Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

Interaction of HmC1q with leech microglial cells: involvement of C1qBP-related molecule in the induction of cell chemotaxis

Authors: Muriel Tahtouh, Annelise Garçon-Bocquet, Françoise Croq, Jacopo Vizioli, Pierre-Eric Sautière, Christelle Van Camp, Michel Salzet, Patricia Nagnan-le Meillour, Joël Pestel, Christophe Lefebvre

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

In invertebrates, the medicinal leech is considered to be an interesting and appropriate model to study neuroimmune mechanisms. Indeed, this non-vertebrate animal can restore normal function of its central nervous system (CNS) after injury. Microglia accumulation at the damage site has been shown to be required for axon sprouting and for efficient regeneration. We characterized HmC1q as a novel chemotactic factor for leech microglial cell recruitment. In mammals, a C1q-binding protein (C1qBP alias gC1qR), which interacts with the globular head of C1q, has been reported to participate in C1q-mediated chemotaxis of blood immune cells. In this study, we evaluated the chemotactic activities of a recombinant form of HmC1q and its interaction with a newly characterized leech C1qBP that acts as its potential ligand.

Methods

Recombinant HmC1q (rHmC1q) was produced in the yeast Pichia pastoris. Chemotaxis assays were performed to investigate rHmC1q-dependent microglia migration. The involvement of a C1qBP-related molecule in this chemotaxis mechanism was assessed by flow cytometry and with affinity purification experiments. The cellular localization of C1qBP mRNA and protein in leech was investigated using immunohistochemistry and in situ hybridization techniques.

Results

rHmC1q-stimulated microglia migrate in a dose-dependent manner. This rHmC1q-induced chemotaxis was reduced when cells were preincubated with either anti-HmC1q or anti-human C1qBP antibodies. A C1qBP-related molecule was characterized in leech microglia.

Conclusions

A previous study showed that recruitment of microglia is observed after HmC1q release at the cut end of axons. Here, we demonstrate that rHmC1q-dependent chemotaxis might be driven via a HmC1q-binding protein located on the microglial cell surface. Taken together, these results highlight the importance of the interaction between C1q and C1qBP in microglial activation leading to nerve repair in the medicinal leech.
Literature
1.
go back to reference Olson JK, Miller SD: Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 2004, 173:3916–3924.CrossRefPubMed Olson JK, Miller SD: Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 2004, 173:3916–3924.CrossRefPubMed
2.
3.
go back to reference Hanisch UK, Kettenmann H: Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007, 10:1387–1394.CrossRefPubMed Hanisch UK, Kettenmann H: Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007, 10:1387–1394.CrossRefPubMed
4.
go back to reference Farber K, Cheung G, Mitchell D, Wallis R, Weihe E, Schwaeble W, Kettenmann H: C1q, the recognition subcomponent of the classical pathway of complement, drives microglial activation. J Neurosci Res 2009, 87:644–652.CrossRefPubMedPubMedCentral Farber K, Cheung G, Mitchell D, Wallis R, Weihe E, Schwaeble W, Kettenmann H: C1q, the recognition subcomponent of the classical pathway of complement, drives microglial activation. J Neurosci Res 2009, 87:644–652.CrossRefPubMedPubMedCentral
5.
go back to reference Speth C, Dierich MP, Gasque P: Neuroinvasion by pathogens: a key role of the complement system. Mol Immunol 2002, 38:669–679.CrossRefPubMed Speth C, Dierich MP, Gasque P: Neuroinvasion by pathogens: a key role of the complement system. Mol Immunol 2002, 38:669–679.CrossRefPubMed
6.
go back to reference Lynch NJ, Willis CL, Nolan CC, Roscher S, Fowler MJ, Weihe E, Ray DE, Schwaeble WJ: Microglial activation and increased synthesis of complement component C1q precedes blood-brain barrier dysfunction in rats. Mol Immunol 2004, 40:709–716.CrossRefPubMed Lynch NJ, Willis CL, Nolan CC, Roscher S, Fowler MJ, Weihe E, Ray DE, Schwaeble WJ: Microglial activation and increased synthesis of complement component C1q precedes blood-brain barrier dysfunction in rats. Mol Immunol 2004, 40:709–716.CrossRefPubMed
8.
go back to reference Duan Y, Panoff J, Burrell BD, Sahley CL, Muller KJ: Repair and regeneration of functional synaptic connections: cellular and molecular interactions in the leech. Cell Mol Neurobiol 2005, 25:441–450.CrossRefPubMed Duan Y, Panoff J, Burrell BD, Sahley CL, Muller KJ: Repair and regeneration of functional synaptic connections: cellular and molecular interactions in the leech. Cell Mol Neurobiol 2005, 25:441–450.CrossRefPubMed
10.
go back to reference Coggeshall RE, Fawcett DW: The fine structure of the central nervous system of the leech, Hirudo medicinalis . J Neurophysiol 1964, 27:229–289.PubMed Coggeshall RE, Fawcett DW: The fine structure of the central nervous system of the leech, Hirudo medicinalis . J Neurophysiol 1964, 27:229–289.PubMed
11.
go back to reference Chen A, Kumar SM, Sahley CL, Muller KJ: Nitric oxide influences injury-induced microglial migration and accumulation in the leech CNS. J Neurosci 2000, 20:1036–1043.PubMed Chen A, Kumar SM, Sahley CL, Muller KJ: Nitric oxide influences injury-induced microglial migration and accumulation in the leech CNS. J Neurosci 2000, 20:1036–1043.PubMed
12.
go back to reference Kumar SM, Porterfield DM, Muller KJ, Smith PJ, Sahley CL: Nerve injury induces a rapid efflux of nitric oxide (NO) detected with a novel NO microsensor. J Neurosci 2001, 21:215–220.PubMed Kumar SM, Porterfield DM, Muller KJ, Smith PJ, Sahley CL: Nerve injury induces a rapid efflux of nitric oxide (NO) detected with a novel NO microsensor. J Neurosci 2001, 21:215–220.PubMed
13.
go back to reference von Bernhardi R, Muller KJ: Repair of the central nervous system: lessons from lesions in leeches. J Neurobiol 1995, 27:353–366.CrossRefPubMed von Bernhardi R, Muller KJ: Repair of the central nervous system: lessons from lesions in leeches. J Neurobiol 1995, 27:353–366.CrossRefPubMed
14.
go back to reference Ngu EM, Sahley CL, Muller KJ: Reduced axon sprouting after treatment that diminishes microglia accumulation at lesions in the leech CNS. J Comp Neurol 2007, 503:101–109.CrossRefPubMed Ngu EM, Sahley CL, Muller KJ: Reduced axon sprouting after treatment that diminishes microglia accumulation at lesions in the leech CNS. J Comp Neurol 2007, 503:101–109.CrossRefPubMed
15.
go back to reference Elliott EJ, Muller KJ: Sprouting and regeneration of sensory axons after destruction of ensheathing glial cells in the leech central nervous system. J Neurosci 1983, 3:1994–2006.PubMed Elliott EJ, Muller KJ: Sprouting and regeneration of sensory axons after destruction of ensheathing glial cells in the leech central nervous system. J Neurosci 1983, 3:1994–2006.PubMed
16.
go back to reference Masuda-Nakagawa LM, Muller KJ, Nicholls JG: Accumulation of laminin and microglial cells at sites of injury and regeneration in the central nervous system of the leech. Proc Biol Sci 1990, 241:201–206.CrossRefPubMed Masuda-Nakagawa LM, Muller KJ, Nicholls JG: Accumulation of laminin and microglial cells at sites of injury and regeneration in the central nervous system of the leech. Proc Biol Sci 1990, 241:201–206.CrossRefPubMed
17.
go back to reference Tahtouh M, Croq F, Vizioli J, Sautiere PE, Van Camp C, Salzet M, Daha MR, Pestel J, Lefebvre C: Evidence for a novel chemotactic C1q domain-containing factor in the leech nerve cord. Mol Immunol 2009, 46:523–531.CrossRefPubMed Tahtouh M, Croq F, Vizioli J, Sautiere PE, Van Camp C, Salzet M, Daha MR, Pestel J, Lefebvre C: Evidence for a novel chemotactic C1q domain-containing factor in the leech nerve cord. Mol Immunol 2009, 46:523–531.CrossRefPubMed
18.
go back to reference Vegh Z, Kew RR, Gruber BL, Ghebrehiwet B: Chemotaxis of human monocyte-derived dendritic cells to complement component C1q is mediated by the receptors gC1qR and cC1qR. Mol Immunol 2006, 43:1402–1407.CrossRefPubMed Vegh Z, Kew RR, Gruber BL, Ghebrehiwet B: Chemotaxis of human monocyte-derived dendritic cells to complement component C1q is mediated by the receptors gC1qR and cC1qR. Mol Immunol 2006, 43:1402–1407.CrossRefPubMed
19.
go back to reference Ghebrehiwet B, Lim BL, Peerschke EI, Willis AC, Reid KB: Isolation, cDNA cloning, and overexpression of a 33-kD cell surface glycoprotein that binds to the globular "heads" of C1q. J Exp Med 1994, 179:1809–1821.CrossRefPubMed Ghebrehiwet B, Lim BL, Peerschke EI, Willis AC, Reid KB: Isolation, cDNA cloning, and overexpression of a 33-kD cell surface glycoprotein that binds to the globular "heads" of C1q. J Exp Med 1994, 179:1809–1821.CrossRefPubMed
20.
go back to reference Briand L, Perez V, Huet JC, Danty E, Masson C, Pernollet JC: Optimization of the production of a honeybee odorant-binding protein by Pichia pastoris . Protein Expr Purif 1999, 15:362–369.CrossRefPubMed Briand L, Perez V, Huet JC, Danty E, Masson C, Pernollet JC: Optimization of the production of a honeybee odorant-binding protein by Pichia pastoris . Protein Expr Purif 1999, 15:362–369.CrossRefPubMed
21.
go back to reference Tastet C, Lescuyer P, Diemer H, Luche S, van Dorsselaer A, Rabilloud T: A versatile electrophoresis system for the analysis of high- and low-molecular-weight proteins. Electrophoresis 2003, 24:1787–1794.CrossRefPubMedPubMedCentral Tastet C, Lescuyer P, Diemer H, Luche S, van Dorsselaer A, Rabilloud T: A versatile electrophoresis system for the analysis of high- and low-molecular-weight proteins. Electrophoresis 2003, 24:1787–1794.CrossRefPubMedPubMedCentral
22.
go back to reference Croq F, Vizioli J, Tuzova M, Tahtouh M, Sautiere PE, Van Camp C, Salzet M, Cruikshank WW, Pestel J, Lefebvre C: A homologous form of human interleukin 16 is implicated in microglia recruitment following nervous system injury in leech Hirudo medicinalis . Glia 2010, 58:1649–1662.CrossRefPubMed Croq F, Vizioli J, Tuzova M, Tahtouh M, Sautiere PE, Van Camp C, Salzet M, Cruikshank WW, Pestel J, Lefebvre C: A homologous form of human interleukin 16 is implicated in microglia recruitment following nervous system injury in leech Hirudo medicinalis . Glia 2010, 58:1649–1662.CrossRefPubMed
23.
go back to reference Kohidai L: Method for determination of chemoattraction in Tetrahymena pyriformis . Curr Microbiol 1995, 30:251–253.CrossRefPubMed Kohidai L: Method for determination of chemoattraction in Tetrahymena pyriformis . Curr Microbiol 1995, 30:251–253.CrossRefPubMed
24.
go back to reference Nardelli-Haefliger D, Shankland M: Lox2, a putative leech segment identity gene, is expressed in the same segmental domain in different stem cell lineages. Development 1992, 116:697–710.PubMed Nardelli-Haefliger D, Shankland M: Lox2, a putative leech segment identity gene, is expressed in the same segmental domain in different stem cell lineages. Development 1992, 116:697–710.PubMed
25.
go back to reference Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389–3402.CrossRefPubMedPubMedCentral Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389–3402.CrossRefPubMedPubMedCentral
26.
go back to reference Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH: CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 2011, 39:D225-D229.CrossRefPubMed Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH: CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 2011, 39:D225-D229.CrossRefPubMed
27.
go back to reference Jiang J, Zhang Y, Krainer AR, Xu RM: Crystal structure of human p32, a doughnut-shaped acidic mitochondrial matrix protein. Proc Natl Acad Sci USA 1999, 96:3572–3577.CrossRefPubMedPubMedCentral Jiang J, Zhang Y, Krainer AR, Xu RM: Crystal structure of human p32, a doughnut-shaped acidic mitochondrial matrix protein. Proc Natl Acad Sci USA 1999, 96:3572–3577.CrossRefPubMedPubMedCentral
28.
go back to reference Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996, 19:312–318.CrossRefPubMed Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996, 19:312–318.CrossRefPubMed
29.
go back to reference Fonseca MI, Chu SH, Berci AM, Benoit ME, Peters DG, Kimura Y, Tenner AJ: Contribution of complement activation pathways to neuropathology differs among mouse models of Alzheimer's disease. J Neuroinflammation 2011, 8:4.CrossRefPubMedPubMedCentral Fonseca MI, Chu SH, Berci AM, Benoit ME, Peters DG, Kimura Y, Tenner AJ: Contribution of complement activation pathways to neuropathology differs among mouse models of Alzheimer's disease. J Neuroinflammation 2011, 8:4.CrossRefPubMedPubMedCentral
30.
go back to reference Benoit ME, Tenner AJ: Complement protein C1q-mediated neuroprotection is correlated with regulation of neuronal gene and microRNA expression. J Neurosci 2011, 31:3459–3469.CrossRefPubMedPubMedCentral Benoit ME, Tenner AJ: Complement protein C1q-mediated neuroprotection is correlated with regulation of neuronal gene and microRNA expression. J Neurosci 2011, 31:3459–3469.CrossRefPubMedPubMedCentral
31.
go back to reference Fraser DA, Pisalyaput K, Tenner AJ: C1q enhances microglial clearance of apoptotic neurons and neuronal blebs, and modulates subsequent inflammatory cytokine production. J Neurochem 2010, 112:733–743.CrossRefPubMed Fraser DA, Pisalyaput K, Tenner AJ: C1q enhances microglial clearance of apoptotic neurons and neuronal blebs, and modulates subsequent inflammatory cytokine production. J Neurochem 2010, 112:733–743.CrossRefPubMed
32.
go back to reference Flierman R, Daha MR: Pathogenic role of anti-C1q autoantibodies in the development of lupus nephritis-a hypothesis. Mol Immunol 2007, 44:133–138.CrossRefPubMed Flierman R, Daha MR: Pathogenic role of anti-C1q autoantibodies in the development of lupus nephritis-a hypothesis. Mol Immunol 2007, 44:133–138.CrossRefPubMed
33.
go back to reference Trendelenburg M: Antibodies against C1q in patients with systemic lupus erythematosus. Springer Semin Immunopathol 2005, 27:276–285.CrossRefPubMed Trendelenburg M: Antibodies against C1q in patients with systemic lupus erythematosus. Springer Semin Immunopathol 2005, 27:276–285.CrossRefPubMed
34.
go back to reference Chu Y, Jin X, Parada I, Pesic A, Stevens B, Barres B, Prince DA: Enhanced synaptic connectivity and epilepsy in C1q knockout mice. Proc Natl Acad Sci USA 2010, 107:7975–7980.CrossRefPubMedPubMedCentral Chu Y, Jin X, Parada I, Pesic A, Stevens B, Barres B, Prince DA: Enhanced synaptic connectivity and epilepsy in C1q knockout mice. Proc Natl Acad Sci USA 2010, 107:7975–7980.CrossRefPubMedPubMedCentral
35.
go back to reference Nauta AJ, Castellano G, Xu W, Woltman AM, Borrias MC, Daha MR, van Kooten C, Roos A: Opsonization with C1q and mannose-binding lectin targets apoptotic cells to dendritic cells. J Immunol 2004, 173:3044–3050.CrossRefPubMed Nauta AJ, Castellano G, Xu W, Woltman AM, Borrias MC, Daha MR, van Kooten C, Roos A: Opsonization with C1q and mannose-binding lectin targets apoptotic cells to dendritic cells. J Immunol 2004, 173:3044–3050.CrossRefPubMed
36.
go back to reference Nayak A, Ferluga J, Tsolaki A, Kishore U: The non-classical functions of the classical complement pathway recognition subcomponent C1q. Immunol Lett 2010, 131:139–150.CrossRefPubMed Nayak A, Ferluga J, Tsolaki A, Kishore U: The non-classical functions of the classical complement pathway recognition subcomponent C1q. Immunol Lett 2010, 131:139–150.CrossRefPubMed
37.
go back to reference Tahtouh M, Croq F, Lefebvre C, Pestel J: Is complement good, bad, or both? New functions of the complement factors associated with inflammation mechanisms in the central nervous system. Eur Cytokine Netw 2009, 20:95–100.PubMed Tahtouh M, Croq F, Lefebvre C, Pestel J: Is complement good, bad, or both? New functions of the complement factors associated with inflammation mechanisms in the central nervous system. Eur Cytokine Netw 2009, 20:95–100.PubMed
38.
go back to reference Liu S, Wu J, Zhang T, Qian B, Wu P, Li L, Yu Y, Cao X: Complement C1q chemoattracts human dendritic cells and enhances migration of mature dendritic cells to CCL19 via activation of AKT and MAPK pathways. Mol Immunol 2008, 46:242–249.CrossRefPubMed Liu S, Wu J, Zhang T, Qian B, Wu P, Li L, Yu Y, Cao X: Complement C1q chemoattracts human dendritic cells and enhances migration of mature dendritic cells to CCL19 via activation of AKT and MAPK pathways. Mol Immunol 2008, 46:242–249.CrossRefPubMed
39.
go back to reference Leigh LE, Ghebrehiwet B, Perera TP, Bird IN, Strong P, Kishore U, Reid KB, Eggleton P: C1q-mediated chemotaxis by human neutrophils: involvement of gClqR and G-protein signalling mechanisms. Biochem J 1998, 330:247–254.CrossRefPubMedPubMedCentral Leigh LE, Ghebrehiwet B, Perera TP, Bird IN, Strong P, Kishore U, Reid KB, Eggleton P: C1q-mediated chemotaxis by human neutrophils: involvement of gClqR and G-protein signalling mechanisms. Biochem J 1998, 330:247–254.CrossRefPubMedPubMedCentral
40.
go back to reference Kuna P, Iyer M, Peerschke EI, Kaplan AP, Reid KB, Ghebrehiwet B: Human C1q induces eosinophil migration. Clin Immunol Immunopathol 1996, 81:48–54.CrossRefPubMed Kuna P, Iyer M, Peerschke EI, Kaplan AP, Reid KB, Ghebrehiwet B: Human C1q induces eosinophil migration. Clin Immunol Immunopathol 1996, 81:48–54.CrossRefPubMed
41.
go back to reference Cregg JM, Cereghino JL, Shi J, Higgins DR: Recombinant protein expression in Pichia pastoris . Mol Biotechnol 2000, 16:23–52.CrossRefPubMed Cregg JM, Cereghino JL, Shi J, Higgins DR: Recombinant protein expression in Pichia pastoris . Mol Biotechnol 2000, 16:23–52.CrossRefPubMed
42.
43.
go back to reference Lim BL, Reid KB, Ghebrehiwet B, Peerschke EI, Leigh LA, Preissner KT: The binding protein for globular heads of complement C1q, gC1qR. Functional expression and characterization as a novel vitronectin binding factor. J Biol Chem 1996, 271:26739–26744.CrossRefPubMed Lim BL, Reid KB, Ghebrehiwet B, Peerschke EI, Leigh LA, Preissner KT: The binding protein for globular heads of complement C1q, gC1qR. Functional expression and characterization as a novel vitronectin binding factor. J Biol Chem 1996, 271:26739–26744.CrossRefPubMed
44.
go back to reference Seytter T, Lottspeich F, Neupert W, Schwarz E: Mam33p, an oligomeric, acidic protein in the mitochondrial matrix of Saccharomyces cerevisiae is related to the human complement receptor gC1q-R. Yeast 1998, 14:303–310.CrossRefPubMed Seytter T, Lottspeich F, Neupert W, Schwarz E: Mam33p, an oligomeric, acidic protein in the mitochondrial matrix of Saccharomyces cerevisiae is related to the human complement receptor gC1q-R. Yeast 1998, 14:303–310.CrossRefPubMed
45.
go back to reference Eggleton P, Ghebrehiwet B, Sastry KN, Coburn JP, Zaner KS, Reid KB, Reid KB, Tauber AI: Identification of a gC1q-binding protein (gC1q-R) on the surface of human neutrophils. Subcellular localization and binding properties in comparison with the cC1q-R. J Clin Invest 1995, 95:1569–1578.CrossRefPubMedPubMedCentral Eggleton P, Ghebrehiwet B, Sastry KN, Coburn JP, Zaner KS, Reid KB, Reid KB, Tauber AI: Identification of a gC1q-binding protein (gC1q-R) on the surface of human neutrophils. Subcellular localization and binding properties in comparison with the cC1q-R. J Clin Invest 1995, 95:1569–1578.CrossRefPubMedPubMedCentral
46.
go back to reference Erdei A, Reid KB: Characterization of C1q-binding material released from the membranes of Raji and U937 cells by limited proteolysis with trypsin. Biochem J 1988, 255:493–499.PubMedPubMedCentral Erdei A, Reid KB: Characterization of C1q-binding material released from the membranes of Raji and U937 cells by limited proteolysis with trypsin. Biochem J 1988, 255:493–499.PubMedPubMedCentral
47.
go back to reference Hosszu KK, Santiago-Schwarz F, Peerschke EI, Ghebrehiwet B: Evidence that a C1q/C1qR system regulates monocyte-derived dendritic cell differentiation at the interface of innate and acquired immunity. Innate Immun 2010, 16:115–127.CrossRefPubMed Hosszu KK, Santiago-Schwarz F, Peerschke EI, Ghebrehiwet B: Evidence that a C1q/C1qR system regulates monocyte-derived dendritic cell differentiation at the interface of innate and acquired immunity. Innate Immun 2010, 16:115–127.CrossRefPubMed
48.
go back to reference Shimono C, Manabe R, Yamada T, Fukuda S, Kawai J, Furutani Y, Tsutsui K, Ikenaka K, Hayashizaki Y, Sekiguchi K: Identification and characterization of nCLP2, a novel C1q family protein expressed in the central nervous system. J Biochem 2010, 147:565–579.CrossRefPubMed Shimono C, Manabe R, Yamada T, Fukuda S, Kawai J, Furutani Y, Tsutsui K, Ikenaka K, Hayashizaki Y, Sekiguchi K: Identification and characterization of nCLP2, a novel C1q family protein expressed in the central nervous system. J Biochem 2010, 147:565–579.CrossRefPubMed
Metadata
Title
Interaction of HmC1q with leech microglial cells: involvement of C1qBP-related molecule in the induction of cell chemotaxis
Authors
Muriel Tahtouh
Annelise Garçon-Bocquet
Françoise Croq
Jacopo Vizioli
Pierre-Eric Sautière
Christelle Van Camp
Michel Salzet
Patricia Nagnan-le Meillour
Joël Pestel
Christophe Lefebvre
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-37

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue