Skip to main content
Top
Published in: Journal of Neurodevelopmental Disorders 1/2019

Open Access 01-12-2019 | Disorders of Intellectual Development | Research

STXBP1-associated neurodevelopmental disorder: a comparative study of behavioural characteristics

Authors: Sinéad O’Brien, Elise Ng-Cordell, Duncan E. Astle, Gaia Scerif, Kate Baker, The DDD Study

Published in: Journal of Neurodevelopmental Disorders | Issue 1/2019

Login to get access

Abstract

Background

De novo loss of function mutations in STXBP1 are a relatively common cause of epilepsy and intellectual disability (ID). However, little is known about the types and severities of behavioural features associated with this genetic diagnosis.

Methods

To address this, we collected systematic phenotyping data encompassing neurological, developmental, and behavioural characteristics. Participants were 14 individuals with STXBP1-associated neurodevelopmental disorder, ascertained from clinical genetics and neurology services UK-wide. Data was collected via standardised questionnaires administered to parents at home, supplemented by researcher observations. To isolate discriminating phenotypes, the STXBP1 group was compared to 33 individuals with pathogenic mutations in other ID-associated genes (ID group). To account for the potential impact of global cognitive impairment, a secondary comparison was made to an ability-matched subset of the ID group (low-ability ID group).

Results

The STXBP1 group demonstrated impairments across all assessed domains. In comparison to the ID group, the STXBP1 group had more severe global adaptive impairments, fine motor difficulties, and hyperactivity. In comparison to the low-ability ID group, severity of receptive language and social impairments discriminated the STXBP1 group. A striking feature of the STXBP1 group, with reference to both comparison groups, was preservation of social motivation.

Conclusions

De novo mutations in STXBP1 are associated with complex and variable neurodevelopmental impairments. Consistent features, which discriminate this disorder from other monogenic causes of ID, are severe language impairment and difficulties managing social interactions, despite strong social motivation. Future work could explore the physiological mechanisms linking motor, speech, and social development in this disorder. Understanding the developmental emergence of behavioural characteristics can help to focus clinical assessment and management after genetic diagnosis, with the long-term aim of improving outcomes for patients and families.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gilissen C, Hehir-Kwa JY, Thung DT, Van De Vorst M, Van Bon BWM, Willemsen MH, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014;511(7509):344–7 Nature Publishing Group.PubMedCrossRef Gilissen C, Hehir-Kwa JY, Thung DT, Van De Vorst M, Van Bon BWM, Willemsen MH, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014;511(7509):344–7 Nature Publishing Group.PubMedCrossRef
3.
go back to reference Saitsu H, Kato M, Mizuguchi T, Hamada K, Osaka H, Tohyama J, et al. De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat Genet. 2008;40(6):782–8.PubMedCrossRef Saitsu H, Kato M, Mizuguchi T, Hamada K, Osaka H, Tohyama J, et al. De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat Genet. 2008;40(6):782–8.PubMedCrossRef
4.
go back to reference Carvill GL, Weckhuysen S, McMahon JM, Hartmann C, Møller RS, Hjalgrim H, et al. GABRA1 and STXBP1: novel genetic causes of Dravet syndrome. Neurology. 2014;82(14):1245–53.PubMedPubMedCentralCrossRef Carvill GL, Weckhuysen S, McMahon JM, Hartmann C, Møller RS, Hjalgrim H, et al. GABRA1 and STXBP1: novel genetic causes of Dravet syndrome. Neurology. 2014;82(14):1245–53.PubMedPubMedCentralCrossRef
5.
go back to reference Deprez L, Weckhuysen S, Holmgren P, Suls A, Van Dyck T, Goossens D, et al. Clinical spectrum of early-onset epileptic encephalopathies associated with STXBP1 mutations. Neurology. 2010;75(13):1159–65.PubMedCrossRef Deprez L, Weckhuysen S, Holmgren P, Suls A, Van Dyck T, Goossens D, et al. Clinical spectrum of early-onset epileptic encephalopathies associated with STXBP1 mutations. Neurology. 2010;75(13):1159–65.PubMedCrossRef
6.
go back to reference Di Meglio C, Lesca G, Villeneuve N, Lacoste C, Abidi A, Cacciagli P, et al. Epileptic patients with de novo STXBP1 mutations: key clinical features based on 24 cases. Epilepsia. 2015;56(12):1931–40.PubMedCrossRef Di Meglio C, Lesca G, Villeneuve N, Lacoste C, Abidi A, Cacciagli P, et al. Epileptic patients with de novo STXBP1 mutations: key clinical features based on 24 cases. Epilepsia. 2015;56(12):1931–40.PubMedCrossRef
7.
go back to reference Stamberger H, Nikanorova M, Accorsi P, Angriman M, Benkel-herrenbrueck I, Capovilla G, et al. STXBP1 encephalopathy: a neurodevelopmental disorder including epilepsy. Neurology. 2016;86:954–962.PubMedCrossRef Stamberger H, Nikanorova M, Accorsi P, Angriman M, Benkel-herrenbrueck I, Capovilla G, et al. STXBP1 encephalopathy: a neurodevelopmental disorder including epilepsy. Neurology. 2016;86:954–962.PubMedCrossRef
8.
go back to reference Allen AS, Berkovic SF, Cossette P, Delanty N, Dlugos D, Eichler EE, et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501(7466):217–21 Nature Publishing Group.PubMedCrossRef Allen AS, Berkovic SF, Cossette P, Delanty N, Dlugos D, Eichler EE, et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501(7466):217–21 Nature Publishing Group.PubMedCrossRef
9.
go back to reference Chan A, Brunga L, Lamoureux S, Faheem M, Drake J, Shlien A, et al. Germline and somatic mutations in STXBP1 with diverse neurodevelopmental phenotypes. Neurol Genet. 2017;3(6):e199.PubMedPubMedCentralCrossRef Chan A, Brunga L, Lamoureux S, Faheem M, Drake J, Shlien A, et al. Germline and somatic mutations in STXBP1 with diverse neurodevelopmental phenotypes. Neurol Genet. 2017;3(6):e199.PubMedPubMedCentralCrossRef
10.
go back to reference Barcia G, Chemaly N, Gobin S, Milh M, Van Bogaert P, Barnerias C, et al. Early epileptic encephalopathies associated with STXBP1 mutations: could we better delineate the phenotype? Eur J Med Genet. 2014;57(1):15–20 Elsevier Masson SAS.PubMedCrossRef Barcia G, Chemaly N, Gobin S, Milh M, Van Bogaert P, Barnerias C, et al. Early epileptic encephalopathies associated with STXBP1 mutations: could we better delineate the phenotype? Eur J Med Genet. 2014;57(1):15–20 Elsevier Masson SAS.PubMedCrossRef
11.
go back to reference Gburek-Augustat J, Beck-Woedl S, Tzschach A, Bauer P, Schoening M, Riess A. Epilepsy is not a mandatory feature of STXBP1 associated ataxia-tremor-retardation syndrome. Eur J Paediatr Neurol. 2016;20(4):661–5 Elsevier Ltd.PubMedCrossRef Gburek-Augustat J, Beck-Woedl S, Tzschach A, Bauer P, Schoening M, Riess A. Epilepsy is not a mandatory feature of STXBP1 associated ataxia-tremor-retardation syndrome. Eur J Paediatr Neurol. 2016;20(4):661–5 Elsevier Ltd.PubMedCrossRef
12.
go back to reference Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T, et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet. 2012;380(9854):1674–82.PubMedCrossRef Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T, et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet. 2012;380(9854):1674–82.PubMedCrossRef
13.
go back to reference Suri M, Evers JMG, Laskowski RA, O’Brien S, Baker K, Clayton-Smith J, et al. Protein structure and phenotypic analysis of pathogenic and population missense variants in STXBP1. Mol Genet Genomic Med. 2017;5(5):495–507.PubMedPubMedCentralCrossRef Suri M, Evers JMG, Laskowski RA, O’Brien S, Baker K, Clayton-Smith J, et al. Protein structure and phenotypic analysis of pathogenic and population missense variants in STXBP1. Mol Genet Genomic Med. 2017;5(5):495–507.PubMedPubMedCentralCrossRef
14.
go back to reference Yuge K, Iwama K, Yonee C, Matsufuji M, Sano N, Saikusa T, et al. A novel STXBP1 mutation causes typical Rett syndrome in a Japanese girl. Brain Dev. 2018;40(6):493–7 The Japanese Society of Child Neurology.PubMedCrossRef Yuge K, Iwama K, Yonee C, Matsufuji M, Sano N, Saikusa T, et al. A novel STXBP1 mutation causes typical Rett syndrome in a Japanese girl. Brain Dev. 2018;40(6):493–7 The Japanese Society of Child Neurology.PubMedCrossRef
15.
go back to reference McRae JF, Clayton S, Fitzgerald TW, et al. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542(7642):433–8.CrossRef McRae JF, Clayton S, Fitzgerald TW, et al. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542(7642):433–8.CrossRef
16.
go back to reference Wright CF, Fitzgerald TW, Jones WD, Clayton S, McRae JF, Van Kogelenberg M, et al. Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data. Lancet. 2015;385(9975):1305–14.PubMedPubMedCentralCrossRef Wright CF, Fitzgerald TW, Jones WD, Clayton S, McRae JF, Van Kogelenberg M, et al. Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data. Lancet. 2015;385(9975):1305–14.PubMedPubMedCentralCrossRef
17.
go back to reference Hamdan FF, Gauthier J, Dobrzeniecka S, Lortie A, Mottron L, Vanasse M, et al. Intellectual disability without epilepsy associated with STXBP1 disruption. Eur J Hum Genet. 2011;19(5):607–9.PubMedPubMedCentralCrossRef Hamdan FF, Gauthier J, Dobrzeniecka S, Lortie A, Mottron L, Vanasse M, et al. Intellectual disability without epilepsy associated with STXBP1 disruption. Eur J Hum Genet. 2011;19(5):607–9.PubMedPubMedCentralCrossRef
18.
go back to reference Milh M, Villeneuve N, Chouchane M, Kaminska A, Laroche C, Barthez MA, et al. Epileptic and nonepileptic features in patients with early onset epileptic encephalopathy and STXBP1 mutations. Epilepsia. 2011;52(10):1828–34.PubMedCrossRef Milh M, Villeneuve N, Chouchane M, Kaminska A, Laroche C, Barthez MA, et al. Epileptic and nonepileptic features in patients with early onset epileptic encephalopathy and STXBP1 mutations. Epilepsia. 2011;52(10):1828–34.PubMedCrossRef
19.
go back to reference Mastrangelo M, Peron A, Spaccini L, Novara F, Scelsa B, Introvini P, et al. Neonatal suppression-burst without epileptic seizures: expanding the electroclinical phenotype of STXBP1-related, early-onset encephalopathy. Epileptic Disord. 2013;15(1):55–61.PubMed Mastrangelo M, Peron A, Spaccini L, Novara F, Scelsa B, Introvini P, et al. Neonatal suppression-burst without epileptic seizures: expanding the electroclinical phenotype of STXBP1-related, early-onset encephalopathy. Epileptic Disord. 2013;15(1):55–61.PubMed
20.
go back to reference Yamamoto T, Shimojima K, Yano T, Ueda Y, Takayama R, Ikeda H, et al. Loss-of-function mutations of STXBP1 in patients with epileptic encephalopathy. Brain Dev. 2016;38(3):280–4 The Japanese Society of Child Neurology.PubMedCrossRef Yamamoto T, Shimojima K, Yano T, Ueda Y, Takayama R, Ikeda H, et al. Loss-of-function mutations of STXBP1 in patients with epileptic encephalopathy. Brain Dev. 2016;38(3):280–4 The Japanese Society of Child Neurology.PubMedCrossRef
21.
go back to reference Patzke C, Han Y, Covy J, Yi F, Maxeiner S, Wernig M, et al. Analysis of conditional heterozygous STXBP1 mutations in human neurons. J Clin Invest. 2015;125(9):3560–71.PubMedPubMedCentralCrossRef Patzke C, Han Y, Covy J, Yi F, Maxeiner S, Wernig M, et al. Analysis of conditional heterozygous STXBP1 mutations in human neurons. J Clin Invest. 2015;125(9):3560–71.PubMedPubMedCentralCrossRef
22.
go back to reference Verhage M. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science. 2000;287(5454):864–9.PubMedCrossRef Verhage M. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science. 2000;287(5454):864–9.PubMedCrossRef
23.
go back to reference Toonen RFG, Verhage M. Munc18-1 in secretion: lonely Munc joins SNARE team and takes control. Trends Neurosci. 2007;30(11):564–72.PubMedCrossRef Toonen RFG, Verhage M. Munc18-1 in secretion: lonely Munc joins SNARE team and takes control. Trends Neurosci. 2007;30(11):564–72.PubMedCrossRef
24.
go back to reference Grone BP, Marchese M, Hamling KR, Kumar MG, Krasniak CS, Sicca F, et al. Epilepsy, behavioral abnormalities, and physiological comorbidities in syntaxin-binding protein 1 (STXBP1) mutant zebrafish. PLoS One. 2016;11(3):1–25.CrossRef Grone BP, Marchese M, Hamling KR, Kumar MG, Krasniak CS, Sicca F, et al. Epilepsy, behavioral abnormalities, and physiological comorbidities in syntaxin-binding protein 1 (STXBP1) mutant zebrafish. PLoS One. 2016;11(3):1–25.CrossRef
25.
go back to reference Kovačević J, Maroteaux G, Schut D, Loos M, Dubey M, Pitsch J, et al. Protein instability, haploinsufficiency, and cortical hyper-excitability underlie STXBP1 encephalopathy. Brain. 2018;141(5):1350–74.PubMedPubMedCentralCrossRef Kovačević J, Maroteaux G, Schut D, Loos M, Dubey M, Pitsch J, et al. Protein instability, haploinsufficiency, and cortical hyper-excitability underlie STXBP1 encephalopathy. Brain. 2018;141(5):1350–74.PubMedPubMedCentralCrossRef
26.
go back to reference Sparrow CB. The Vineland Adaptive behavior Scales-Second Edition-VBAS II. In: Major psychological assessment instruments, vol. 2. Needham Heights: Allyn & Bacon; 2005. p. 199–231. Sparrow CB. The Vineland Adaptive behavior Scales-Second Edition-VBAS II. In: Major psychological assessment instruments, vol. 2. Needham Heights: Allyn & Bacon; 2005. p. 199–231.
27.
go back to reference Einfeld SL, Tonge BJ. Developmental Behavior Checklist. 2nd Edi ed. Australia: University of New South Wales and Monash University; 2002. Einfeld SL, Tonge BJ. Developmental Behavior Checklist. 2nd Edi ed. Australia: University of New South Wales and Monash University; 2002.
28.
go back to reference Conners CK. Conner’s 3rd Edition Technical Manual. 3rd Edit ed. Toronto: MHS Assessments; 2008. Conners CK. Conner’s 3rd Edition Technical Manual. 3rd Edit ed. Toronto: MHS Assessments; 2008.
29.
go back to reference Constantino JN, Gruber CP. The Social Responsiveness Scale Manual, Second Edition (SRS-2). 2nd Edi ed. Torrance: WPS; 2012. Constantino JN, Gruber CP. The Social Responsiveness Scale Manual, Second Edition (SRS-2). 2nd Edi ed. Torrance: WPS; 2012.
30.
go back to reference Henderson SE, Sugden DA, Barnett A. Movement ABC-2 Movement Assessment Battery for Children – Second Edition. 2nd Edi ed. Pearson Education Ltd: Minneapolis; 2013. Henderson SE, Sugden DA, Barnett A. Movement ABC-2 Movement Assessment Battery for Children – Second Edition. 2nd Edi ed. Pearson Education Ltd: Minneapolis; 2013.
31.
go back to reference Richards C, Powis L, Moss J, Stinton C, Nelson L, Oliver C. Prospective study of autism phenomenology and the behavioural phenotype of Phelan-McDermid syndrome: comparison to fragile X syndrome, Down syndrome and idiopathic autism spectrum disorder. J Neurodev Disord. 2017;9(1):1–15.CrossRef Richards C, Powis L, Moss J, Stinton C, Nelson L, Oliver C. Prospective study of autism phenomenology and the behavioural phenotype of Phelan-McDermid syndrome: comparison to fragile X syndrome, Down syndrome and idiopathic autism spectrum disorder. J Neurodev Disord. 2017;9(1):1–15.CrossRef
32.
go back to reference Orock A, Logan S, Deak F. Molecular and Cellular Neuroscience Munc18-1 haploinsufficiency impairs learning and memory by reduced synaptic vesicular release in a model of Ohtahara syndrome. Mol Cell Neurosci 2018;88:33–42. Elsevier. Orock A, Logan S, Deak F. Molecular and Cellular Neuroscience Munc18-1 haploinsufficiency impairs learning and memory by reduced synaptic vesicular release in a model of Ohtahara syndrome. Mol Cell Neurosci 2018;88:33–42. Elsevier.
33.
go back to reference Mabb AM, Judson MC, Zylka MJ, Philpot BD. Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes. Trends Neurosci. 2011;34(6):293–303 Elsevier Ltd.PubMedPubMedCentralCrossRef Mabb AM, Judson MC, Zylka MJ, Philpot BD. Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes. Trends Neurosci. 2011;34(6):293–303 Elsevier Ltd.PubMedPubMedCentralCrossRef
34.
go back to reference Hager T, Maroteaux G, Julsing J, Van VR, Stiedl O. Munc18-1 haploinsufficiency results in enhanced anxiety-like behavior as determined by heart rate responses in mice. Behav Brain Res. 2014;260:44–52 Elsevier B.V.PubMedCrossRef Hager T, Maroteaux G, Julsing J, Van VR, Stiedl O. Munc18-1 haploinsufficiency results in enhanced anxiety-like behavior as determined by heart rate responses in mice. Behav Brain Res. 2014;260:44–52 Elsevier B.V.PubMedCrossRef
35.
go back to reference Horsler K, Oliver C. The behavioural phenotype of Angelman syndrome. J Intellect Disabil Res. 2006;50(1):33–53.PubMedCrossRef Horsler K, Oliver C. The behavioural phenotype of Angelman syndrome. J Intellect Disabil Res. 2006;50(1):33–53.PubMedCrossRef
36.
go back to reference Bakke KA, Howlin P, Retterstøl L, Kanavin IJ, Heiberg A, Nærland T. Effect of epilepsy on autism symptoms in Angelman syndrome. Mol Autism. 2018;9(1):1–8.CrossRef Bakke KA, Howlin P, Retterstøl L, Kanavin IJ, Heiberg A, Nærland T. Effect of epilepsy on autism symptoms in Angelman syndrome. Mol Autism. 2018;9(1):1–8.CrossRef
37.
go back to reference Pelc K, Cheron G, Dan B. Behavior and neuropsychiatry manifestations in Angelman syndrome. Neuropsychiatr Dis Treat. 2008;4(3):577–84.PubMedPubMedCentral Pelc K, Cheron G, Dan B. Behavior and neuropsychiatry manifestations in Angelman syndrome. Neuropsychiatr Dis Treat. 2008;4(3):577–84.PubMedPubMedCentral
38.
go back to reference Huang HS, Burns AJ, Nonneman RJ, Baker LK, Riddick NV, Nikolova VD, et al. Behavioral deficits in an Angelman syndrome model: effects of genetic background and age. Behav Brain Res. 2013;243(1):79–90 Elsevier B.V.PubMedPubMedCentralCrossRef Huang HS, Burns AJ, Nonneman RJ, Baker LK, Riddick NV, Nikolova VD, et al. Behavioral deficits in an Angelman syndrome model: effects of genetic background and age. Behav Brain Res. 2013;243(1):79–90 Elsevier B.V.PubMedPubMedCentralCrossRef
39.
go back to reference Oliver C, Woodcock K, Adams D. The importance of aetiology of intellectual disability. In: Grant G, Ramcharan P, Flynn M, Richardson M, editors. Learning disability: a life cycle approach to valuing people. Milton Keynes: Open University Press/Wiley; 2010. p. 135–46. Oliver C, Woodcock K, Adams D. The importance of aetiology of intellectual disability. In: Grant G, Ramcharan P, Flynn M, Richardson M, editors. Learning disability: a life cycle approach to valuing people. Milton Keynes: Open University Press/Wiley; 2010. p. 135–46.
42.
go back to reference Berrios J, Stamatakis AM, Kantak PA, Mcelligott ZA, Judson MC, Aita M, et al. Loss of UBE3A from TH-expressing neurons suppresses GABA co-release and enhances VTA-NAc optical self-stimulation. Nat Commun. 2016;7:1–8 Nature Publishing Group.CrossRef Berrios J, Stamatakis AM, Kantak PA, Mcelligott ZA, Judson MC, Aita M, et al. Loss of UBE3A from TH-expressing neurons suppresses GABA co-release and enhances VTA-NAc optical self-stimulation. Nat Commun. 2016;7:1–8 Nature Publishing Group.CrossRef
Metadata
Title
STXBP1-associated neurodevelopmental disorder: a comparative study of behavioural characteristics
Authors
Sinéad O’Brien
Elise Ng-Cordell
Duncan E. Astle
Gaia Scerif
Kate Baker
The DDD Study
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Neurodevelopmental Disorders / Issue 1/2019
Print ISSN: 1866-1947
Electronic ISSN: 1866-1955
DOI
https://doi.org/10.1186/s11689-019-9278-9

Other articles of this Issue 1/2019

Journal of Neurodevelopmental Disorders 1/2019 Go to the issue