCrossRefPubMedCentral Xia T, Yi X-M, Wu X, Shang J, Shu H-B. PTPN1/2-mediated dephosphorylation of MITA/STING promotes its 20S proteasomal degradation and attenuates innate antiviral response. Proc Natl Acad Sci USA. 2019;116(40):20063–9.PubMedCrossRefPubMedCentral
29.
go back to reference Li Z, Liu G, Sun L, Teng Y, Guo X, Jia J, Sha J, Yang X, Chen D, Sun Q. PPM1A Regulates Antiviral Signaling by Antagonizing TBK1-Mediated STING Phosphorylation and Aggregation. Plos Pathogens 2015, 11(3). Li Z, Liu G, Sun L, Teng Y, Guo X, Jia J, Sha J, Yang X, Chen D, Sun Q. PPM1A Regulates Antiviral Signaling by Antagonizing TBK1-Mediated STING Phosphorylation and Aggregation. Plos Pathogens 2015, 11(3).
30.
go back to reference Qin Y, Zhou M-T, Hu M-M, Hu Y-H, Zhang J, Guo L, Zhong B, Shu H-B. RNF26 Temporally Regulates Virus-Triggered Type I Interferon Induction by Two Distinct Mechanisms. Plos Pathogens 2014, 10(9). Qin Y, Zhou M-T, Hu M-M, Hu Y-H, Zhang J, Guo L, Zhong B, Shu H-B. RNF26 Temporally Regulates Virus-Triggered Type I Interferon Induction by Two Distinct Mechanisms. Plos Pathogens 2014, 10(9).
31.
go back to reference Wang Q, Liu X, Cui Y, Tang Y, Chen W, Li S, Yu H, Pan Y, Wang C. The E3 Ubiquitin Ligase AMFR and INSIG1 Bridge the Activation of TBK1 Kinase by Modifying the Adaptor STING. Immunity. 2014;41(6):919–33.PubMedCrossRef Wang Q, Liu X, Cui Y, Tang Y, Chen W, Li S, Yu H, Pan Y, Wang C. The E3 Ubiquitin Ligase AMFR and INSIG1 Bridge the Activation of TBK1 Kinase by Modifying the Adaptor STING. Immunity. 2014;41(6):919–33.PubMedCrossRef
32.
go back to reference Zhang J, Hu M-M, Wang Y-Y, Shu H-B. TRIM32 Protein Modulates Type I Interferon Induction and Cellular Antiviral Response by Targeting MITA/STING Protein for K63-linked Ubiquitination. J Biol Chem. 2012;287(34):28646–55.PubMedPubMedCentralCrossRef Zhang J, Hu M-M, Wang Y-Y, Shu H-B. TRIM32 Protein Modulates Type I Interferon Induction and Cellular Antiviral Response by Targeting MITA/STING Protein for K63-linked Ubiquitination. J Biol Chem. 2012;287(34):28646–55.PubMedPubMedCentralCrossRef
33.
go back to reference Ni G, Konno H, Barber GN. Ubiquitination of STING at lysine 224 controls IRF3 activation. Science Immunology 2017, 2(11). Ni G, Konno H, Barber GN. Ubiquitination of STING at lysine 224 controls IRF3 activation. Science Immunology 2017, 2(11).
34.
go back to reference Tsuchida T, Zou J, Saitoh T, Kumar H, Abe T, Matsuura Y, Kawai T, Akira S. The Ubiquitin Ligase TRIM56 Regulates Innate Immune Responses to Intracellular Double-Stranded DNA. Immunity. 2010;33(5):765–76.PubMedCrossRef Tsuchida T, Zou J, Saitoh T, Kumar H, Abe T, Matsuura Y, Kawai T, Akira S. The Ubiquitin Ligase TRIM56 Regulates Innate Immune Responses to Intracellular Double-Stranded DNA. Immunity. 2010;33(5):765–76.PubMedCrossRef
35.
go back to reference Wang Y, Lian Q, Yang B, Yan S, Zhou H, He L, Lin G, Lian Z, Jiang Z, Sun B. TRIM30 alpha Is a Negative-Feedback Regulator of the Intracellular DNA and DNA Virus-Triggered Response by Targeting STING. Plos Pathogens 2015, 11(6). Wang Y, Lian Q, Yang B, Yan S, Zhou H, He L, Lin G, Lian Z, Jiang Z, Sun B. TRIM30 alpha Is a Negative-Feedback Regulator of the Intracellular DNA and DNA Virus-Triggered Response by Targeting STING. Plos Pathogens 2015, 11(6).
36.
go back to reference Zhong B, Zhang L, Lei C, Li Y, Mao A-P, Yang Y, Wang Y-Y, Zhang X-L, Shu H-B. The Ubiquitin Ligase RNF5 Regulates Antiviral Responses by Mediating Degradation of the Adaptor Protein MITA. Immunity. 2009;30(3):397–407.PubMedCrossRef Zhong B, Zhang L, Lei C, Li Y, Mao A-P, Yang Y, Wang Y-Y, Zhang X-L, Shu H-B. The Ubiquitin Ligase RNF5 Regulates Antiviral Responses by Mediating Degradation of the Adaptor Protein MITA. Immunity. 2009;30(3):397–407.PubMedCrossRef
37.
go back to reference Mukai K, Konno H, Akiba T, Uemura T, Waguri S, Kobayashi T, Barber GN, Arai H, Taguchi T. Activation of STING requires palmitoylation at the Golgi. Nature Communications 2016, 7. Mukai K, Konno H, Akiba T, Uemura T, Waguri S, Kobayashi T, Barber GN, Arai H, Taguchi T. Activation of STING requires palmitoylation at the Golgi. Nature Communications 2016, 7.
38.
go back to reference Hansen AL, Buchan GJ, Ruehl M, Mukai K, Salvatore SR, Ogawa E, Andersen SD, Iversen MB, Thielke AL, Gunderstofte C, et al. Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling. Proc Natl Acad Sci USA. 2018;115(33):E7768–75.PubMedCrossRefPubMedCentral Hansen AL, Buchan GJ, Ruehl M, Mukai K, Salvatore SR, Ogawa E, Andersen SD, Iversen MB, Thielke AL, Gunderstofte C, et al. Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling. Proc Natl Acad Sci USA. 2018;115(33):E7768–75.PubMedCrossRefPubMedCentral
39.
go back to reference Jia M, Qin D, Zhao C, Chai L, Yu Z, Wang W, Tong L, Lv L, Wang Y, Rehwinkel J, et al: Redox homeostasis maintained by GPX4 facilitates STING activation. Nature Immunology 2020. Jia M, Qin D, Zhao C, Chai L, Yu Z, Wang W, Tong L, Lv L, Wang Y, Rehwinkel J, et al: Redox homeostasis maintained by GPX4 facilitates STING activation. Nature Immunology 2020.
40.
go back to reference Hu M-M, Yang Q, Xie X-Q, Liao C-Y, Lin H, Liu T-T, Yin L, Shu H-B. Sumoylation Promotes the Stability of the DNA Sensor cGAS and the Adaptor STING to Regulate the Kinetics of Response to DNA Virus. Immunity. 2016;45(3):555–69.PubMedCrossRef Hu M-M, Yang Q, Xie X-Q, Liao C-Y, Lin H, Liu T-T, Yin L, Shu H-B. Sumoylation Promotes the Stability of the DNA Sensor cGAS and the Adaptor STING to Regulate the Kinetics of Response to DNA Virus. Immunity. 2016;45(3):555–69.PubMedCrossRef
41.
go back to reference Tao L, Lemoff A, Wang G, Zarek C, Lowe A, Yan N, Reese TA. Reactive oxygen species oxidize STING and suppress interferon production. eLife 2020, 9. Tao L, Lemoff A, Wang G, Zarek C, Lowe A, Yan N, Reese TA. Reactive oxygen species oxidize STING and suppress interferon production. eLife 2020, 9.
42.
go back to reference Blyth GAD, Connors L, Fodor C, Cobo ER. The Network of Colonic Host Defense Peptides as an Innate Immune Defense Against Enteropathogenic Bacteria. Frontiers in Immunology 2020, 11. Blyth GAD, Connors L, Fodor C, Cobo ER. The Network of Colonic Host Defense Peptides as an Innate Immune Defense Against Enteropathogenic Bacteria. Frontiers in Immunology 2020, 11.
43.
go back to reference Woodward JJ, Iavarone AT, Portnoy DA. c-di-AMP Secreted by Intracellular Listeria monocytogenes Activates a Host Type I Interferon Response. Science. 2010;328(5986):1703–5.PubMedPubMedCentralCrossRef Woodward JJ, Iavarone AT, Portnoy DA. c-di-AMP Secreted by Intracellular Listeria monocytogenes Activates a Host Type I Interferon Response. Science. 2010;328(5986):1703–5.PubMedPubMedCentralCrossRef
44.
go back to reference Hansen K, Prabakaran T, Laustsen A, Jorgensen SE, Rahbaek SH, Jensen SB, Nielsen R, Leber JH, Decker T, Horan KA, et al. Listeria monocytogenes induces IFN beta expression through an IFI16-, cGAS- and STING-dependent pathway. Embo Journal. 2014;33(15):1654–66.CrossRefPubMedPubMedCentral Hansen K, Prabakaran T, Laustsen A, Jorgensen SE, Rahbaek SH, Jensen SB, Nielsen R, Leber JH, Decker T, Horan KA, et al. Listeria monocytogenes induces IFN beta expression through an IFI16-, cGAS- and STING-dependent pathway. Embo Journal. 2014;33(15):1654–66.CrossRefPubMedPubMedCentral
45.
go back to reference Zheng Z, Wei C, Guan K, Yuan Y, Zhang Y, Ma S, Cao Y, Wang F, Zhong H, He X. Bacterial E3 Ubiquitin Ligase IpaH4.5 of Shigella flexneri Targets TBK1 To Dampen the Host Antibacterial Response. J Immunol. 2016;196(3):1199–208.PubMedCrossRef Zheng Z, Wei C, Guan K, Yuan Y, Zhang Y, Ma S, Cao Y, Wang F, Zhong H, He X. Bacterial E3 Ubiquitin Ligase IpaH4.5 of Shigella flexneri Targets TBK1 To Dampen the Host Antibacterial Response. J Immunol. 2016;196(3):1199–208.PubMedCrossRef
46.
go back to reference Dobbs N, Burnaevskiy N, Chen D, Gonugunta VK, Alto NM, Yan N. STING Activation by Translocation from the ER Is Associated with Infection and Autoinflammatory Disease. Cell Host Microbe. 2015;18(2):157–68.PubMedPubMedCentralCrossRef Dobbs N, Burnaevskiy N, Chen D, Gonugunta VK, Alto NM, Yan N. STING Activation by Translocation from the ER Is Associated with Infection and Autoinflammatory Disease. Cell Host Microbe. 2015;18(2):157–68.PubMedPubMedCentralCrossRef
47.
go back to reference Dong N, Zhu Y, Lu Q, Hu L, Zheng Y, Shao F. Structurally Distinct Bacterial TBC-like GAPs Link Arf GTPase to Rab1 Inactivation to Counteract Host Defenses. Cell. 2012;150(5):1029–41.PubMedCrossRef Dong N, Zhu Y, Lu Q, Hu L, Zheng Y, Shao F. Structurally Distinct Bacterial TBC-like GAPs Link Arf GTPase to Rab1 Inactivation to Counteract Host Defenses. Cell. 2012;150(5):1029–41.PubMedCrossRef
48.
go back to reference Canesso MCC, Lemos L, Neves TC, Marim FM, Castro TBR, Veloso ES, Queiroz CP, Ahn J, Santiago HC, Martins FS, et al. The cytosolic sensor STING is required for intestinal homeostasis and control of inflammation. Mucosal Immunol. 2018;11(3):820–34.PubMedCrossRef Canesso MCC, Lemos L, Neves TC, Marim FM, Castro TBR, Veloso ES, Queiroz CP, Ahn J, Santiago HC, Martins FS, et al. The cytosolic sensor STING is required for intestinal homeostasis and control of inflammation. Mucosal Immunol. 2018;11(3):820–34.PubMedCrossRef
49.
go back to reference Park S-M, Omatsu T, Zhao Y, Yoshida N, Shah P, Zagani R, Reinecker H-C. T cell fate following Salmonella infection is determined by a STING-IRF1 signaling axis in mice. Communications Biology 2019, 2. Park S-M, Omatsu T, Zhao Y, Yoshida N, Shah P, Zagani R, Reinecker H-C. T cell fate following Salmonella infection is determined by a STING-IRF1 signaling axis in mice. Communications Biology 2019, 2.
50.
go back to reference Levy MM, Evans LE, Rhodes A. The Surviving Sepsis Campaign Bundle: 2018 Update. Crit Care Med. 2018;46(6):997–1000.PubMedCrossRef Levy MM, Evans LE, Rhodes A. The Surviving Sepsis Campaign Bundle: 2018 Update. Crit Care Med. 2018;46(6):997–1000.PubMedCrossRef
52.
go back to reference Hu Q, Ren H, Li G, Wang D, Zhou Q, Wu J, Zheng J, Huang J, Slade DA, Wu X, et al. STING-mediated intestinal barrier dysfunction contributes to lethal sepsis. Ebiomedicine. 2019;41:497–508.PubMedPubMedCentralCrossRef Hu Q, Ren H, Li G, Wang D, Zhou Q, Wu J, Zheng J, Huang J, Slade DA, Wu X, et al. STING-mediated intestinal barrier dysfunction contributes to lethal sepsis. Ebiomedicine. 2019;41:497–508.PubMedPubMedCentralCrossRef
53.
go back to reference Zeng L, Kang R, Zhu S, Wang X, Cao L, Wang H, Billiar TR, Jiang J, Tang D. ALK is a therapeutic target for lethal sepsis. Science Translational Medicine 2017, 9(412). Zeng L, Kang R, Zhu S, Wang X, Cao L, Wang H, Billiar TR, Jiang J, Tang D. ALK is a therapeutic target for lethal sepsis. Science Translational Medicine 2017, 9(412).
54.
go back to reference Samuels DC, Hulgan T, Fessel JP, Billings FT, Thompson JL, Chandrasekhar R, Girard TD. Mitochondrial DNA Haplogroups and Delirium During Sepsis. Crit Care Med. 2019;47(8):1065–71.PubMedPubMedCentralCrossRef Samuels DC, Hulgan T, Fessel JP, Billings FT, Thompson JL, Chandrasekhar R, Girard TD. Mitochondrial DNA Haplogroups and Delirium During Sepsis. Crit Care Med. 2019;47(8):1065–71.PubMedPubMedCentralCrossRef
55.
go back to reference Harrington JS, Huh J-W, Schenck EJ, Nakahira K, Siempos II, Choi AMK. Circulating Mitochondrial DNA as Predictor of Mortality in Critically Ill Patients A Systematic Review of Clinical Studies. Chest. 2019;156(6):1120–36.PubMedPubMedCentralCrossRef Harrington JS, Huh J-W, Schenck EJ, Nakahira K, Siempos II, Choi AMK. Circulating Mitochondrial DNA as Predictor of Mortality in Critically Ill Patients A Systematic Review of Clinical Studies. Chest. 2019;156(6):1120–36.PubMedPubMedCentralCrossRef
56.
go back to reference Zhang H, Zeng L, Xie M, Liu J, Zhou B, Wu R, Cao L, Kroemer G, Wang H, Billiar TR, et al. TMEM173 Drives Lethal Coagulation in Sepsis. Cell Host Microbe. 2020;27(4):556-+.PubMedCrossRefPubMedCentral Zhang H, Zeng L, Xie M, Liu J, Zhou B, Wu R, Cao L, Kroemer G, Wang H, Billiar TR, et al. TMEM173 Drives Lethal Coagulation in Sepsis. Cell Host Microbe. 2020;27(4):556-+.PubMedCrossRefPubMedCentral
57.
go back to reference Li N, Zhou H, Wu H, Wu Q, Duan M, Deng W, Tang Q. STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3. Redox Biology 2019, 24. Li N, Zhou H, Wu H, Wu Q, Duan M, Deng W, Tang Q. STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3. Redox Biology 2019, 24.
58.
go back to reference Zhang X, Bai XC, Chen ZJ. Structures and Mechanisms in the cGAS-STING Innate Immunity Pathway. Immunity. 2020;53(1):43–53.PubMedCrossRef Zhang X, Bai XC, Chen ZJ. Structures and Mechanisms in the cGAS-STING Innate Immunity Pathway. Immunity. 2020;53(1):43–53.PubMedCrossRef
59.
go back to reference Ahn J, Son S, Oliveira SC, Barber GN. STING-Dependent Signaling Underlies IL-10 Controlled Inflammatory Colitis. Cell Reports. 2017;21(13):3873–84.PubMedCrossRef Ahn J, Son S, Oliveira SC, Barber GN. STING-Dependent Signaling Underlies IL-10 Controlled Inflammatory Colitis. Cell Reports. 2017;21(13):3873–84.PubMedCrossRef
60.
go back to reference Martin GR, Blomquist CM, Henare KL, Jirik FR. Stimulator of interferon genes (STING) activation exacerbates experimental colitis in mice. Scientific Reports 2019, 9. Martin GR, Blomquist CM, Henare KL, Jirik FR. Stimulator of interferon genes (STING) activation exacerbates experimental colitis in mice. Scientific Reports 2019, 9.
61.
go back to reference Chang EY, Guo B, Doyle SE, Cheng G. Cutting edge: Involvement of the type IIFN production and signaling pathway in lipopolysaccharide-induced IL-10 production. J Immunol. 2007;178(11):6705–9.PubMedCrossRef Chang EY, Guo B, Doyle SE, Cheng G. Cutting edge: Involvement of the type IIFN production and signaling pathway in lipopolysaccharide-induced IL-10 production. J Immunol. 2007;178(11):6705–9.PubMedCrossRef
62.
go back to reference Aden K, Tran F, Ito G, Sheibani-Tezerji R, Lipinski S, Kuiper JW, Tschurtschenthaler M, Saveljeva S, Bhattacharyya J, Haesler R, et al. ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS-STING. J Exp Med. 2018;215(11):2868–86.PubMedPubMedCentralCrossRef Aden K, Tran F, Ito G, Sheibani-Tezerji R, Lipinski S, Kuiper JW, Tschurtschenthaler M, Saveljeva S, Bhattacharyya J, Haesler R, et al. ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS-STING. J Exp Med. 2018;215(11):2868–86.PubMedPubMedCentralCrossRef
63.
go back to reference Ma C, Yang D, Wang B, Wu C, Wu Y, Li S, Liu X, Lassen K, Dai L, Yang S. Gasdermin D in macrophages restrains colitis by controlling cGAS-mediated inflammation. Science Advances 2020, 6(21). Ma C, Yang D, Wang B, Wu C, Wu Y, Li S, Liu X, Lassen K, Dai L, Yang S. Gasdermin D in macrophages restrains colitis by controlling cGAS-mediated inflammation. Science Advances 2020, 6(21).
65.
go back to reference Irrazabal T, Belcheva A, Girardin SE, Martin A, Philpott DJ. The Multifaceted Role of the Intestinal Microbiota in Colon Cancer. Mol Cell. 2014;54(2):309–20.PubMedCrossRef Irrazabal T, Belcheva A, Girardin SE, Martin A, Philpott DJ. The Multifaceted Role of the Intestinal Microbiota in Colon Cancer. Mol Cell. 2014;54(2):309–20.PubMedCrossRef
66.
67.
go back to reference Song S, Peng P, Tang Z, Zhao J, Wu W, Li H, Shao M, Li L, Yang C, Duan F, et al: Decreased expression of STING predicts poor prognosis in patients with gastric cancer. Scientific Reports 2017, 7. Song S, Peng P, Tang Z, Zhao J, Wu W, Li H, Shao M, Li L, Yang C, Duan F, et al: Decreased expression of STING predicts poor prognosis in patients with gastric cancer. Scientific Reports 2017, 7.
68.
go back to reference Kuse N, Sun X, Akahoshi T, Lissina A, Yamamoto T, Appay V, Takiguchi M. Priming of HIV-1-specific CD8(+) T cells with strong functional properties from naive T cells. Ebiomedicine. 2019;42:109–19.PubMedPubMedCentralCrossRef Kuse N, Sun X, Akahoshi T, Lissina A, Yamamoto T, Appay V, Takiguchi M. Priming of HIV-1-specific CD8(+) T cells with strong functional properties from naive T cells. Ebiomedicine. 2019;42:109–19.PubMedPubMedCentralCrossRef
70.
go back to reference ChonL HJ, Kim H, Noh JH, Yang H, Lee WS, Kong SJ, Lee SJ, Lee YS, Kim WR, Kim JH, et al. STING signaling is a potential immunotherapeutic target in colorectal cancer. J Cancer. 2019;10(20):4932–8.CrossRef ChonL HJ, Kim H, Noh JH, Yang H, Lee WS, Kong SJ, Lee SJ, Lee YS, Kim WR, Kim JH, et al. STING signaling is a potential immunotherapeutic target in colorectal cancer. J Cancer. 2019;10(20):4932–8.CrossRef
71.
go back to reference Woo S-R, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MYK, Duggan R, Wang Y, Barber GN, Fitzgerald KA, et al. STING-Dependent Cytosolic DNA Sensing Mediates Innate Immune Recognition of Immunogenic Tumors. Immunity. 2014;41(5):830–42.PubMedPubMedCentralCrossRef Woo S-R, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MYK, Duggan R, Wang Y, Barber GN, Fitzgerald KA, et al. STING-Dependent Cytosolic DNA Sensing Mediates Innate Immune Recognition of Immunogenic Tumors. Immunity. 2014;41(5):830–42.PubMedPubMedCentralCrossRef
72.
go back to reference McWhirter SM, Jefferies CA. Nucleic Acid Sensors as Therapeutic Targets for Human Disease. Immunity. 2020;53(1):78–97.PubMedCrossRef McWhirter SM, Jefferies CA. Nucleic Acid Sensors as Therapeutic Targets for Human Disease. Immunity. 2020;53(1):78–97.PubMedCrossRef
73.
go back to reference Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, Katibah GE, Woo S-R, Lemmens E, Banda T, Leong JJ, et al. Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity. Cell Reports. 2015;11(7):1018–30.PubMedCrossRef Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, Katibah GE, Woo S-R, Lemmens E, Banda T, Leong JJ, et al. Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity. Cell Reports. 2015;11(7):1018–30.PubMedCrossRef
74.
go back to reference Fu J, Kanne DB, Leong M, Glickman LH, McWhirter SM, Lemmens E, Mechette K, Leong JJ, Lauer P, Liu W, et al: STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Science Translational Medicine 2015, 7(283). Fu J, Kanne DB, Leong M, Glickman LH, McWhirter SM, Lemmens E, Mechette K, Leong JJ, Lauer P, Liu W, et al: STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Science Translational Medicine 2015, 7(283).
75.
go back to reference Chin EN, Yu C, Vartabedian VF, Jia Y, Kumar M, Gamo AM, Vernier W, Ali SH, Kissai M, Lazar DC, et al. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic. Science. 2020;369(6506):993–9.PubMedCrossRef Chin EN, Yu C, Vartabedian VF, Jia Y, Kumar M, Gamo AM, Vernier W, Ali SH, Kissai M, Lazar DC, et al. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic. Science. 2020;369(6506):993–9.PubMedCrossRef
76.
go back to reference Lemos H, Mohamed E, Huang L, Ou R, Pacholczyk G, Arbab AS, Munn D, Mellor AL. STING Promotes the Growth of Tumors Characterized by Low Antigenicity via IDO Activation. Cancer research. 2016;76(8):2076–81.PubMedPubMedCentralCrossRef Lemos H, Mohamed E, Huang L, Ou R, Pacholczyk G, Arbab AS, Munn D, Mellor AL. STING Promotes the Growth of Tumors Characterized by Low Antigenicity via IDO Activation. Cancer research. 2016;76(8):2076–81.PubMedPubMedCentralCrossRef
77.
go back to reference Fu J, Kanne DB, Leong M, Glickman LH, McWhirter SM, Lemmens E, Mechette K, Leong JJ, Lauer P, Liu W, et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci Transl Med. 2015;7(283):283ra252.CrossRef Fu J, Kanne DB, Leong M, Glickman LH, McWhirter SM, Lemmens E, Mechette K, Leong JJ, Lauer P, Liu W, et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci Transl Med. 2015;7(283):283ra252.CrossRef
78.
go back to reference Zheng J, Mo J, Zhu T, Zhuo W, Yi Y, Hu S, Yin J, Zhang W, Zhou H, Liu Z. Comprehensive elaboration of the cGAS-STING signaling axis in cancer development and immunotherapy. Mol Cancer. 2020;19(1):133.PubMedPubMedCentralCrossRef Zheng J, Mo J, Zhu T, Zhuo W, Yi Y, Hu S, Yin J, Zhang W, Zhou H, Liu Z. Comprehensive elaboration of the cGAS-STING signaling axis in cancer development and immunotherapy. Mol Cancer. 2020;19(1):133.PubMedPubMedCentralCrossRef
79.
go back to reference Bakhoum SF, Ngo B, Laughney AM, Cavallo JA, Murphy CJ, Ly P, Shah P, Sriram RK, Watkins TBK, Taunk NK, et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature. 2018;553(7689):467–72.PubMedPubMedCentralCrossRef Bakhoum SF, Ngo B, Laughney AM, Cavallo JA, Murphy CJ, Ly P, Shah P, Sriram RK, Watkins TBK, Taunk NK, et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature. 2018;553(7689):467–72.PubMedPubMedCentralCrossRef
80.
go back to reference Chen Q, Boire A, Jin X, Valiente M, Er EE, Lopez-Soto A, Jacob L, Patwa R, Shah H, Xu K, et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature. 2016;533(7604):493–8.PubMedPubMedCentralCrossRef Chen Q, Boire A, Jin X, Valiente M, Er EE, Lopez-Soto A, Jacob L, Patwa R, Shah H, Xu K, et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature. 2016;533(7604):493–8.PubMedPubMedCentralCrossRef
81.
go back to reference Gulen MF, Koch U, Haag SM, Schuler F, Apetoh L, Villunger A, Radtke F, Ablasser A. Signalling strength determines proapoptotic functions of STING. Nat Commun. 2017;8(1):427.PubMedPubMedCentralCrossRef Gulen MF, Koch U, Haag SM, Schuler F, Apetoh L, Villunger A, Radtke F, Ablasser A. Signalling strength determines proapoptotic functions of STING. Nat Commun. 2017;8(1):427.PubMedPubMedCentralCrossRef
82.
go back to reference Hu QY, Wu J, Ren YH, Wu XW, Gao L, Wang GF, Gu GS, Ren HJ, Hong ZW, Slade DA, et al. Degree of STING activation is associated with disease outcomes. Gut. 2020;69(4):792–4.PubMedCrossRef Hu QY, Wu J, Ren YH, Wu XW, Gao L, Wang GF, Gu GS, Ren HJ, Hong ZW, Slade DA, et al. Degree of STING activation is associated with disease outcomes. Gut. 2020;69(4):792–4.PubMedCrossRef
83.
go back to reference Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nature reviews Gastroenterology hepatology. 2019;16(1):35–56.PubMedCrossRef Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nature reviews Gastroenterology hepatology. 2019;16(1):35–56.PubMedCrossRef
84.
go back to reference Wu J-J, Zhao L, Hu H-G, Li W-H, Li Y-M. Agonists and inhibitors of the STING pathway: Potential agents for immunotherapy. Med Res Rev. 2020;40(3):1117–41.PubMedCrossRef Wu J-J, Zhao L, Hu H-G, Li W-H, Li Y-M. Agonists and inhibitors of the STING pathway: Potential agents for immunotherapy. Med Res Rev. 2020;40(3):1117–41.PubMedCrossRef
85.
go back to reference Vermaelen K. Vaccine Strategies to Improve Anti-cancer Cellular Immune Responses. Frontiers in Immunology 2019, 10. Vermaelen K. Vaccine Strategies to Improve Anti-cancer Cellular Immune Responses. Frontiers in Immunology 2019, 10.
86.
go back to reference Koshy ST, Cheung AS, Gu L, Graveline AR, Mooney DJ: Liposomal Delivery Enhances Immune Activation by STING Agonists for Cancer Immunotherapy. Advanced Biosystems 2017, 1(1–2). Koshy ST, Cheung AS, Gu L, Graveline AR, Mooney DJ: Liposomal Delivery Enhances Immune Activation by STING Agonists for Cancer Immunotherapy. Advanced Biosystems 2017, 1(1–2).
87.
go back to reference Cheng N, Watkins-Schulz R, Junkins RD, David CN, Johnson BM, Montgomery SA, Peine KJ, Darr DB, Yuan H, McKinnon KP, et al. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. JCI Insight. 2018;3(22):20.CrossRef Cheng N, Watkins-Schulz R, Junkins RD, David CN, Johnson BM, Montgomery SA, Peine KJ, Darr DB, Yuan H, McKinnon KP, et al. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. JCI Insight. 2018;3(22):20.CrossRef
88.
go back to reference Luo M, Wang H, Wang Z, Cai H, Lu Z, Li Y, Du M, Huang G, Wang C, Chen X, et al. A STING-activating nanovaccine for cancer immunotherapy. Nat Nanotechnol. 2017;12(7):648-+.PubMedPubMedCentralCrossRef Luo M, Wang H, Wang Z, Cai H, Lu Z, Li Y, Du M, Huang G, Wang C, Chen X, et al. A STING-activating nanovaccine for cancer immunotherapy. Nat Nanotechnol. 2017;12(7):648-+.PubMedPubMedCentralCrossRef
89.
go back to reference Zhou L, Hou B, Wang D, Sun F, Song R, Shao Q, Wang H, Yu H, Li Y. Engineering Polymeric Prodrug Nanoplatform for Vaccination Immunotherapy of Cancer. Nano Lett. 2020;20(6):4393–402.PubMedCrossRef Zhou L, Hou B, Wang D, Sun F, Song R, Shao Q, Wang H, Yu H, Li Y. Engineering Polymeric Prodrug Nanoplatform for Vaccination Immunotherapy of Cancer. Nano Lett. 2020;20(6):4393–402.PubMedCrossRef
90.
go back to reference Lu X, Miao L, Gao W, Chen Z, McHugh KJ, Sun Y, Tochka Z, Tomasic S, Sadtler K, Hyacinthe A, et al: Engineered PLGA microparticles for long-term, pulsatile release of STING agonist for cancer immunotherapy. Science translational medicine 2020, 12(556). Lu X, Miao L, Gao W, Chen Z, McHugh KJ, Sun Y, Tochka Z, Tomasic S, Sadtler K, Hyacinthe A, et al: Engineered PLGA microparticles for long-term, pulsatile release of STING agonist for cancer immunotherapy. Science translational medicine 2020, 12(556).
91.
go back to reference Collier MA, Junkins RD, Gallovic MD, Johnson BM, Johnson MM, Macintyre AN, Sempowski GD, Bachelder EM, Ting JPY, Ainslie KM. Acetalated Dextran Microparticles for Codelivery of STING and TLR7/8 Agonists. Mol Pharm. 2018;15(11):4933–46.PubMedPubMedCentralCrossRef Collier MA, Junkins RD, Gallovic MD, Johnson BM, Johnson MM, Macintyre AN, Sempowski GD, Bachelder EM, Ting JPY, Ainslie KM. Acetalated Dextran Microparticles for Codelivery of STING and TLR7/8 Agonists. Mol Pharm. 2018;15(11):4933–46.PubMedPubMedCentralCrossRef
92.
go back to reference Junkins RD, Gallovic MD, Johnson BM, Collier MA, Watkins-Schulz R, Cheng N, David CN, McGee CE, Sempowski GD, Shterev I, et al. A robust microparticle platform for a STING-targeted adjuvant that enhances both humoral and cellular immunity during vaccination. J Controlled Release. 2018;270:1–13.CrossRef Junkins RD, Gallovic MD, Johnson BM, Collier MA, Watkins-Schulz R, Cheng N, David CN, McGee CE, Sempowski GD, Shterev I, et al. A robust microparticle platform for a STING-targeted adjuvant that enhances both humoral and cellular immunity during vaccination. J Controlled Release. 2018;270:1–13.CrossRef
93.
go back to reference Leach DG, Dharmaraj N, Piotrowski SL, Lopez-Silva TL, Lei YL, Sikora AG, Young S, Hartgerink JD. STINGel: Controlled release of a cyclic dinucleotide for enhanced cancer immunotherapy. Biomaterials. 2018;163:67–75.PubMedPubMedCentralCrossRef Leach DG, Dharmaraj N, Piotrowski SL, Lopez-Silva TL, Lei YL, Sikora AG, Young S, Hartgerink JD. STINGel: Controlled release of a cyclic dinucleotide for enhanced cancer immunotherapy. Biomaterials. 2018;163:67–75.PubMedPubMedCentralCrossRef
94.
go back to reference Wang F, Su H, Xu D, Dai W, Zhang W, Wang Z, Anderson CF, Zheng M, Oh R, Wan F, et al: Tumour sensitization via the extended intratumoural release of a STING agonist and camptothecin from a self-assembled hydrogel. Nature biomedical engineering 2020. Wang F, Su H, Xu D, Dai W, Zhang W, Wang Z, Anderson CF, Zheng M, Oh R, Wan F, et al: Tumour sensitization via the extended intratumoural release of a STING agonist and camptothecin from a self-assembled hydrogel. Nature biomedical engineering 2020.
96.
go back to reference Kretschmer S, Lee-Kirsch MA. Type I interferon-mediated autoinflammation and autoimmunity. Curr Opin Immunol. 2017;49:96–102.PubMedCrossRef Kretschmer S, Lee-Kirsch MA. Type I interferon-mediated autoinflammation and autoimmunity. Curr Opin Immunol. 2017;49:96–102.PubMedCrossRef
97.
go back to reference Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nature reviews Immunology. 2015;15(7):405–14.PubMedCrossRef Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nature reviews Immunology. 2015;15(7):405–14.PubMedCrossRef
98.
go back to reference Budhwani M, Mazzieri R, Dolcetti R. Plasticity of Type I Interferon-Mediated Responses in Cancer Therapy: From Anti-tumor Immunity to Resistance. Frontiers in oncology. 2018;8:322.PubMedPubMedCentralCrossRef Budhwani M, Mazzieri R, Dolcetti R. Plasticity of Type I Interferon-Mediated Responses in Cancer Therapy: From Anti-tumor Immunity to Resistance. Frontiers in oncology. 2018;8:322.PubMedPubMedCentralCrossRef
Metadata
Title
Cytosolic sensor STING in mucosal immunity: a master regulator of gut inflammation and carcinogenesis
Authors
Qiongyuan Hu
Quan Zhou
Xuefeng Xia
Lihua Shao
Meng Wang
Xiaofeng Lu
Song Liu
Wenxian Guan
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Interferon
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2021
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-021-01850-9

Other articles of this Issue 1/2021

Journal of Experimental & Clinical Cancer Research 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine