Skip to main content
Top
Published in: Journal of Neurodevelopmental Disorders 1/2019

Open Access 01-12-2019 | Magnetoencephalography | Research

Lesser suppression of response to bright visual stimuli and visual abnormality in children with autism spectrum disorder: a magnetoencephalographic study

Authors: Sho Aoki, Kuriko Kagitani-Shimono, Junko Matsuzaki, Ryuzo Hanaie, Mariko Nakanishi, Koji Tominaga, Yukie Nagai, Ikuko Mohri, Masako Taniike

Published in: Journal of Neurodevelopmental Disorders | Issue 1/2019

Login to get access

Abstract

Background

Visual abnormality is a common sensory impairment in autism spectrum disorder (ASD), which may cause behavioral problems. However, only a few studies exist on the neural features corresponding to the visual symptoms in ASD. The purpose of this study was to investigate the relationship between cortical responses to visual stimuli and visual abnormality to examine the neurophysiological mechanisms of the visual abnormality in ASD.

Methods

Twenty-two high-functioning children with ASD (10.95 ± 2.01 years old) and 23 age-matched typically developing (TD) children (10.13 ± 2.80 years old) participated in this study. We measured the cortical responses (i.e., activated intensity and attenuation ratio) elicited by the Original visual image and other two types of bright images (the Dot noise or Blind image, which includes overlapped particles onto the Original image or the enhanced-brightness version of the Original image, respectively) using magnetoencephalography.

Results

The severity of visual abnormalities was significantly associated with behavioral problems in children with ASD. In addition, we found the increased cortical activation in response to the Original image in the left supramarginal gyrus (SMG) and middle temporal gyrus in children with ASD. However, there were no inter-group differences in the primary visual and medial orbitofrontal cortices. Furthermore, when we compared cortical responses according to the type of images, children with ASD showed lesser attenuation of the activated intensities than children with TD in response to the bright images compared with the Original image in the right SMG. These attenuation ratios (Dot noise/Original and Blind/Original) were also associated with the severity of visual abnormalities.

Conclusions

Our results show that dysfunction of stimulus-driven neural suppression plays a crucial role in the neural mechanism of visual abnormality in children with ASD. To the best of our knowledge, this is the first magnetoencephalography study to demonstrate the association between the severity of visual abnormality and lower attenuation ratios in children with ASD. Our results contribute to the knowledge of the mechanisms underlying visual abnormality in children with ASD, and may therefore lead to more effective diagnosis and earlier intervention.
Appendix
Available only for authorised users
Literature
1.
go back to reference American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Washington, DC: American Psychiatric Publishing, Inc; 2013. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Washington, DC: American Psychiatric Publishing, Inc; 2013.
2.
go back to reference Baranek GT, David FJ, Poe MD, Stone WL, Watson LR. Sensory experiences questionnaire: discriminating sensory features in young children with autism, developmental delays, and typical development. J Child Psychol Psychiatry. 2006;47:591–601.CrossRef Baranek GT, David FJ, Poe MD, Stone WL, Watson LR. Sensory experiences questionnaire: discriminating sensory features in young children with autism, developmental delays, and typical development. J Child Psychol Psychiatry. 2006;47:591–601.CrossRef
3.
go back to reference Nieto C, López B, Gandía H. Relationships between atypical sensory processing patterns, maladaptive behaviour and maternal stress in Spanish children with autism spectrum disorder. J Intellect Disabil Res. 2017;61:1140–50.CrossRef Nieto C, López B, Gandía H. Relationships between atypical sensory processing patterns, maladaptive behaviour and maternal stress in Spanish children with autism spectrum disorder. J Intellect Disabil Res. 2017;61:1140–50.CrossRef
4.
go back to reference Tomchek SD, Dunn W. Sensory processing in children with and without autism: a comparative study using the short sensory profile. Am J Occup Ther. 2007;61:190–200.CrossRef Tomchek SD, Dunn W. Sensory processing in children with and without autism: a comparative study using the short sensory profile. Am J Occup Ther. 2007;61:190–200.CrossRef
5.
go back to reference Lane AE, Young RL, Baker AEZ, Angley MT. Sensory processing subtypes in autism: association with adaptive behavior. J Autism Dev Disord. 2010;40:112–22.CrossRef Lane AE, Young RL, Baker AEZ, Angley MT. Sensory processing subtypes in autism: association with adaptive behavior. J Autism Dev Disord. 2010;40:112–22.CrossRef
6.
go back to reference Kikuchi M, Yoshimura Y, Mutou K, Minabe Y. Magnetoencephalography in the study of children with autism spectrum disorder. Psychiatry Clin Neurosci. 2016;70:74–88.CrossRef Kikuchi M, Yoshimura Y, Mutou K, Minabe Y. Magnetoencephalography in the study of children with autism spectrum disorder. Psychiatry Clin Neurosci. 2016;70:74–88.CrossRef
7.
go back to reference Schauder KB, Bennetto L. Toward an interdisciplinary understanding of sensory dysfunction in autism spectrum disorder: an integration of the neural and symptom literatures. Front Neurosci. 2016;10:268.CrossRef Schauder KB, Bennetto L. Toward an interdisciplinary understanding of sensory dysfunction in autism spectrum disorder: an integration of the neural and symptom literatures. Front Neurosci. 2016;10:268.CrossRef
8.
go back to reference Simmons DR, Robertson AE, McKay LS, Toal E, McAleer P, Pollick FE. Vision in autism spectrum disorders. Vis Res. 2009;49:2705–39.CrossRef Simmons DR, Robertson AE, McKay LS, Toal E, McAleer P, Pollick FE. Vision in autism spectrum disorders. Vis Res. 2009;49:2705–39.CrossRef
9.
go back to reference Qin S, Nagai Y, Kumagaya S, Ayaya S, Asada M. Autism simulator employing augmented reality: a prototype. in Proceedings of the 4th IEEE international conference on Development and Learning and on Epigenetic Robotics. 2014: 123-4 Qin S, Nagai Y, Kumagaya S, Ayaya S, Asada M. Autism simulator employing augmented reality: a prototype. in Proceedings of the 4th IEEE international conference on Development and Learning and on Epigenetic Robotics. 2014: 123-4
10.
go back to reference Mottron L, Dawson M, Soulières I, Hubert B, Burack J. Enhanced Perceptual Functioning in Autism: An Update, and Eight Principles of Autistic Perception. J Autism and Dev Disord. 2006;36(1):27–43.CrossRef Mottron L, Dawson M, Soulières I, Hubert B, Burack J. Enhanced Perceptual Functioning in Autism: An Update, and Eight Principles of Autistic Perception. J Autism and Dev Disord. 2006;36(1):27–43.CrossRef
11.
go back to reference Samson F, Mottron L, Soulières I, Zeffiro TA. Enhanced visual functioning in autism: An ALE meta-analysis. Hum Brain Mapp. 2012;33(7):1553–81.CrossRef Samson F, Mottron L, Soulières I, Zeffiro TA. Enhanced visual functioning in autism: An ALE meta-analysis. Hum Brain Mapp. 2012;33(7):1553–81.CrossRef
12.
go back to reference Baron-Cohen S, Ashwin E, Ashwin C, Tavassoli T, Chakrabarti B. Talent in autism: hyper-systemizing, hyper-attention to detail and sensory hypersensitivity. Philos Trans R Soc Lond Ser B Biol Sci. 2009;364:1377–83.CrossRef Baron-Cohen S, Ashwin E, Ashwin C, Tavassoli T, Chakrabarti B. Talent in autism: hyper-systemizing, hyper-attention to detail and sensory hypersensitivity. Philos Trans R Soc Lond Ser B Biol Sci. 2009;364:1377–83.CrossRef
13.
go back to reference Shuffrey L, Levinson L, Becerra A, Pak G, Moya Sepulveda D, Montgomery A, Green H, Froud K. Visually evoked response differences to contrast and motion in children with autism spectrum disorder. Brain Sci. 2018;8:160.CrossRef Shuffrey L, Levinson L, Becerra A, Pak G, Moya Sepulveda D, Montgomery A, Green H, Froud K. Visually evoked response differences to contrast and motion in children with autism spectrum disorder. Brain Sci. 2018;8:160.CrossRef
14.
go back to reference Takarae Y, Sablich SR, White SP, Sweeney JA. Neurophysiological hyperresponsivity to sensory input in autism spectrum disorders. J Neurodev Disord. 2016;8:29.CrossRef Takarae Y, Sablich SR, White SP, Sweeney JA. Neurophysiological hyperresponsivity to sensory input in autism spectrum disorders. J Neurodev Disord. 2016;8:29.CrossRef
15.
go back to reference Carter Leno V, Chandler S, White P, Yorke I, Charman T, Pickles A, Simonoff E. Alterations in electrophysiological indices of perceptual processing and discrimination are associated with co-occurring emotional and behavioural problems in adolescents with autism spectrum disorder. Mol Autism. 2018;9:50.CrossRef Carter Leno V, Chandler S, White P, Yorke I, Charman T, Pickles A, Simonoff E. Alterations in electrophysiological indices of perceptual processing and discrimination are associated with co-occurring emotional and behavioural problems in adolescents with autism spectrum disorder. Mol Autism. 2018;9:50.CrossRef
16.
go back to reference Green SA, Rudie JD, Colich NL, Wood JJ, Shirinyan D, Hernandez L, Tottenham N, Dapretto M, Bookheimer S. Overreactive brain responses to sensory stimuli in youth with autism spectrum disorders. J Am Acad Child Adolesc Psychiatry. 2013;52:1158–72.CrossRef Green SA, Rudie JD, Colich NL, Wood JJ, Shirinyan D, Hernandez L, Tottenham N, Dapretto M, Bookheimer S. Overreactive brain responses to sensory stimuli in youth with autism spectrum disorders. J Am Acad Child Adolesc Psychiatry. 2013;52:1158–72.CrossRef
17.
go back to reference Green SA, Hernandez L, Tottenham N, Krasileva K, Bookheimer SY, Dapretto M. Neurobiology of sensory Overresponsivity in youth with autism Spectrum disorders. JAMA Psychiat. 2015;72:778–86.CrossRef Green SA, Hernandez L, Tottenham N, Krasileva K, Bookheimer SY, Dapretto M. Neurobiology of sensory Overresponsivity in youth with autism Spectrum disorders. JAMA Psychiat. 2015;72:778–86.CrossRef
18.
go back to reference Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3:201–15.CrossRef Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3:201–15.CrossRef
19.
go back to reference Cléry H, Roux S, Houy-Durand E, Bonnet-Brilhault F, Bruneau N, Gomot M. Electrophysiological evidence of atypical visual change detection in adults with autism. Front Hum Neurosci. 2013;7:62.CrossRef Cléry H, Roux S, Houy-Durand E, Bonnet-Brilhault F, Bruneau N, Gomot M. Electrophysiological evidence of atypical visual change detection in adults with autism. Front Hum Neurosci. 2013;7:62.CrossRef
20.
go back to reference Kornmeier J, Wörner R, Riedel A, Bach M, Tebartz van Elst L. A different view on the checkerboard? Alterations in early and late visually evoked EEG potentials in Asperger observers. PLoS One. 2014;9:e90993.CrossRef Kornmeier J, Wörner R, Riedel A, Bach M, Tebartz van Elst L. A different view on the checkerboard? Alterations in early and late visually evoked EEG potentials in Asperger observers. PLoS One. 2014;9:e90993.CrossRef
21.
go back to reference Keehn B, Nair A, Lincoln AJ, Townsend J, Müller R-A. Under-reactive but easily distracted: an fMRI investigation of attentional capture in autism spectrum disorder. Dev Cogn Neurosci. 2016;17:46–56.CrossRef Keehn B, Nair A, Lincoln AJ, Townsend J, Müller R-A. Under-reactive but easily distracted: an fMRI investigation of attentional capture in autism spectrum disorder. Dev Cogn Neurosci. 2016;17:46–56.CrossRef
22.
go back to reference Murphy ER, Norr M, Strang JF, Kenworthy L, Gaillard WD, Vaidya CJ. Neural basis of visual attentional orienting in childhood autism spectrum disorders. J Autism Dev Disord. 2017;47:58–67.CrossRef Murphy ER, Norr M, Strang JF, Kenworthy L, Gaillard WD, Vaidya CJ. Neural basis of visual attentional orienting in childhood autism spectrum disorders. J Autism Dev Disord. 2017;47:58–67.CrossRef
23.
go back to reference Grill-Spector K, Henson R, Martin A. Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn Sci. 2006;10:14–23.CrossRef Grill-Spector K, Henson R, Martin A. Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn Sci. 2006;10:14–23.CrossRef
24.
go back to reference Guiraud JA, Kushnerenko E, Tomalski P, Davies K, Ribeiro H, Johnson MH. BASIS Team Differential habituation to repeated sounds in infants at high risk for autism. Neuroreport. 2011;22:845–9.PubMed Guiraud JA, Kushnerenko E, Tomalski P, Davies K, Ribeiro H, Johnson MH. BASIS Team Differential habituation to repeated sounds in infants at high risk for autism. Neuroreport. 2011;22:845–9.PubMed
25.
go back to reference Hudac CM, DesChamps TD, Arnett AB, Cairney BE, Ma R, Webb SJ, Bernier RA. Early enhanced processing and delayed habituation to deviance sounds in autism spectrum disorder. Brain Cogn. 2018;123:110–9.CrossRef Hudac CM, DesChamps TD, Arnett AB, Cairney BE, Ma R, Webb SJ, Bernier RA. Early enhanced processing and delayed habituation to deviance sounds in autism spectrum disorder. Brain Cogn. 2018;123:110–9.CrossRef
26.
go back to reference Matsuzaki J, Kagitani-Shimono K, Sugata H, Hirata M, Hanaie R, Nagatani F, Tachibana M, Tominaga K, Mohri I, Taniike M. Progressively increased M50 responses to repeated sounds in autism spectrum disorder with auditory hypersensitivity: a magnetoencephalographic study. PLoS One. 2014;9:e102599.CrossRef Matsuzaki J, Kagitani-Shimono K, Sugata H, Hirata M, Hanaie R, Nagatani F, Tachibana M, Tominaga K, Mohri I, Taniike M. Progressively increased M50 responses to repeated sounds in autism spectrum disorder with auditory hypersensitivity: a magnetoencephalographic study. PLoS One. 2014;9:e102599.CrossRef
27.
go back to reference Baillet S. Magnetoencephalography for brain electrophysiology and imaging. Nat Neurosci. 2017;20:327–39.CrossRef Baillet S. Magnetoencephalography for brain electrophysiology and imaging. Nat Neurosci. 2017;20:327–39.CrossRef
28.
go back to reference Matsuzaki J, Kagitani-Shimono K, Goto T, Sanefuji W, Yamamoto T, Sakai S, Uchida H, Hirata M, Mohri I, Yorifuji S, Taniike M. Differential responses of primary auditory cortex in autistic spectrum disorder with auditory hypersensitivity. Neuroreport. 2012;23:113–8.CrossRef Matsuzaki J, Kagitani-Shimono K, Goto T, Sanefuji W, Yamamoto T, Sakai S, Uchida H, Hirata M, Mohri I, Yorifuji S, Taniike M. Differential responses of primary auditory cortex in autistic spectrum disorder with auditory hypersensitivity. Neuroreport. 2012;23:113–8.CrossRef
29.
go back to reference Matsuzaki J, Kagitani-Shimono K, Sugata H, Hanaie R, Nagatani F, Yamamoto T, Tachibana M, Tominaga K, Hirata M, Mohri I, Taniike M. Delayed mismatch field latencies in autism spectrum disorder with abnormal auditory sensitivity: a magnetoencephalographic study. Front Hum Neurosci. 2017;11:446.CrossRef Matsuzaki J, Kagitani-Shimono K, Sugata H, Hanaie R, Nagatani F, Yamamoto T, Tachibana M, Tominaga K, Hirata M, Mohri I, Taniike M. Delayed mismatch field latencies in autism spectrum disorder with abnormal auditory sensitivity: a magnetoencephalographic study. Front Hum Neurosci. 2017;11:446.CrossRef
30.
go back to reference Lord C, Risi S, Lambrecht L, Cook EH, Leventhal BL, DiLavore PC, Pickles A, Rutter M. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000;30:205–23.CrossRef Lord C, Risi S, Lambrecht L, Cook EH, Leventhal BL, DiLavore PC, Pickles A, Rutter M. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000;30:205–23.CrossRef
31.
go back to reference Lord C, Rutter M, DiLavore PC, Risi S, Gotham K, Bishop SL. Autism diagnostic observation schedule. 2nd ed. Torrance: CA: WPS; 2012. Lord C, Rutter M, DiLavore PC, Risi S, Gotham K, Bishop SL. Autism diagnostic observation schedule. 2nd ed. Torrance: CA: WPS; 2012.
32.
go back to reference Kuroda M, Inada N. The Japanese version of autism diagnostic observation schedule. 2nd ed. Tokyo: Kaneko Shobo; 2015. Kuroda M, Inada N. The Japanese version of autism diagnostic observation schedule. 2nd ed. Tokyo: Kaneko Shobo; 2015.
33.
go back to reference Rutter M, Bailey A, Lord C. Social Communication Questionnaire. Torrance: CA: WPS; 2003. Rutter M, Bailey A, Lord C. Social Communication Questionnaire. Torrance: CA: WPS; 2003.
34.
go back to reference Kuroda M, Inada N, Uchiyama T. The Japanese version of social communication questionnaire. Tokyo: Kaneko Shobo; 2013. Kuroda M, Inada N, Uchiyama T. The Japanese version of social communication questionnaire. Tokyo: Kaneko Shobo; 2013.
35.
go back to reference Dunn W. Sensory profile. London: Pearson Publishing; 1999. Dunn W. Sensory profile. London: Pearson Publishing; 1999.
36.
go back to reference Hagiwara T, Iwanaga R, Itou H, Tani I. The Japanese version of sensory profile. Tokyo: Nihon Bunka Kagakusha; 2015. Hagiwara T, Iwanaga R, Itou H, Tani I. The Japanese version of sensory profile. Tokyo: Nihon Bunka Kagakusha; 2015.
37.
go back to reference Achenbach TM. Manual for the child behavior checklist/4–18 and 1991 profile. Burlington: Department of Psychiatry, University of Vermont; 1991. Achenbach TM. Manual for the child behavior checklist/4–18 and 1991 profile. Burlington: Department of Psychiatry, University of Vermont; 1991.
38.
go back to reference Itani T, Kanbayashi Y, Nakata Y, Kita M, Fujii H, Kuramoto H, Negishi T, Tezuka M, Okada A, Natori H. Standardization of the Japanese version of the child behavior checklist/4-18. Psychiatr Neurol Pediatr Jpn. 2001;41:243–52. Itani T, Kanbayashi Y, Nakata Y, Kita M, Fujii H, Kuramoto H, Negishi T, Tezuka M, Okada A, Natori H. Standardization of the Japanese version of the child behavior checklist/4-18. Psychiatr Neurol Pediatr Jpn. 2001;41:243–52.
39.
go back to reference Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.CrossRef Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.CrossRef
40.
go back to reference Schendan HE, Lucia LC. Object-sensitive activity reflects earlier perceptual and later cognitive processing of visual objects between 95 and 500ms. Brain Res. 2010;1329:124–41.CrossRef Schendan HE, Lucia LC. Object-sensitive activity reflects earlier perceptual and later cognitive processing of visual objects between 95 and 500ms. Brain Res. 2010;1329:124–41.CrossRef
41.
go back to reference Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci. 2011;2011:879716.CrossRef Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci. 2011;2011:879716.CrossRef
43.
go back to reference Mosher JC, Leahy RM, Lewis PS. EEG and MEG: forward solutions for inverse methods. IEEE Trans Biomed Eng. 1999;46:245–59.CrossRef Mosher JC, Leahy RM, Lewis PS. EEG and MEG: forward solutions for inverse methods. IEEE Trans Biomed Eng. 1999;46:245–59.CrossRef
45.
go back to reference Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.CrossRef Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.CrossRef
46.
go back to reference Chen Y, Xiang J, Kirtman EG, Wang Y, Kotecha R, Liu Y. Neuromagnetic biomarkers of visuocortical development in healthy children. Clin Neurophysiol. 2010;121:1555–62.CrossRef Chen Y, Xiang J, Kirtman EG, Wang Y, Kotecha R, Liu Y. Neuromagnetic biomarkers of visuocortical development in healthy children. Clin Neurophysiol. 2010;121:1555–62.CrossRef
47.
go back to reference Fink GR, Dolan RJ, Halligan PW, Marshall JC, Frith CD. Space-based and object-based visual attention: shared and specific neural domains. Brain. 1997;120:2013–28.CrossRef Fink GR, Dolan RJ, Halligan PW, Marshall JC, Frith CD. Space-based and object-based visual attention: shared and specific neural domains. Brain. 1997;120:2013–28.CrossRef
48.
go back to reference Mahon BZ, Schwarzbach J, Caramazza A. The representation of tools in left parietal cortex is independent of visual experience. Psychol Sci. 2010;21:764–71.CrossRef Mahon BZ, Schwarzbach J, Caramazza A. The representation of tools in left parietal cortex is independent of visual experience. Psychol Sci. 2010;21:764–71.CrossRef
49.
go back to reference Schintu S, Hadj-Bouziane F, Dal Monte O, Knutson KM, Pardini M, Wassermann EM, Grafman J, Krueger F. Object and space perception – is it a matter of hemisphere? Cortex. 2014;57:244–53.CrossRef Schintu S, Hadj-Bouziane F, Dal Monte O, Knutson KM, Pardini M, Wassermann EM, Grafman J, Krueger F. Object and space perception – is it a matter of hemisphere? Cortex. 2014;57:244–53.CrossRef
50.
go back to reference Hutsler JJ, Zhang H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 2010;1309:83–94.CrossRef Hutsler JJ, Zhang H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 2010;1309:83–94.CrossRef
51.
go back to reference Port RG, Gaetz W, Bloy L, Wang D-J, Blaskey L, Kuschner ES, Levy SE, Brodkin ES, Roberts TPL. Exploring the relationship between cortical GABA concentrations, auditory gamma-band responses and development in ASD: evidence for an altered maturational trajectory in ASD. Autism Res. 2017;10:593–607.CrossRef Port RG, Gaetz W, Bloy L, Wang D-J, Blaskey L, Kuschner ES, Levy SE, Brodkin ES, Roberts TPL. Exploring the relationship between cortical GABA concentrations, auditory gamma-band responses and development in ASD: evidence for an altered maturational trajectory in ASD. Autism Res. 2017;10:593–607.CrossRef
52.
go back to reference Kovarski K, Thillay A, Houy-Durand E, Roux S, Bidet-Caulet A, Bonnet-Brilhault F, Batty M. Brief report: early VEPs to pattern-reversal in adolescents and adults with autism. J Autism Dev Disord. 2016;46:3377–86.CrossRef Kovarski K, Thillay A, Houy-Durand E, Roux S, Bidet-Caulet A, Bonnet-Brilhault F, Batty M. Brief report: early VEPs to pattern-reversal in adolescents and adults with autism. J Autism Dev Disord. 2016;46:3377–86.CrossRef
53.
go back to reference Siper PM, Zemon V, Gordon J, George-Jones J, Lurie S, Zweifach J, Tavassoli T, Ting Wang A, Jamison J, Buxbaum J, Kolevzon A. Rapid and objective assessment of neural function in autism spectrum disorder using transient visual evoked potentials. PLoS One. 2016;11:e0164422.CrossRef Siper PM, Zemon V, Gordon J, George-Jones J, Lurie S, Zweifach J, Tavassoli T, Ting Wang A, Jamison J, Buxbaum J, Kolevzon A. Rapid and objective assessment of neural function in autism spectrum disorder using transient visual evoked potentials. PLoS One. 2016;11:e0164422.CrossRef
54.
go back to reference Gage NM, Siegel B, Roberts TPL. Cortical auditory system maturational abnormalities in children with autism disorder: an MEG investigation. Brain Res Dev Brain Res. 2003;144:201–9.CrossRef Gage NM, Siegel B, Roberts TPL. Cortical auditory system maturational abnormalities in children with autism disorder: an MEG investigation. Brain Res Dev Brain Res. 2003;144:201–9.CrossRef
55.
go back to reference Roberts TPL, Khan SY, Rey M, Monroe JF, Cannon K, Blaskey L, Woldoff S, Qasmieh S, Gandal M, Schmidt GL, Zarnow DM, Levy SE, Edgar JC. MEG detection of delayed auditory evoked responses in autism spectrum disorders: towards an imaging biomarker for autism. Autism Res. 2010;3:8–18.PubMedPubMedCentral Roberts TPL, Khan SY, Rey M, Monroe JF, Cannon K, Blaskey L, Woldoff S, Qasmieh S, Gandal M, Schmidt GL, Zarnow DM, Levy SE, Edgar JC. MEG detection of delayed auditory evoked responses in autism spectrum disorders: towards an imaging biomarker for autism. Autism Res. 2010;3:8–18.PubMedPubMedCentral
56.
go back to reference Yakovlev PL, Lecours AR. The myelogenetic cycles of regional maturation of the brain. In: Minkowski A, editor. Regional development of the brain in early life. Oxford: Blackwell Scientific; 1967. p. 3–70. Yakovlev PL, Lecours AR. The myelogenetic cycles of regional maturation of the brain. In: Minkowski A, editor. Regional development of the brain in early life. Oxford: Blackwell Scientific; 1967. p. 3–70.
57.
go back to reference Tobimatsu S, Kurita-Tashima S, Nakayama-Hiromatsu M, Akazawa K, Kato M. Age-related changes in pattern visual evoked potentials: differential effects of luminance, contrast and check size. Electroencephalogr Clin Neurophysiol. 1993;88:12–9.CrossRef Tobimatsu S, Kurita-Tashima S, Nakayama-Hiromatsu M, Akazawa K, Kato M. Age-related changes in pattern visual evoked potentials: differential effects of luminance, contrast and check size. Electroencephalogr Clin Neurophysiol. 1993;88:12–9.CrossRef
58.
go back to reference Brannan JR, Solan HA, Ficarra AP, Ong E. Effect of luminance on visual evoked potential amplitudes in normal and disabled readers. Optom Vis Sci. 1998;75:279–83.CrossRef Brannan JR, Solan HA, Ficarra AP, Ong E. Effect of luminance on visual evoked potential amplitudes in normal and disabled readers. Optom Vis Sci. 1998;75:279–83.CrossRef
59.
go back to reference Portin K, Salenius S, Salmelin R, Hari R. Activation of the human occipital and parietal cortex by pattern and luminance stimuli: neuromagnetic measurements. Cereb Cortex. 1998;8:253–60.CrossRef Portin K, Salenius S, Salmelin R, Hari R. Activation of the human occipital and parietal cortex by pattern and luminance stimuli: neuromagnetic measurements. Cereb Cortex. 1998;8:253–60.CrossRef
60.
go back to reference Farrant K, Uddin LQ. Atypical developmental of dorsal and ventral attention networks in autism. Dev Sci. 2016;19:550–63.CrossRef Farrant K, Uddin LQ. Atypical developmental of dorsal and ventral attention networks in autism. Dev Sci. 2016;19:550–63.CrossRef
61.
go back to reference Woodward ND, Giraldo-Chica M, Rogers B, Cascio CJ. Thalamocortical dysconnectivity in autism spectrum disorder: an analysis of the autism brain imaging data exchange. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2:76–84.CrossRef Woodward ND, Giraldo-Chica M, Rogers B, Cascio CJ. Thalamocortical dysconnectivity in autism spectrum disorder: an analysis of the autism brain imaging data exchange. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2:76–84.CrossRef
62.
go back to reference Downar J, Crawley AP, Mikulis DJ, Davis KD. A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci. 2000;3:277–83.CrossRef Downar J, Crawley AP, Mikulis DJ, Davis KD. A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci. 2000;3:277–83.CrossRef
63.
go back to reference Downar J, Crawley AP, Mikulis DJ, Davis KD. A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities. J Neurophysiol. 2002;87:615–20.CrossRef Downar J, Crawley AP, Mikulis DJ, Davis KD. A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities. J Neurophysiol. 2002;87:615–20.CrossRef
64.
go back to reference Schurz M, Radua J, Aichhorn M, Richlan F, Perner J. Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci Biobehav Rev. 2014;42:9–34.CrossRef Schurz M, Radua J, Aichhorn M, Richlan F, Perner J. Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci Biobehav Rev. 2014;42:9–34.CrossRef
65.
go back to reference Decety J, Lamm C. The role of the right temporoparietal junction in social interaction: how low-level computational processes contribute to meta-cognition. Neuroscientist. 2007;13:580–93.CrossRef Decety J, Lamm C. The role of the right temporoparietal junction in social interaction: how low-level computational processes contribute to meta-cognition. Neuroscientist. 2007;13:580–93.CrossRef
66.
go back to reference Lombardo MV, Chakrabarti B, Bullmore ET. MRC AIMS consortium, Baron-Cohen S. specialization of right temporo-parietal junction for mentalizing and its relation to social impairments in autism. Neuroimage. 2011;56:1832–8.CrossRef Lombardo MV, Chakrabarti B, Bullmore ET. MRC AIMS consortium, Baron-Cohen S. specialization of right temporo-parietal junction for mentalizing and its relation to social impairments in autism. Neuroimage. 2011;56:1832–8.CrossRef
67.
go back to reference Murdaugh DL, Nadendla KD, Kana RK. Differential role of temporoparietal junction and medial prefrontal cortex in causal inference in autism: an independent component analysis. Neurosci Lett. 2014;568:50–5.CrossRef Murdaugh DL, Nadendla KD, Kana RK. Differential role of temporoparietal junction and medial prefrontal cortex in causal inference in autism: an independent component analysis. Neurosci Lett. 2014;568:50–5.CrossRef
68.
go back to reference Cheng Y, Chou K-H, Fan Y-T, Lin C-P. ANS: aberrant neurodevelopment of the social cognition network in adolescents with autism spectrum disorders. PLoS One. 2011;6:e18905.CrossRef Cheng Y, Chou K-H, Fan Y-T, Lin C-P. ANS: aberrant neurodevelopment of the social cognition network in adolescents with autism spectrum disorders. PLoS One. 2011;6:e18905.CrossRef
69.
go back to reference Greimel E, Nehrkorn B, Schulte-Rüther M, Fink GR, Nickl-Jockschat T, Herpertz-Dahlmann B, Konrad K, Eickhoff SB. Changes in grey matter development in autism spectrum disorder. Brain Struct Funct. 2013;218:929–42.CrossRef Greimel E, Nehrkorn B, Schulte-Rüther M, Fink GR, Nickl-Jockschat T, Herpertz-Dahlmann B, Konrad K, Eickhoff SB. Changes in grey matter development in autism spectrum disorder. Brain Struct Funct. 2013;218:929–42.CrossRef
70.
go back to reference Rule RR, Shimamura AP, Knight RT. Orbitofrontal cortex and dynamic filtering of emotional stimuli. Cogn Affect Behav Neurosci. 2002;2:264–70.CrossRef Rule RR, Shimamura AP, Knight RT. Orbitofrontal cortex and dynamic filtering of emotional stimuli. Cogn Affect Behav Neurosci. 2002;2:264–70.CrossRef
71.
go back to reference Shimamura AP. The role of the prefrontal cortex in dynamic filtering. Psychobiology. 2000;28:207–18. Shimamura AP. The role of the prefrontal cortex in dynamic filtering. Psychobiology. 2000;28:207–18.
72.
go back to reference Robertson CE, Baron-Cohen S. Sensory perception in autism. Nat Rev Neurosci. 2017;18:671–84.CrossRef Robertson CE, Baron-Cohen S. Sensory perception in autism. Nat Rev Neurosci. 2017;18:671–84.CrossRef
73.
go back to reference Kreiser NL, White SW. ASD in females: are we overstating the gender difference in diagnosis? Clin Child Fam Psychol Rev. 2014;17:67–84.CrossRef Kreiser NL, White SW. ASD in females: are we overstating the gender difference in diagnosis? Clin Child Fam Psychol Rev. 2014;17:67–84.CrossRef
74.
go back to reference Lai M-C, Lombardo MV, Pasco G, Ruigrok ANV, Wheelwright SJ, Sadek SA, Chakrabarti B, Consortium MRCAIMS, Baron-Cohen S. A behavioral comparison of male and female adults with high functioning autism spectrum conditions. PLoS One. 2011;6:e20835.CrossRef Lai M-C, Lombardo MV, Pasco G, Ruigrok ANV, Wheelwright SJ, Sadek SA, Chakrabarti B, Consortium MRCAIMS, Baron-Cohen S. A behavioral comparison of male and female adults with high functioning autism spectrum conditions. PLoS One. 2011;6:e20835.CrossRef
Metadata
Title
Lesser suppression of response to bright visual stimuli and visual abnormality in children with autism spectrum disorder: a magnetoencephalographic study
Authors
Sho Aoki
Kuriko Kagitani-Shimono
Junko Matsuzaki
Ryuzo Hanaie
Mariko Nakanishi
Koji Tominaga
Yukie Nagai
Ikuko Mohri
Masako Taniike
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Neurodevelopmental Disorders / Issue 1/2019
Print ISSN: 1866-1947
Electronic ISSN: 1866-1955
DOI
https://doi.org/10.1186/s11689-019-9266-0

Other articles of this Issue 1/2019

Journal of Neurodevelopmental Disorders 1/2019 Go to the issue