Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

Prevention of methamphetamine-induced microglial cell death by TNF-α and IL-6 through activation of the JAK-STAT pathway

Authors: Vanessa Coelho-Santos, Joana Gonçalves, Carlos Fontes-Ribeiro, Ana Paula Silva

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

It is well known that methamphetamine (METH) is neurotoxic and recent studies have suggested the involvement of neuroinflammatory processes in brain dysfunction induced by misuse of this drug. Indeed, glial cells seem to be activated in response to METH, but its effects on microglial cells are not fully understood. Moreover, it has been shown that cytokines, which are normally released by activated microglia, may have a dual role in response to brain injury. This led us to study the toxic effect of METH on microglial cells by looking to cell death and alterations of tumor necrosis factor-alpha (TNF-α) and interleukine-6 (IL-6) systems, as well as the role played by these cytokines.

Methods

We used the N9 microglial cell line, and cell death and proliferation were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling assay and incorporation of bromodeoxyuridine, respectively. The TNF-α and IL-6 content was quantified by enzyme-linked immunosorbent assay, and changes in TNF receptor 1, IL-6 receptor-alpha, Bax and Bcl-2 protein levels by western blotting. Immunocytochemistry analysis was also performed to evaluate alterations in microglial morphology and in the protein expression of phospho-signal transducer and activator of transcription 3 (pSTAT3).

Results

METH induced microglial cell death in a concentration-dependent manner (EC50 = 1 mM), and also led to significant morphological changes and decreased cell proliferation. Additionally, this drug increased TNF-α extracellular and intracellular levels, as well as its receptor protein levels at 1 h, whereas IL-6 and its receptor levels were increased at 24 h post-exposure. However, the endogenous proinflammatory cytokines did not contribute to METH-induced microglial cell death. On the other hand, exogenous low concentrations of TNF-α or IL-6 had a protective effect. Interestingly, we also verified that the anti-apoptotic role of TNF-α was mediated by activation of IL-6 signaling, specifically the janus kinase (JAK)-STAT3 pathway, which in turn induced down-regulation of the Bax/Bcl-2 ratio.

Conclusions

These findings show that TNF-α and IL-6 have a protective role against METH-induced microglial cell death via the IL-6 receptor, specifically through activation of the JAK-STAT3 pathway, with consequent changes in pro- and anti-apoptotic proteins.
Literature
1.
go back to reference Thompson PM, Hayashi KM, Simon SL, Geaga JA, Hong MS, Sui Y, Lee JY, Toga AW, Ling W, London ED: Structural abnormalities in the brains of human subjects who use methamphetamine. J Neurosci 2004, 24:6028–6036.CrossRefPubMed Thompson PM, Hayashi KM, Simon SL, Geaga JA, Hong MS, Sui Y, Lee JY, Toga AW, Ling W, London ED: Structural abnormalities in the brains of human subjects who use methamphetamine. J Neurosci 2004, 24:6028–6036.CrossRefPubMed
2.
go back to reference McCann UD, Kuwabara H, Kumar A, Palermo M, Abbey R, Brasic J, Ye W, Alexander M, Dannals RF, Wong DF, Ricaurte GA: Persistent cognitive and dopamine transporter deficits in abstinent methamphetamine users. Synapse 2008, 62:91–100.CrossRefPubMed McCann UD, Kuwabara H, Kumar A, Palermo M, Abbey R, Brasic J, Ye W, Alexander M, Dannals RF, Wong DF, Ricaurte GA: Persistent cognitive and dopamine transporter deficits in abstinent methamphetamine users. Synapse 2008, 62:91–100.CrossRefPubMed
3.
go back to reference Sekine Y, Ouchi Y, Sugihara G, Takei N, Yoshikawa E, Nakamura K, Iwata Y, Tsuchiya KJ, Suda S, Suzuki K, Kawai M, Takebayashi K, Yamamoto S, Matsuzaki H, Ueki T, Mori N, Gold MS, Cadet JL: Methamphetamine causes microglial activation in the brains of human abusers. J Neurosci 2008, 28:5756–5761.CrossRefPubMedPubMedCentral Sekine Y, Ouchi Y, Sugihara G, Takei N, Yoshikawa E, Nakamura K, Iwata Y, Tsuchiya KJ, Suda S, Suzuki K, Kawai M, Takebayashi K, Yamamoto S, Matsuzaki H, Ueki T, Mori N, Gold MS, Cadet JL: Methamphetamine causes microglial activation in the brains of human abusers. J Neurosci 2008, 28:5756–5761.CrossRefPubMedPubMedCentral
4.
go back to reference Pubill D, Canudas AM, Pallas M, Camins A, Camarasa J, Escubedo E: Different glial response to methamphetamine-and methylenedioxymethamphetamine-induced neurotoxicity. Naunyn Schmiedebergs Arch Pharmacol 2003, 367:490–499.CrossRefPubMed Pubill D, Canudas AM, Pallas M, Camins A, Camarasa J, Escubedo E: Different glial response to methamphetamine-and methylenedioxymethamphetamine-induced neurotoxicity. Naunyn Schmiedebergs Arch Pharmacol 2003, 367:490–499.CrossRefPubMed
5.
go back to reference Wu CW, Ping YH, Yen JC, Chang CY, Wang SF, Yeh CL, Chi CW, Lee HC: Enhanced oxidative stress and aberrant mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells during methamphetamine induced apoptosis. Toxicol Appl Pharmacol 2007, 220:243–251.CrossRefPubMed Wu CW, Ping YH, Yen JC, Chang CY, Wang SF, Yeh CL, Chi CW, Lee HC: Enhanced oxidative stress and aberrant mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells during methamphetamine induced apoptosis. Toxicol Appl Pharmacol 2007, 220:243–251.CrossRefPubMed
6.
go back to reference Rocher C, Gardier AM: Effects of repeated systemic administration of d-Fenfluramine on serotonin and glutamate release in rat ventral hippocampus: comparison with methamphetamine usingin vivomicrodialysis. Naunyn Schmiedebergs Arch Pharmacol 2001, 363:422–428.CrossRefPubMed Rocher C, Gardier AM: Effects of repeated systemic administration of d-Fenfluramine on serotonin and glutamate release in rat ventral hippocampus: comparison with methamphetamine usingin vivomicrodialysis. Naunyn Schmiedebergs Arch Pharmacol 2001, 363:422–428.CrossRefPubMed
7.
go back to reference Stephans SE, Yamamoto BK: Methamphetamine-induced neurotoxicity: roles for glutamate and dopamine efflux. Synapse 1994, 17:203–209.CrossRefPubMed Stephans SE, Yamamoto BK: Methamphetamine-induced neurotoxicity: roles for glutamate and dopamine efflux. Synapse 1994, 17:203–209.CrossRefPubMed
8.
go back to reference Brown JM, Quinton MS, Yamamoto BK: Methamphetamine-induced inhibition of mitochondrial complex II: roles of glutamate and peroxynitrite. J Neurochem 2005, 95:429–436.CrossRefPubMed Brown JM, Quinton MS, Yamamoto BK: Methamphetamine-induced inhibition of mitochondrial complex II: roles of glutamate and peroxynitrite. J Neurochem 2005, 95:429–436.CrossRefPubMed
9.
go back to reference Gonçalves J, Baptista S, Martins T, Milhazes N, Borges F, Ribeiro CF, Malva JO, Silva AP: Methamphetamine-induced neuroinflammation and neuronal dysfunction in the mice hippocampus: preventive effect of indomethacin. Eur J Neurosci 2010, 31:315–326.CrossRefPubMed Gonçalves J, Baptista S, Martins T, Milhazes N, Borges F, Ribeiro CF, Malva JO, Silva AP: Methamphetamine-induced neuroinflammation and neuronal dysfunction in the mice hippocampus: preventive effect of indomethacin. Eur J Neurosci 2010, 31:315–326.CrossRefPubMed
10.
go back to reference LaVoie MJ, Card JP, Hastings TG: Microglial activation precedes dopamine terminal pathology in methamphetamine-induced neurotoxicity. Exp Neurol 2004, 187:47–57.CrossRefPubMed LaVoie MJ, Card JP, Hastings TG: Microglial activation precedes dopamine terminal pathology in methamphetamine-induced neurotoxicity. Exp Neurol 2004, 187:47–57.CrossRefPubMed
11.
go back to reference Goncalves J, Martins T, Ferreira R, Milhazes N, Borges F, Ribeiro CF, Malva JO, Macedo TR, Silva AP: Methamphetamine-induced early increase of IL-6 and TNF-alpha mRNA expression in the mouse brain. Ann N Y Acad Sci 2008, 1139:103–111.CrossRefPubMed Goncalves J, Martins T, Ferreira R, Milhazes N, Borges F, Ribeiro CF, Malva JO, Macedo TR, Silva AP: Methamphetamine-induced early increase of IL-6 and TNF-alpha mRNA expression in the mouse brain. Ann N Y Acad Sci 2008, 1139:103–111.CrossRefPubMed
12.
go back to reference Thomas DM, Walker PD, Benjamins JA, Geddes TJ, Kuhn DM: Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation. J Pharmacol Exp Ther 2004, 311:1–7.CrossRefPubMed Thomas DM, Walker PD, Benjamins JA, Geddes TJ, Kuhn DM: Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation. J Pharmacol Exp Ther 2004, 311:1–7.CrossRefPubMed
13.
go back to reference Sriram K, Miller DB, O’Callaghan JP: Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-alpha. J Neurochem 2006, 96:706–718.CrossRefPubMed Sriram K, Miller DB, O’Callaghan JP: Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-alpha. J Neurochem 2006, 96:706–718.CrossRefPubMed
14.
go back to reference Thomas DM, Francescutti-Verbeem DM, Kuhn DM: Methamphetamine-induced neurotoxicity and microglial activation are not mediated by fractalkine receptor signaling. J Neurochem 2008, 106:696–705.CrossRefPubMedPubMedCentral Thomas DM, Francescutti-Verbeem DM, Kuhn DM: Methamphetamine-induced neurotoxicity and microglial activation are not mediated by fractalkine receptor signaling. J Neurochem 2008, 106:696–705.CrossRefPubMedPubMedCentral
15.
16.
go back to reference Bernardino L, Malva JO: Inflammation and neuronal susceptibility to excitotoxic cell death. In Interaction Between Neurons and Glia in Aging and Disease. Edited by: Malva JO, Rego AC, Cunha RA, Oliveira CR. Springer US, New York; 2007:3–35. Bernardino L, Malva JO: Inflammation and neuronal susceptibility to excitotoxic cell death. In Interaction Between Neurons and Glia in Aging and Disease. Edited by: Malva JO, Rego AC, Cunha RA, Oliveira CR. Springer US, New York; 2007:3–35.
17.
go back to reference Vilcek J, Feldmann M: Historical review: cytokines as therapeutics and targets of therapeutics. Trends Pharmacol Sci 2004, 25:201–209.CrossRefPubMed Vilcek J, Feldmann M: Historical review: cytokines as therapeutics and targets of therapeutics. Trends Pharmacol Sci 2004, 25:201–209.CrossRefPubMed
18.
go back to reference Leonard M, Ryan MP, Watson AJ, Schramek H, Healy E: Role of MAP kinase pathways in mediating IL-6 production in human primary mesangial and proximal tubular cells. Kidney Int 1999, 56:1366–1377.CrossRefPubMed Leonard M, Ryan MP, Watson AJ, Schramek H, Healy E: Role of MAP kinase pathways in mediating IL-6 production in human primary mesangial and proximal tubular cells. Kidney Int 1999, 56:1366–1377.CrossRefPubMed
19.
go back to reference Amrani Y, Ammit AJ, Panettieri RA: Tumor necrosis factor receptor (TNFR) 1, but not TNFR2, mediates tumor necrosis factor-alpha-induced interleukin-6 and RANTES in human airway smooth muscle cells: role of p38 and p42/44 mitogen-activated protein kinases. Mol Pharmacol 2001, 60:646–655.PubMed Amrani Y, Ammit AJ, Panettieri RA: Tumor necrosis factor receptor (TNFR) 1, but not TNFR2, mediates tumor necrosis factor-alpha-induced interleukin-6 and RANTES in human airway smooth muscle cells: role of p38 and p42/44 mitogen-activated protein kinases. Mol Pharmacol 2001, 60:646–655.PubMed
20.
go back to reference Kinouchi K, Brown G, Pasternak G, Donner DB: Identification and characterization of receptors for tumor necrosis factor-alpha in the brain. Biochem Biophys Res Commun 1991, 181:1532–1538.CrossRefPubMed Kinouchi K, Brown G, Pasternak G, Donner DB: Identification and characterization of receptors for tumor necrosis factor-alpha in the brain. Biochem Biophys Res Commun 1991, 181:1532–1538.CrossRefPubMed
21.
go back to reference Baud V, Karin M: Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 2001, 11:372–377.CrossRefPubMed Baud V, Karin M: Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 2001, 11:372–377.CrossRefPubMed
22.
go back to reference Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F: Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003, 374:1–20.CrossRefPubMedPubMedCentral Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F: Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003, 374:1–20.CrossRefPubMedPubMedCentral
23.
go back to reference Sparacio SM, Zhang Y, Vilcek J, Benveniste EN: Cytokine regulation of interleukin-6 gene expression in astrocytes involves activation of an NF-kappa B-like nuclear protein. J Neuroimmunol 1992, 39:231–242.CrossRefPubMed Sparacio SM, Zhang Y, Vilcek J, Benveniste EN: Cytokine regulation of interleukin-6 gene expression in astrocytes involves activation of an NF-kappa B-like nuclear protein. J Neuroimmunol 1992, 39:231–242.CrossRefPubMed
24.
go back to reference Beyaert R, Cuenda A, Vanden Berghe W, Plaisance S, Lee JC, Haegeman G, Cohen P, Fiers W: The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO J 1996, 15:1914–1923.PubMedPubMedCentral Beyaert R, Cuenda A, Vanden Berghe W, Plaisance S, Lee JC, Haegeman G, Cohen P, Fiers W: The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO J 1996, 15:1914–1923.PubMedPubMedCentral
25.
go back to reference Penkowa M, Giralt M, Carrasco J, Hadberg H, Hidalgo J: Impaired inflammatory response and increased oxidative stress and neurodegeneration after brain injury in interleukin-6-deficient mice. Glia 2000, 32:271–285.CrossRefPubMed Penkowa M, Giralt M, Carrasco J, Hadberg H, Hidalgo J: Impaired inflammatory response and increased oxidative stress and neurodegeneration after brain injury in interleukin-6-deficient mice. Glia 2000, 32:271–285.CrossRefPubMed
26.
go back to reference Pizzi M, Sarnico I, Boroni F, Benarese M, Dreano M, Garotta G, Valerio A, Spano P: Prevention of neuron and oligodendrocyte degeneration by interleukin-6 (IL-6) and IL-6 receptor/IL-6 fusion protein in organotypic hippocampal slices. Mol Cell Neurosci 2004, 25:301–311.CrossRefPubMed Pizzi M, Sarnico I, Boroni F, Benarese M, Dreano M, Garotta G, Valerio A, Spano P: Prevention of neuron and oligodendrocyte degeneration by interleukin-6 (IL-6) and IL-6 receptor/IL-6 fusion protein in organotypic hippocampal slices. Mol Cell Neurosci 2004, 25:301–311.CrossRefPubMed
27.
go back to reference Hakkoum D, Stoppini L, Muller D: Interleukin-6 promotes sprouting and functional recovery in lesioned organotypic hippocampal slice cultures. J Neurochem 2007, 100:747–757.CrossRefPubMed Hakkoum D, Stoppini L, Muller D: Interleukin-6 promotes sprouting and functional recovery in lesioned organotypic hippocampal slice cultures. J Neurochem 2007, 100:747–757.CrossRefPubMed
29.
go back to reference Quintanilla RA, Orellana DI, Gonzalez-Billault C, Maccioni RB: Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp Cell Res 2004, 295:245–257.CrossRefPubMed Quintanilla RA, Orellana DI, Gonzalez-Billault C, Maccioni RB: Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp Cell Res 2004, 295:245–257.CrossRefPubMed
30.
go back to reference Pavelko KD, Howe CL, Drescher KM, Gamez JD, Johnson AJ, Wei T, Ransohoff RM, Rodriguez M: Interleukin-6 protects anterior horn neurons from lethal virus-induced injury. J Neurosci 2003, 23:481–492.PubMed Pavelko KD, Howe CL, Drescher KM, Gamez JD, Johnson AJ, Wei T, Ransohoff RM, Rodriguez M: Interleukin-6 protects anterior horn neurons from lethal virus-induced injury. J Neurosci 2003, 23:481–492.PubMed
31.
go back to reference Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S: The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 2011, 1813:878–888.CrossRefPubMed Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S: The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 2011, 1813:878–888.CrossRefPubMed
32.
go back to reference Murakami M, Hibi M, Nakagawa N, Nakagawa T, Yasukawa K, Yamanishi K, Taga T, Kishimoto T: IL-6-induced homodimerization of gp130 and associated activation of a tyrosine kinase. Science 1993, 260:1808–1810.CrossRefPubMed Murakami M, Hibi M, Nakagawa N, Nakagawa T, Yasukawa K, Yamanishi K, Taga T, Kishimoto T: IL-6-induced homodimerization of gp130 and associated activation of a tyrosine kinase. Science 1993, 260:1808–1810.CrossRefPubMed
33.
34.
go back to reference Jenab S, Quinones-Jenab V: The effects of interleukin-6, leukemia inhibitory factor and interferon-gamma on STAT DNA binding and c-fos mRNA levels in cortical astrocytes and C6 glioma cells. Neuro Endocrinol Lett 2002, 23:325–328.PubMed Jenab S, Quinones-Jenab V: The effects of interleukin-6, leukemia inhibitory factor and interferon-gamma on STAT DNA binding and c-fos mRNA levels in cortical astrocytes and C6 glioma cells. Neuro Endocrinol Lett 2002, 23:325–328.PubMed
35.
go back to reference Sanz E, Hofer MJ, Unzeta M, Campbell IL: Minimal role for STAT1 in interleukin-6 signaling and actions in the murine brain. Glia 2008, 56:190–199.CrossRefPubMed Sanz E, Hofer MJ, Unzeta M, Campbell IL: Minimal role for STAT1 in interleukin-6 signaling and actions in the murine brain. Glia 2008, 56:190–199.CrossRefPubMed
36.
go back to reference Ladenheim B, Krasnova IN, Deng X, Oyler JM, Polettini A, Moran TH, Huestis MA, Cadet JL: Methamphetamine-induced neurotoxicity is attenuated in transgenic mice with a null mutation for interleukin-6. Mol Pharmacol 2000, 58:1247–1256.PubMed Ladenheim B, Krasnova IN, Deng X, Oyler JM, Polettini A, Moran TH, Huestis MA, Cadet JL: Methamphetamine-induced neurotoxicity is attenuated in transgenic mice with a null mutation for interleukin-6. Mol Pharmacol 2000, 58:1247–1256.PubMed
37.
go back to reference Tocharus J, Khonthun C, Chongthammakun S, Govitrapong P: Melatonin attenuates methamphetamine-induced overexpression of pro-inflammatory cytokines in microglial cell lines. J Pineal Res 2010, 48:347–352.CrossRefPubMed Tocharus J, Khonthun C, Chongthammakun S, Govitrapong P: Melatonin attenuates methamphetamine-induced overexpression of pro-inflammatory cytokines in microglial cell lines. J Pineal Res 2010, 48:347–352.CrossRefPubMed
38.
go back to reference Righi M, Mori L, De Libero G, Sironi M, Biondi A, Mantovani A, Donini SD, Ricciardi-Castagnoli P: Monokine production by microglial cell clones. Eur J Immunol 1989, 19:1443–1448.CrossRefPubMed Righi M, Mori L, De Libero G, Sironi M, Biondi A, Mantovani A, Donini SD, Ricciardi-Castagnoli P: Monokine production by microglial cell clones. Eur J Immunol 1989, 19:1443–1448.CrossRefPubMed
39.
40.
go back to reference Nopparat C, Porter JE, Ebadi M, Govitrapong P: The mechanism for the neuroprotective effect of melatonin against methamphetamine-induced autophagy. J Pineal Res 2010, 49:382–389.CrossRefPubMed Nopparat C, Porter JE, Ebadi M, Govitrapong P: The mechanism for the neuroprotective effect of melatonin against methamphetamine-induced autophagy. J Pineal Res 2010, 49:382–389.CrossRefPubMed
41.
go back to reference Bernardino L, Agasse F, Silva B, Ferreira R, Grade S, Malva JO: Tumor necrosis factor-alpha modulates survival, proliferation, and neuronal differentiation in neonatal subventricular zone cell cultures. Stem Cells 2008, 26:2361–2371.CrossRefPubMed Bernardino L, Agasse F, Silva B, Ferreira R, Grade S, Malva JO: Tumor necrosis factor-alpha modulates survival, proliferation, and neuronal differentiation in neonatal subventricular zone cell cultures. Stem Cells 2008, 26:2361–2371.CrossRefPubMed
42.
go back to reference Bento AR, Baptista S, Malva JO, Silva AP, Agasse F: Methamphetamine exerts toxic effects on subventricular zone stem/progenitor cells and inhibits neuronal differentiation. Rejuvenation Res 2011, 14:205–214.CrossRefPubMed Bento AR, Baptista S, Malva JO, Silva AP, Agasse F: Methamphetamine exerts toxic effects on subventricular zone stem/progenitor cells and inhibits neuronal differentiation. Rejuvenation Res 2011, 14:205–214.CrossRefPubMed
43.
go back to reference Bernardino L, Xapelli S, Silva AP, Jakobsen B, Poulsen FR, Oliveira CR, Vezzani A, Malva JO, Zimmer J: Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures. J Neurosci 2005, 25:6734–6744.CrossRefPubMed Bernardino L, Xapelli S, Silva AP, Jakobsen B, Poulsen FR, Oliveira CR, Vezzani A, Malva JO, Zimmer J: Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures. J Neurosci 2005, 25:6734–6744.CrossRefPubMed
44.
go back to reference Huang C, Ma R, Sun S, Wei G, Fang Y, Liu R, Li G: JAK2-STAT3 signaling pathway mediates thrombin-induced proinflammatory actions of microgliain vitro. J Neuroimmunol 2008, 204:118–125.CrossRefPubMed Huang C, Ma R, Sun S, Wei G, Fang Y, Liu R, Li G: JAK2-STAT3 signaling pathway mediates thrombin-induced proinflammatory actions of microgliain vitro. J Neuroimmunol 2008, 204:118–125.CrossRefPubMed
45.
go back to reference Kim OS, Park EJ, Joe EH, Jou I: JAK-STAT signaling mediates gangliosides-induced inflammatory responses in brain microglial cells. J Biol Chem 2002, 277:40594–40601.CrossRefPubMed Kim OS, Park EJ, Joe EH, Jou I: JAK-STAT signaling mediates gangliosides-induced inflammatory responses in brain microglial cells. J Biol Chem 2002, 277:40594–40601.CrossRefPubMed
46.
go back to reference Gorina R, Sanfeliu C, Galito A, Messeguer A, Planas AM: Exposure of glia to pro-oxidant agents revealed selective Stat1 activation by H2O2 and Jak2-independent antioxidant features of the Jak2 inhibitor AG490. Glia 2007, 55:1313–1324.CrossRefPubMed Gorina R, Sanfeliu C, Galito A, Messeguer A, Planas AM: Exposure of glia to pro-oxidant agents revealed selective Stat1 activation by H2O2 and Jak2-independent antioxidant features of the Jak2 inhibitor AG490. Glia 2007, 55:1313–1324.CrossRefPubMed
47.
go back to reference Baptista S, Bento AR, Goncalves J, Bernardino L, Summavielle T, Lobo A, Fontes-Ribeiro C, Malva JO, Agasse F, Silva AP: Neuropeptide Y promotes neurogenesis and protection against methamphetamine-induced toxicity in mouse dentate gyrus-derived neurosphere cultures. Neuropharmacology 2012, 62:2412–2422.CrossRef Baptista S, Bento AR, Goncalves J, Bernardino L, Summavielle T, Lobo A, Fontes-Ribeiro C, Malva JO, Agasse F, Silva AP: Neuropeptide Y promotes neurogenesis and protection against methamphetamine-induced toxicity in mouse dentate gyrus-derived neurosphere cultures. Neuropharmacology 2012, 62:2412–2422.CrossRef
49.
go back to reference De Vos J, Jourdan M, Tarte K, Jasmin C, Klein B: JAK2 tyrosine kinase inhibitor tyrphostin AG490 downregulates the mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription (STAT) pathways and induces apoptosis in myeloma cells. Br J Haematol 2000, 109:823–828.CrossRefPubMed De Vos J, Jourdan M, Tarte K, Jasmin C, Klein B: JAK2 tyrosine kinase inhibitor tyrphostin AG490 downregulates the mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription (STAT) pathways and induces apoptosis in myeloma cells. Br J Haematol 2000, 109:823–828.CrossRefPubMed
51.
go back to reference Neta R, Sayers TJ, Oppenheim JJ: Relationship of TNF to interleukins. Immunol Ser 1992, 56:499–566.PubMed Neta R, Sayers TJ, Oppenheim JJ: Relationship of TNF to interleukins. Immunol Ser 1992, 56:499–566.PubMed
52.
go back to reference Deng X, Cai NS, McCoy MT, Chen W, Trush MA, Cadet JL: Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology 2002, 42:837–845.CrossRefPubMed Deng X, Cai NS, McCoy MT, Chen W, Trush MA, Cadet JL: Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology 2002, 42:837–845.CrossRefPubMed
53.
go back to reference Jayanthi S, Deng X, Bordelon M, McCoy MT, Cadet JL: Methamphetamine causes differential regulation of pro-death and anti-death Bcl-2 genes in the mouse neocortex. FASEB J 2001, 15:1745–1752.CrossRefPubMed Jayanthi S, Deng X, Bordelon M, McCoy MT, Cadet JL: Methamphetamine causes differential regulation of pro-death and anti-death Bcl-2 genes in the mouse neocortex. FASEB J 2001, 15:1745–1752.CrossRefPubMed
54.
go back to reference Dziennis S, Alkayed NJ: Role of signal transducer and activator of transcription 3 in neuronal survival and regeneration. Rev Neurosci 2008, 19:341–361.CrossRefPubMedPubMedCentral Dziennis S, Alkayed NJ: Role of signal transducer and activator of transcription 3 in neuronal survival and regeneration. Rev Neurosci 2008, 19:341–361.CrossRefPubMedPubMedCentral
55.
go back to reference Cadet JL, Jayanthi S, Deng X: Methamphetamine-induced neuronal apoptosis involves the activation of multiple death pathways. Review. Neurotox Res 2005, 8:199–206.CrossRefPubMed Cadet JL, Jayanthi S, Deng X: Methamphetamine-induced neuronal apoptosis involves the activation of multiple death pathways. Review. Neurotox Res 2005, 8:199–206.CrossRefPubMed
56.
go back to reference Harms AS, Lee JK, Nguyen TA, Chang J, Ruhn KM, Trevino I, Tansey MG: Regulation of microglia effector functions by tumor necrosis factor signaling. Glia 2012, 60:189–202.CrossRefPubMed Harms AS, Lee JK, Nguyen TA, Chang J, Ruhn KM, Trevino I, Tansey MG: Regulation of microglia effector functions by tumor necrosis factor signaling. Glia 2012, 60:189–202.CrossRefPubMed
57.
go back to reference Yamashita A, Soga Y, Iwamoto Y, Yoshizawa S, Iwata H, Kokeguchi S, Takashiba S, Nishimura F: Macrophage-adipocyte interaction: marked interleukin-6 production by lipopolysaccharide. Obesity (Silver Spring) 2007, 15:2549–2552.CrossRef Yamashita A, Soga Y, Iwamoto Y, Yoshizawa S, Iwata H, Kokeguchi S, Takashiba S, Nishimura F: Macrophage-adipocyte interaction: marked interleukin-6 production by lipopolysaccharide. Obesity (Silver Spring) 2007, 15:2549–2552.CrossRef
58.
go back to reference Inoue K, Koizumi S, Tsuda M, Shigemoto-Mogami Y: Signaling of ATP receptors in glia-neuron interaction and pain. Life Sci 2003, 74:189–197.CrossRefPubMed Inoue K, Koizumi S, Tsuda M, Shigemoto-Mogami Y: Signaling of ATP receptors in glia-neuron interaction and pain. Life Sci 2003, 74:189–197.CrossRefPubMed
59.
go back to reference Marz P, Gadient RA, Otten U: Expression of interleukin-6 receptor (IL-6R) and gp130 mRNA in PC12 cells and sympathetic neurons: modulation by tumor necrosis factor alpha (TNF-alpha). Brain Res 1996, 706:71–79.CrossRefPubMed Marz P, Gadient RA, Otten U: Expression of interleukin-6 receptor (IL-6R) and gp130 mRNA in PC12 cells and sympathetic neurons: modulation by tumor necrosis factor alpha (TNF-alpha). Brain Res 1996, 706:71–79.CrossRefPubMed
60.
go back to reference Nakajima A, Yamada K, Nagai T, Uchiyama T, Miyamoto Y, Mamiya T, He J, Nitta A, Mizuno M, Tran MH, Seto A, Yoshimura M, Kitaichi K, Hasegawa T, Saito K, Yamada Y, Seishima M, Sekikawa K, Kim HC, Nabeshima T: Role of tumor necrosis factor-alpha in methamphetamine-induced drug dependence and neurotoxicity. J Neurosci 2004, 24:2212–2225.CrossRefPubMed Nakajima A, Yamada K, Nagai T, Uchiyama T, Miyamoto Y, Mamiya T, He J, Nitta A, Mizuno M, Tran MH, Seto A, Yoshimura M, Kitaichi K, Hasegawa T, Saito K, Yamada Y, Seishima M, Sekikawa K, Kim HC, Nabeshima T: Role of tumor necrosis factor-alpha in methamphetamine-induced drug dependence and neurotoxicity. J Neurosci 2004, 24:2212–2225.CrossRefPubMed
61.
go back to reference Yamada M, Hatanaka H: Interleukin-6 protects cultured rat hippocampal neurons against glutamate-induced cell death. Brain Res 1994, 643:173–180.CrossRefPubMed Yamada M, Hatanaka H: Interleukin-6 protects cultured rat hippocampal neurons against glutamate-induced cell death. Brain Res 1994, 643:173–180.CrossRefPubMed
62.
go back to reference Wang XC, Qiu YH, Peng YP: Interleukin-6 protects cerebellar granule neurons from NMDA-induced neurotoxicity. Sheng Li Xue Bao 2007, 59:150–156.PubMed Wang XC, Qiu YH, Peng YP: Interleukin-6 protects cerebellar granule neurons from NMDA-induced neurotoxicity. Sheng Li Xue Bao 2007, 59:150–156.PubMed
63.
go back to reference Wang XQ, Peng YP, Lu JH, Cao BB, Qiu YH: Neuroprotection of interleukin-6 against NMDA attack and its signal transduction by JAK and MAPK. Neurosci Lett 2009, 450:122–126.CrossRefPubMed Wang XQ, Peng YP, Lu JH, Cao BB, Qiu YH: Neuroprotection of interleukin-6 against NMDA attack and its signal transduction by JAK and MAPK. Neurosci Lett 2009, 450:122–126.CrossRefPubMed
64.
go back to reference Haas CA, Hofmann HD, Kirsch M: Expression of CNTF/LIF-receptor components and activation of STAT3 signaling in axotomized facial motoneurons: evidence for a sequential postlesional function of the cytokines. J Neurobiol 1999, 41:559–571.CrossRefPubMed Haas CA, Hofmann HD, Kirsch M: Expression of CNTF/LIF-receptor components and activation of STAT3 signaling in axotomized facial motoneurons: evidence for a sequential postlesional function of the cytokines. J Neurobiol 1999, 41:559–571.CrossRefPubMed
65.
go back to reference Hasegawa T, Suzuki K, Sakamoto C, Ohta K, Nishiki S, Hino M, Tatsumi N, Kitagawa S: Expression of the inhibitor of apoptosis (IAP) family members in human neutrophils: up-regulation of cIAP2 by granulocyte colony-stimulating factor and overexpression of cIAP2 in chronic neutrophilic leukemia. Blood 2003, 101:1164–1171.CrossRefPubMed Hasegawa T, Suzuki K, Sakamoto C, Ohta K, Nishiki S, Hino M, Tatsumi N, Kitagawa S: Expression of the inhibitor of apoptosis (IAP) family members in human neutrophils: up-regulation of cIAP2 by granulocyte colony-stimulating factor and overexpression of cIAP2 in chronic neutrophilic leukemia. Blood 2003, 101:1164–1171.CrossRefPubMed
66.
go back to reference Cadet JL, Ordonez SV, Ordonez JV: Methamphetamine induces apoptosis in immortalized neural cells: protection by the proto-oncogene, bcl-2. Synapse 1997, 25:176–184.CrossRefPubMed Cadet JL, Ordonez SV, Ordonez JV: Methamphetamine induces apoptosis in immortalized neural cells: protection by the proto-oncogene, bcl-2. Synapse 1997, 25:176–184.CrossRefPubMed
Metadata
Title
Prevention of methamphetamine-induced microglial cell death by TNF-α and IL-6 through activation of the JAK-STAT pathway
Authors
Vanessa Coelho-Santos
Joana Gonçalves
Carlos Fontes-Ribeiro
Ana Paula Silva
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-103

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue