Skip to main content
Top
Published in: Current Hypertension Reports 2/2018

01-02-2018 | Secondary Hypertension: Nervous System Mechanisms (M Wyss, Section Editor)

Integrative Physiological Aspects of Brain RAS in Hypertension

Authors: Sharon D. B. de Morais, Julia Shanks, Irving H. Zucker

Published in: Current Hypertension Reports | Issue 2/2018

Login to get access

Abstract

Purpose of Review

The renin-angiotensin system (RAS) plays an important role in modulating cardiovascular function and fluid homeostasis. While the systemic actions of the RAS are widely accepted, the role of the RAS in the brain, its regulation of cardiovascular function, and sympathetic outflow remain controversial. In this report, we discuss the current understanding of central RAS on blood pressure (BP) regulation, in light of recent literature and new experimental techniques.

Recent Findings

Studies using neuronal or glial-specifc mouse models have allowed for greater understanding into the site-specific expression and role centrally expressed RAS proteins have on BP regulation. While all components of the RAS have been identified in cardiovascular regulatory regions of the brain, their actions may be site specific. In a number of animal models of hypertension, reduction in Ang II-mediated signaling, or upregulation of the central ACE2/Ang 1–7 pathway, has been shown to reduce BP, via a reduction in sympathetic signaling and increase parasympathetic tone, respectively. Emerging evidence also suggests that, in part, the female protective phenotype against hypertension may be due to inceased ACE2 activity within cardiovascular regulatory regions of the brain, potentially mediated by estrogen.

Summary

Increasing evidence suggests the importance of a central renin-angiotensin pathway, although its localization and the mechanisms involved in its expression and regulation still need to be clarified and more precisely defined.
All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).
Literature
8.
go back to reference Gao J, Marc Y, Iturrioz X, Leroux V, Balavoine F, Llorens-Cortes C. A new strategy for treating hypertension by blocking the activity of the brain renin-angiotensin system with aminopeptidase a inhibitors. Clin Sci (Lond). 2014;127(3):135–48. https://doi.org/10.1042/CS20130396.CrossRef Gao J, Marc Y, Iturrioz X, Leroux V, Balavoine F, Llorens-Cortes C. A new strategy for treating hypertension by blocking the activity of the brain renin-angiotensin system with aminopeptidase a inhibitors. Clin Sci (Lond). 2014;127(3):135–48. https://​doi.​org/​10.​1042/​CS20130396.CrossRef
11.
go back to reference Iwai N, Inagami T. Identification of two subtypes in the rat type I angiotensin II receptor. FEBS Lett. 1992;298(2–3):257–60.PubMedCrossRef Iwai N, Inagami T. Identification of two subtypes in the rat type I angiotensin II receptor. FEBS Lett. 1992;298(2–3):257–60.PubMedCrossRef
12.
go back to reference Kakar SS, Riel KK, Neill JD. Differential expression of angiotensin II receptor subtype mRNAs (AT-1A and AT-1B) in the brain. Biochem Biophys Res Commun. 1992;185(2):688–92.PubMedCrossRef Kakar SS, Riel KK, Neill JD. Differential expression of angiotensin II receptor subtype mRNAs (AT-1A and AT-1B) in the brain. Biochem Biophys Res Commun. 1992;185(2):688–92.PubMedCrossRef
17.
go back to reference Goel R, Bhat SA, Hanif K, Nath C, Shukla R. Angiotensin II Receptor blockers attenuate lipopolysaccharide-induced memory impairment by modulation of NF-kappaB-mediated BDNF/CREB expression and apoptosis in spontaneously hypertensive rats. Mol Neurobiol 2017. doi:https://doi.org/10.1007/s12035-017-0450-5. Goel R, Bhat SA, Hanif K, Nath C, Shukla R. Angiotensin II Receptor blockers attenuate lipopolysaccharide-induced memory impairment by modulation of NF-kappaB-mediated BDNF/CREB expression and apoptosis in spontaneously hypertensive rats. Mol Neurobiol 2017. doi:https://​doi.​org/​10.​1007/​s12035-017-0450-5.
27.
go back to reference Del Borgo M, Wang Y, Bosnyak S, Khan M, Walters P, Spizzo I, et al. beta-Pro7Ang III is a novel highly selective angiotensin II type 2 receptor (AT2R) agonist, which acts as a vasodepressor agent via the AT2R in conscious spontaneously hypertensive rats. Clin Sci (Lond). 2015;129(6):505–13. https://doi.org/10.1042/CS20150077.CrossRef Del Borgo M, Wang Y, Bosnyak S, Khan M, Walters P, Spizzo I, et al. beta-Pro7Ang III is a novel highly selective angiotensin II type 2 receptor (AT2R) agonist, which acts as a vasodepressor agent via the AT2R in conscious spontaneously hypertensive rats. Clin Sci (Lond). 2015;129(6):505–13. https://​doi.​org/​10.​1042/​CS20150077.CrossRef
36.
go back to reference Moeller I, Small DH, Reed G, Harding JW, Mendelsohn FA, Chai SY. Angiotensin IV inhibits neurite outgrowth in cultured embryonic chicken sympathetic neurones. Brain Res. 1996;725(1):61–6.PubMedCrossRef Moeller I, Small DH, Reed G, Harding JW, Mendelsohn FA, Chai SY. Angiotensin IV inhibits neurite outgrowth in cultured embryonic chicken sympathetic neurones. Brain Res. 1996;725(1):61–6.PubMedCrossRef
37.
go back to reference Kakinuma Y, Hama H, Sugiyama F, Goto K, Murakami K, Fukamizu A. Anti-apoptotic action of angiotensin fragments to neuronal cells from angiotensinogen knock-out mice. Neurosci Lett. 1997;232(3):167–70.PubMedCrossRef Kakinuma Y, Hama H, Sugiyama F, Goto K, Murakami K, Fukamizu A. Anti-apoptotic action of angiotensin fragments to neuronal cells from angiotensinogen knock-out mice. Neurosci Lett. 1997;232(3):167–70.PubMedCrossRef
48.
go back to reference Fukamizu A, Sugimura K, Takimoto E, Sugiyama F, Seo MS, Takahashi S, et al. Chimeric renin-angiotensin system demonstrates sustained increase in blood pressure of transgenic mice carrying both human renin and human angiotensinogen genes. J Biol Chem. 1993;268(16):11617–21.PubMed Fukamizu A, Sugimura K, Takimoto E, Sugiyama F, Seo MS, Takahashi S, et al. Chimeric renin-angiotensin system demonstrates sustained increase in blood pressure of transgenic mice carrying both human renin and human angiotensinogen genes. J Biol Chem. 1993;268(16):11617–21.PubMed
54.
go back to reference Navar LG, Imig JD, Zou L, Wang CT. Intrarenal production of angiotensin II. Semin Nephrol. 1997;17(5):412–22.PubMed Navar LG, Imig JD, Zou L, Wang CT. Intrarenal production of angiotensin II. Semin Nephrol. 1997;17(5):412–22.PubMed
55.
go back to reference Navar LG, Harrison-Bernard LM, Nishiyama A, Kobori H. Regulation of intrarenal angiotensin II in hypertension. Hypertension (Dallas, Tex : 1979). 2002;39(2 Pt 2):316–22.CrossRef Navar LG, Harrison-Bernard LM, Nishiyama A, Kobori H. Regulation of intrarenal angiotensin II in hypertension. Hypertension (Dallas, Tex : 1979). 2002;39(2 Pt 2):316–22.CrossRef
57.
go back to reference Costa M, Majewski H. Facilitation of noradrenaline release from sympathetic nerves through activation of ACTH receptors, beta-adrenoceptors and angiotensin II receptors. Br J Pharmacol. 1988;95(3):993–1001.PubMedPubMedCentralCrossRef Costa M, Majewski H. Facilitation of noradrenaline release from sympathetic nerves through activation of ACTH receptors, beta-adrenoceptors and angiotensin II receptors. Br J Pharmacol. 1988;95(3):993–1001.PubMedPubMedCentralCrossRef
61.
go back to reference Steckelings U, Lebrun C, Qadri F, Veltmar A, Unger T. Role of brain angiotensin in cardiovascular regulation. J Cardiovasc Pharmacol. 1992;19(Suppl 6):S72–9.PubMedCrossRef Steckelings U, Lebrun C, Qadri F, Veltmar A, Unger T. Role of brain angiotensin in cardiovascular regulation. J Cardiovasc Pharmacol. 1992;19(Suppl 6):S72–9.PubMedCrossRef
62.
go back to reference Stornetta RL, Hawelu-Johnson CL, Guyenet PG, Lynch KR. Astrocytes synthesize angiotensinogen in brain. Science. 1988;242(4884):1444–6.PubMedCrossRef Stornetta RL, Hawelu-Johnson CL, Guyenet PG, Lynch KR. Astrocytes synthesize angiotensinogen in brain. Science. 1988;242(4884):1444–6.PubMedCrossRef
63.
go back to reference Thomas WG, Sernia C. Immunocytochemical localization of angiotensinogen in the rat brain. Neuroscience. 1988;25(1):319–41.PubMedCrossRef Thomas WG, Sernia C. Immunocytochemical localization of angiotensinogen in the rat brain. Neuroscience. 1988;25(1):319–41.PubMedCrossRef
64.
go back to reference Campbell DJ, Bouhnik J, Menard J, Corvol P. Identity of angiotensinogen precursors of rat brain and liver. Nature. 1984;308(5955):206–8.PubMedCrossRef Campbell DJ, Bouhnik J, Menard J, Corvol P. Identity of angiotensinogen precursors of rat brain and liver. Nature. 1984;308(5955):206–8.PubMedCrossRef
65.
go back to reference Yang G, Gray TS, Sigmund CD, Cassell MD. The angiotensinogen gene is expressed in both astrocytes and neurons in murine central nervous system. Brain Res. 1999;817(1–2):123–31.PubMedCrossRef Yang G, Gray TS, Sigmund CD, Cassell MD. The angiotensinogen gene is expressed in both astrocytes and neurons in murine central nervous system. Brain Res. 1999;817(1–2):123–31.PubMedCrossRef
68.
go back to reference Schinke M, Baltatu O, Bohm M, Peters J, Rascher W, Bricca G, et al. Blood pressure reduction and diabetes insipidus in transgenic rats deficient in brain angiotensinogen. Proc Natl Acad Sci U S A. 1999;96(7):3975–80.PubMedPubMedCentralCrossRef Schinke M, Baltatu O, Bohm M, Peters J, Rascher W, Bricca G, et al. Blood pressure reduction and diabetes insipidus in transgenic rats deficient in brain angiotensinogen. Proc Natl Acad Sci U S A. 1999;96(7):3975–80.PubMedPubMedCentralCrossRef
70.
go back to reference Palkovits M, Mezey E, Fodor M, Ganten D, Bahner U, Geiger H, et al. Neurotransmitters and neuropeptides in the baroreceptor reflex arc: Connections between the nucleus of the solitary tract and the ventrolateral medulla oblongata in the rat. Clin Exp Hypertens. 1995;17(1–2):101–13.PubMedCrossRef Palkovits M, Mezey E, Fodor M, Ganten D, Bahner U, Geiger H, et al. Neurotransmitters and neuropeptides in the baroreceptor reflex arc: Connections between the nucleus of the solitary tract and the ventrolateral medulla oblongata in the rat. Clin Exp Hypertens. 1995;17(1–2):101–13.PubMedCrossRef
74.
go back to reference Ganten D, Marquez-Julio A, Granger P, Hayduk K, Karsunky KP, Boucher R, et al. Renin in dog brain. Am J Phys. 1971;221(6):1733–7. Ganten D, Marquez-Julio A, Granger P, Hayduk K, Karsunky KP, Boucher R, et al. Renin in dog brain. Am J Phys. 1971;221(6):1733–7.
76.
go back to reference Lee-Kirsch MA, Gaudet F, Cardoso MC, Lindpaintner K. Distinct renin isoforms generated by tissue-specific transcription initiation and alternative splicing. Circ Res. 1999;84(2):240–6.PubMedCrossRef Lee-Kirsch MA, Gaudet F, Cardoso MC, Lindpaintner K. Distinct renin isoforms generated by tissue-specific transcription initiation and alternative splicing. Circ Res. 1999;84(2):240–6.PubMedCrossRef
80.
go back to reference Naruse M, Naruse K, McKenzie JC, Schelling P, Inagami T. Regional distribution of renin and angiotensinogen in the brain of normotensive (WKY) and spontaneously hypertensive (SHR) rats. Brain Res. 1985;333(1):147–50.PubMedCrossRef Naruse M, Naruse K, McKenzie JC, Schelling P, Inagami T. Regional distribution of renin and angiotensinogen in the brain of normotensive (WKY) and spontaneously hypertensive (SHR) rats. Brain Res. 1985;333(1):147–50.PubMedCrossRef
81.
go back to reference Schelling P, Meyer D, Loos HE, Speck G, Phillips MI, Johnson AK, et al. A micromethod for the measurement of renin in brain nuclei: Its application in spontaneously hypertensive rats. Neuropharmacology. 1982;21(5):455–63.PubMedCrossRef Schelling P, Meyer D, Loos HE, Speck G, Phillips MI, Johnson AK, et al. A micromethod for the measurement of renin in brain nuclei: Its application in spontaneously hypertensive rats. Neuropharmacology. 1982;21(5):455–63.PubMedCrossRef
93.
go back to reference Whiting P, Nava S, Mozley L, Eastham H, Poat J. Expression of angiotensin converting enzyme mRNA in rat brain. Brain Res Mol Brain Res. 1991;11(1):93–6.PubMedCrossRef Whiting P, Nava S, Mozley L, Eastham H, Poat J. Expression of angiotensin converting enzyme mRNA in rat brain. Brain Res Mol Brain Res. 1991;11(1):93–6.PubMedCrossRef
94.
go back to reference Rogerson FM, Schlawe I, Paxinos G, Chai SY, McKinley MJ, Mendelsohn FA. Localization of angiotensin converting enzyme by in vitro autoradiography in the rabbit brain. J Chem Neuroanat. 1995;8(4):227–43.PubMedCrossRef Rogerson FM, Schlawe I, Paxinos G, Chai SY, McKinley MJ, Mendelsohn FA. Localization of angiotensin converting enzyme by in vitro autoradiography in the rabbit brain. J Chem Neuroanat. 1995;8(4):227–43.PubMedCrossRef
96.
go back to reference Nakamura S, Moriguchi A, Morishita R, Yamada K, Nishii T, Tomita N, et al. Activation of the brain angiotensin system by in vivo human angiotensin-converting enzyme gene transfer in rats. Hypertension (Dallas, Tex : 1979). 1999;34(2):302–8.CrossRef Nakamura S, Moriguchi A, Morishita R, Yamada K, Nishii T, Tomita N, et al. Activation of the brain angiotensin system by in vivo human angiotensin-converting enzyme gene transfer in rats. Hypertension (Dallas, Tex : 1979). 1999;34(2):302–8.CrossRef
97.
go back to reference Zhao X, White R, Huang BS, Van Huysse J, Leenen FH. High salt intake and the brain renin--angiotensin system in dahl salt-sensitive rats. J Hypertens. 2001;19(1):89–98.PubMedCrossRef Zhao X, White R, Huang BS, Van Huysse J, Leenen FH. High salt intake and the brain renin--angiotensin system in dahl salt-sensitive rats. J Hypertens. 2001;19(1):89–98.PubMedCrossRef
99.
go back to reference King SJ, Oparil S, Berecek KH. Neuronal angiotensin-converting enzyme (ACE) gene expression is increased by converting enzyme inhibitors (CEI). Mol Cell Neurosci. 1991;2(1):13–20.PubMedCrossRef King SJ, Oparil S, Berecek KH. Neuronal angiotensin-converting enzyme (ACE) gene expression is increased by converting enzyme inhibitors (CEI). Mol Cell Neurosci. 1991;2(1):13–20.PubMedCrossRef
109.
go back to reference Calka J, Block CH. Angiotensin-(1-7) and nitric oxide synthase in the hypothalamo-neurohypophysial system. Brain Res Bull. 1993;30(5–6):677–85.PubMedCrossRef Calka J, Block CH. Angiotensin-(1-7) and nitric oxide synthase in the hypothalamo-neurohypophysial system. Brain Res Bull. 1993;30(5–6):677–85.PubMedCrossRef
110.
go back to reference Campagnole-Santos MJ, Heringer SB, Batista EN, Khosla MC, Santos RA. Differential baroreceptor reflex modulation by centrally infused angiotensin peptides. Am J Phys. 1992;263(1 Pt 2):R89–94. Campagnole-Santos MJ, Heringer SB, Batista EN, Khosla MC, Santos RA. Differential baroreceptor reflex modulation by centrally infused angiotensin peptides. Am J Phys. 1992;263(1 Pt 2):R89–94.
111.
go back to reference Campagnole-Santos MJ, Diz DI, Santos RA, Khosla MC, Brosnihan KB, Ferrario CM. Cardiovascular effects of angiotensin-(1-7) injected into the dorsal medulla of rats. Am J Phys. 1989;257(1 Pt 2):H324–9. Campagnole-Santos MJ, Diz DI, Santos RA, Khosla MC, Brosnihan KB, Ferrario CM. Cardiovascular effects of angiotensin-(1-7) injected into the dorsal medulla of rats. Am J Phys. 1989;257(1 Pt 2):H324–9.
116.
go back to reference Yan ZH, Ren KJ, Wang Y, Chen S, Brock TA, Rege AA. Development of intramolecularly quenched fluorescent peptides as substrates of angiotensin-converting enzyme 2. Anal Biochem. 2003;312(2):141–7.PubMedCrossRef Yan ZH, Ren KJ, Wang Y, Chen S, Brock TA, Rege AA. Development of intramolecularly quenched fluorescent peptides as substrates of angiotensin-converting enzyme 2. Anal Biochem. 2003;312(2):141–7.PubMedCrossRef
135.
go back to reference Kisley LR, Sakai RR, Fluharty SJ. Estrogen decreases hypothalamic angiotensin II AT1 receptor binding and mRNA in the female rat. Brain Res. 1999;844(1–2):34–42.PubMedCrossRef Kisley LR, Sakai RR, Fluharty SJ. Estrogen decreases hypothalamic angiotensin II AT1 receptor binding and mRNA in the female rat. Brain Res. 1999;844(1–2):34–42.PubMedCrossRef
139.
go back to reference Gallagher PE, Li P, Lenhart JR, Chappell MC, Brosnihan KB. Estrogen regulation of angiotensin-converting enzyme mRNA. Hypertension (Dallas, Tex : 1979). 1999;33(1 Pt 2):323–8.CrossRef Gallagher PE, Li P, Lenhart JR, Chappell MC, Brosnihan KB. Estrogen regulation of angiotensin-converting enzyme mRNA. Hypertension (Dallas, Tex : 1979). 1999;33(1 Pt 2):323–8.CrossRef
144.
go back to reference Saleh TM, Connell BJ, Saleh MC. Acute injection of 17beta-estradiol enhances cardiovascular reflexes and autonomic tone in ovariectomized female rats. Auton Neurosci. 2000;84(1–2):78–88.PubMedCrossRef Saleh TM, Connell BJ, Saleh MC. Acute injection of 17beta-estradiol enhances cardiovascular reflexes and autonomic tone in ovariectomized female rats. Auton Neurosci. 2000;84(1–2):78–88.PubMedCrossRef
Metadata
Title
Integrative Physiological Aspects of Brain RAS in Hypertension
Authors
Sharon D. B. de Morais
Julia Shanks
Irving H. Zucker
Publication date
01-02-2018
Publisher
Springer US
Published in
Current Hypertension Reports / Issue 2/2018
Print ISSN: 1522-6417
Electronic ISSN: 1534-3111
DOI
https://doi.org/10.1007/s11906-018-0810-1

Other articles of this Issue 2/2018

Current Hypertension Reports 2/2018 Go to the issue

Hypertension and Obesity (E Reisin, Section Editor)

The Global Epidemic of the Metabolic Syndrome

Mechanisms of Hypertension (M Weir, Section Editor)

Pros and Cons of Intensive Systolic Blood Pressure Lowering

Hypertension and the Kidney (RM Carey, Section Editor)

Cardiovascular Risk in Patients with Prehypertension and the Metabolic Syndrome

Pathogenesis of Hypertension (W Elliott and R Santos, Section Editors)

Angiotensin-(1–7) and Alamandine on Experimental Models of Hypertension and Atherosclerosis

Hypertension and the Brain (R Wainford, Section Editor)

Hypothalamic Ion Channels in Hypertension

Hypertension and Emergency Medicine (T Rainer and P Levy, Section Editors)

New Developments in Hypertensive Encephalopathy

Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.