Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2019

Open Access 01-12-2019 | Insulins | Research article

Mulberry leaf reduces inflammation and insulin resistance in type 2 diabetic mice by TLRs and insulin Signalling pathway

Authors: Simin Tian, Min Wang, Chenyue Liu, Hongbin Zhao, Baosheng Zhao

Published in: BMC Complementary Medicine and Therapies | Issue 1/2019

Login to get access

Abstract

Background

It has been testified that Diabetes mellitus (DM) has a close association with chronic inflammation and Toll-like Receptors (TLRs), and DM could be prevented by mulberry leaf. Therefore, a hypothesis came into being that mulberry leaf could ameliorate proinflammation and insulin resistance (IR) through TLRs and insulin signalling pathways.

Methods

Water extracts of mulberry leaf (WEM) was given to diabetic mice by gavage for 10 weeks, and the diabetic mice was injected with low-dose streptozocin, fed with high-fat and high-sugar diet. Oral glucose tolerance tests (OGTTs) were conducted. At the same time, homeostasis model assessment of insulin (HOMA-IR) and the level of the inflammatory factor, tumour necrosis factor-α (TNF-α) was measured. The expressions of critical nodes of TLRs and insulin signalling pathway were also examined.

Results

WEM contributed to a significant decrease in fasting blood glucose, AUC from the investigation of OGTTs and HOMA-IR. The levels of the inflammatory factor, tumour necrosis factor-α (TNF-α) also declined. Moreover, WEM suppressed the expression of TLR2, myeloid differentiation primary-response protein 88 (MyD88), tumour-necrosis-factor receptor-associated factor 6 (TRAF6), nuclear factor kappa B (NF-κB) in the skeletal muscle. WEM could up-regulate the expression of insulin receptor (InsR) and insulin receptor substrate 1 (IRS1), and down-regulate the phosphorylation of IRS1 in adipose tissue.

Conclusion

Through this study, a conclusion could be made that WEM mitigates hyperglycemia, IR, and inflammation through the interactions among TLR2 signalling pathway, insulin signalling pathway and TNF-α.
Appendix
Available only for authorised users
Literature
1.
go back to reference Butt MS, Nazir A, Sultan MT, Schroën K. Morus alba L. nature’s functional tonic. Trends Food Sci Technol. 2008;19:505–12.CrossRef Butt MS, Nazir A, Sultan MT, Schroën K. Morus alba L. nature’s functional tonic. Trends Food Sci Technol. 2008;19:505–12.CrossRef
2.
go back to reference Global report on diabetes. 2016. Available from: http://www.who.int Global report on diabetes. 2016. Available from: http://​www.​who.​int
3.
go back to reference Xin LI, Zeng GY, Tan JB, Feng XQ, Wang YJ. Active constituents of hypoglycemic part from Morus alba L. Cent South Pharm. 2012;10:245–8. Xin LI, Zeng GY, Tan JB, Feng XQ, Wang YJ. Active constituents of hypoglycemic part from Morus alba L. Cent South Pharm. 2012;10:245–8.
4.
go back to reference Tian S, Tang M, Zhao B. Current anti-diabetes mechanisms and clinical trials using Morus alba L. J Tradit Chin Med Sci. 2016;3:3–8. Tian S, Tang M, Zhao B. Current anti-diabetes mechanisms and clinical trials using Morus alba L. J Tradit Chin Med Sci. 2016;3:3–8.
5.
go back to reference Dasu MR, Ramirez S, Isseroff RR. Toll-like receptors and diabetes: a therapeutic perspective. Clin Sci. 2012;122:203–14.CrossRef Dasu MR, Ramirez S, Isseroff RR. Toll-like receptors and diabetes: a therapeutic perspective. Clin Sci. 2012;122:203–14.CrossRef
6.
go back to reference Dasu MR, Devaraj S, Park S, Jialal I. Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care. 2010;33:861–8.PubMedPubMedCentralCrossRef Dasu MR, Devaraj S, Park S, Jialal I. Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care. 2010;33:861–8.PubMedPubMedCentralCrossRef
8.
go back to reference Devaraj S, Dasu MR, Rockwood J, Winter W, Griffen SC, Jialal I. Increased toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: further evidence of a proinflammatory state. J Clin Endocrinol Metab. 2008;93:578–83.PubMedCrossRef Devaraj S, Dasu MR, Rockwood J, Winter W, Griffen SC, Jialal I. Increased toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: further evidence of a proinflammatory state. J Clin Endocrinol Metab. 2008;93:578–83.PubMedCrossRef
9.
go back to reference Kim DH, Lee JC, Kim S, Oh SH, Lee MK, Kim KW, Lee MS. Inhibition of autoimmune diabetes by TLR2 tolerance. J Immunol. 2011;187:5211–20.PubMedCrossRef Kim DH, Lee JC, Kim S, Oh SH, Lee MK, Kim KW, Lee MS. Inhibition of autoimmune diabetes by TLR2 tolerance. J Immunol. 2011;187:5211–20.PubMedCrossRef
10.
go back to reference Zhao B, Gao X, Liu Y, Zhu Y, Xu T. Effect and mechanism of Morus alba for treating non-insulin-dependent diabetes mellitus. Chin J Exp Tradit Med Formulae. 2012;18:263–6. Zhao B, Gao X, Liu Y, Zhu Y, Xu T. Effect and mechanism of Morus alba for treating non-insulin-dependent diabetes mellitus. Chin J Exp Tradit Med Formulae. 2012;18:263–6.
11.
go back to reference Tang M, Tian H, Yang W, Hou C, Tian S, Wang H, Qu M, Shi R. Identification of constituents in Mori folium aqueous extract and drug serum. Chin J Exp Tradit Med Formulae. 2016;22:25–9. Tang M, Tian H, Yang W, Hou C, Tian S, Wang H, Qu M, Shi R. Identification of constituents in Mori folium aqueous extract and drug serum. Chin J Exp Tradit Med Formulae. 2016;22:25–9.
12.
go back to reference Tian S, Liu C, Ma S, Zhang C, Zhao B. Effect of Mori folium on gene expression of tlrs in liver of diabetic mice. Chin J Exp Tradit Med Formulae. 2017;23:137–42. Tian S, Liu C, Ma S, Zhang C, Zhao B. Effect of Mori folium on gene expression of tlrs in liver of diabetic mice. Chin J Exp Tradit Med Formulae. 2017;23:137–42.
13.
go back to reference Soma P, Swanepoel AC, Bester J, Pretorius E. Tissue factor levels in type 2 diabetes mellitus. Inflamm Res. 2017;66:365–8.PubMedCrossRef Soma P, Swanepoel AC, Bester J, Pretorius E. Tissue factor levels in type 2 diabetes mellitus. Inflamm Res. 2017;66:365–8.PubMedCrossRef
14.
go back to reference Pan L, Weng H, Li H, Liu Z, Xu Y, Zhou C, Lu X, Su X, Zhang Y, Chen D. Therapeutic effects of Bupleurum polysaccharides in Streptozotocin induced diabetic mice. PLoS One. 2015;10:e0133212.PubMedPubMedCentralCrossRef Pan L, Weng H, Li H, Liu Z, Xu Y, Zhou C, Lu X, Su X, Zhang Y, Chen D. Therapeutic effects of Bupleurum polysaccharides in Streptozotocin induced diabetic mice. PLoS One. 2015;10:e0133212.PubMedPubMedCentralCrossRef
15.
go back to reference Soonthornpun S, Setasuban W, Thamprasit A, Chayanunnukul W, Rattarasarn C, Geater A. Novel insulin sensitivity index derived from oral glucose tolerance test. J Clin Endocrinol Metab. 2003;88:1019–23.PubMedCrossRef Soonthornpun S, Setasuban W, Thamprasit A, Chayanunnukul W, Rattarasarn C, Geater A. Novel insulin sensitivity index derived from oral glucose tolerance test. J Clin Endocrinol Metab. 2003;88:1019–23.PubMedCrossRef
16.
go back to reference O'Rourke JG, Bogdanik L, Yáñez A, Lall D, Wolf AJ, Muhammad AK, et al. C9orf72 is required for proper macrophage and microglial function in mice. Science. 2016;351:1324–9.PubMedPubMedCentralCrossRef O'Rourke JG, Bogdanik L, Yáñez A, Lall D, Wolf AJ, Muhammad AK, et al. C9orf72 is required for proper macrophage and microglial function in mice. Science. 2016;351:1324–9.PubMedPubMedCentralCrossRef
17.
go back to reference Liu X, Wei J, Peng DH, Layne MD, Yet SF. Absence of heme oxygenase-1 exacerbates myocardial ischemia/reperfusion injury in diabetic mice. Diabetes. 2005;54:778–84.PubMedCrossRef Liu X, Wei J, Peng DH, Layne MD, Yet SF. Absence of heme oxygenase-1 exacerbates myocardial ischemia/reperfusion injury in diabetic mice. Diabetes. 2005;54:778–84.PubMedCrossRef
18.
go back to reference Andallu B, Nch V. Control of hyperglycemia and retardation of cataract by mulberry ( Morus indica L. ) leaves in streptozotocin diabetic rats. Indian J Exp Biol. 2002;40:791–5.PubMed Andallu B, Nch V. Control of hyperglycemia and retardation of cataract by mulberry ( Morus indica L. ) leaves in streptozotocin diabetic rats. Indian J Exp Biol. 2002;40:791–5.PubMed
19.
go back to reference Mohammadi J, Naik PR. Evaluation of hypoglycemic effect of Morus alba in an animal model. Indian J Pharm. 2008;40:15–8.CrossRef Mohammadi J, Naik PR. Evaluation of hypoglycemic effect of Morus alba in an animal model. Indian J Pharm. 2008;40:15–8.CrossRef
20.
21.
go back to reference Yang S, Wang BL, Li Y. Advances in the pharmacological study of Morus alba L. Yao Xue Xue Bao. 2014;49:824–31.PubMed Yang S, Wang BL, Li Y. Advances in the pharmacological study of Morus alba L. Yao Xue Xue Bao. 2014;49:824–31.PubMed
22.
go back to reference Winzell MS, Ahrén B. The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes. 2004;53:215–9.CrossRef Winzell MS, Ahrén B. The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes. 2004;53:215–9.CrossRef
24.
go back to reference Ren C, Zhang Y, Cui W, Lu G, Wang Y. A polysaccharide extract of mulberry leaf ameliorates hepatic glucosemetabolism and insulin signaling in rats with type 2 diabetes inducedby high fat-diet and streptozotocin. Int J Biol Macromol. 2015;72:951–9.PubMedCrossRef Ren C, Zhang Y, Cui W, Lu G, Wang Y. A polysaccharide extract of mulberry leaf ameliorates hepatic glucosemetabolism and insulin signaling in rats with type 2 diabetes inducedby high fat-diet and streptozotocin. Int J Biol Macromol. 2015;72:951–9.PubMedCrossRef
25.
go back to reference Andrikopoulos S, Blair AR, Deluca N, Fam BC, Proietto J. Evaluating the glucose tolerance test in mice. Am J Physiol Endocrinol Metab. 2008;295:E1323–32.PubMedCrossRef Andrikopoulos S, Blair AR, Deluca N, Fam BC, Proietto J. Evaluating the glucose tolerance test in mice. Am J Physiol Endocrinol Metab. 2008;295:E1323–32.PubMedCrossRef
26.
go back to reference O'Neill LA. Targeting signal transduction as a strategy to treat inflammatory diseases. Nat Rev Drug Discov. 2006;5:549–63.PubMedCrossRef O'Neill LA. Targeting signal transduction as a strategy to treat inflammatory diseases. Nat Rev Drug Discov. 2006;5:549–63.PubMedCrossRef
27.
go back to reference Hennessy EJ, Parker AE, O'Neill LA. Targeting toll-like receptors: emerging therapeutics? Nat Rev Drug Discov. 2010;9:293–307.PubMedCrossRef Hennessy EJ, Parker AE, O'Neill LA. Targeting toll-like receptors: emerging therapeutics? Nat Rev Drug Discov. 2010;9:293–307.PubMedCrossRef
28.
29.
go back to reference Mohammad MK, Morran M, Slotterbeck B, Leaman DW, Sun Y, Hv G, et al. Dysregulated Toll-like receptor expression and signaling in bone marrow-derived macrophages at the onset of diabetes in the non-obese diabetic mouse. Int Immunol. 2006;18:1101–13.PubMedCrossRef Mohammad MK, Morran M, Slotterbeck B, Leaman DW, Sun Y, Hv G, et al. Dysregulated Toll-like receptor expression and signaling in bone marrow-derived macrophages at the onset of diabetes in the non-obese diabetic mouse. Int Immunol. 2006;18:1101–13.PubMedCrossRef
30.
go back to reference Sepehri Z, Kiani Z, Nasiri AA, Kohan F. Toll-like receptor 2 and type 2 diabetes. Cell Mol Biol Lett. 2016;28:2.CrossRef Sepehri Z, Kiani Z, Nasiri AA, Kohan F. Toll-like receptor 2 and type 2 diabetes. Cell Mol Biol Lett. 2016;28:2.CrossRef
31.
go back to reference Kim HS, Han MS, Chung KW, Kim S, Kim E, Kim MJ, et al. Toll-like receptor 2 senses beta-cell death and contributes to the initiation of autoimmune diabetes. Immunity. 2007;27:321–33.PubMedCrossRef Kim HS, Han MS, Chung KW, Kim S, Kim E, Kim MJ, et al. Toll-like receptor 2 senses beta-cell death and contributes to the initiation of autoimmune diabetes. Immunity. 2007;27:321–33.PubMedCrossRef
32.
go back to reference Dasu MR, Devaraj S, Zhao L, Hwang DH, Jialal I. High glucose induces toll-like receptor expression in human monocytes: mechanism of activation. Diabetes. 2008;57:3090–8.PubMedPubMedCentralCrossRef Dasu MR, Devaraj S, Zhao L, Hwang DH, Jialal I. High glucose induces toll-like receptor expression in human monocytes: mechanism of activation. Diabetes. 2008;57:3090–8.PubMedPubMedCentralCrossRef
35.
go back to reference Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006;7:85–96.PubMedCrossRef Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006;7:85–96.PubMedCrossRef
36.
go back to reference Brüning JC, Michael MD, Winnay JN, Hayashi T, Hörsch D, Accili D, et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell. 1998;2:559–69.PubMedCrossRef Brüning JC, Michael MD, Winnay JN, Hayashi T, Hörsch D, Accili D, et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell. 1998;2:559–69.PubMedCrossRef
37.
go back to reference White MF. The insulin signalling system and the IRS proteins. Diabetologia. 1997;40(suppl):2–17.CrossRef White MF. The insulin signalling system and the IRS proteins. Diabetologia. 1997;40(suppl):2–17.CrossRef
38.
go back to reference Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005;11:183–90.PubMedPubMedCentralCrossRef Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005;11:183–90.PubMedPubMedCentralCrossRef
39.
go back to reference Shimomura I, Matsuda M, Hammer RE, Bashmakov Y, Brown MS, Goldstein JL. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and Ob/Ob mice. Mol Cell. 2000;6:77–86.PubMedCrossRef Shimomura I, Matsuda M, Hammer RE, Bashmakov Y, Brown MS, Goldstein JL. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and Ob/Ob mice. Mol Cell. 2000;6:77–86.PubMedCrossRef
40.
go back to reference Ventre J, Doebber T, Wu M, MacNaul K, Stevens K, Pasparakis M, et al. Targeted disruption of the tumor necrosis factor-alpha gene: metabolic consequences in obese and nonobese mice. Diabetes. 1997;46:1526–31.PubMedCrossRef Ventre J, Doebber T, Wu M, MacNaul K, Stevens K, Pasparakis M, et al. Targeted disruption of the tumor necrosis factor-alpha gene: metabolic consequences in obese and nonobese mice. Diabetes. 1997;46:1526–31.PubMedCrossRef
41.
go back to reference Boyd JH. Toll-like receptors and opportunities for new sepsis therapeutics. Curr Infect Dis Rep. 2012;14:455–61.PubMedCrossRef Boyd JH. Toll-like receptors and opportunities for new sepsis therapeutics. Curr Infect Dis Rep. 2012;14:455–61.PubMedCrossRef
42.
go back to reference Jagannathan M, Hasturk H, Liang Y, Shin H, Hetzel JT, Kantarci A, et al. TLR cross-talk specifically regulates cytokine production by B cells from chronic inflammatory disease patients. J Immunol. 2009;183:7461–70.PubMedCrossRef Jagannathan M, Hasturk H, Liang Y, Shin H, Hetzel JT, Kantarci A, et al. TLR cross-talk specifically regulates cytokine production by B cells from chronic inflammatory disease patients. J Immunol. 2009;183:7461–70.PubMedCrossRef
43.
go back to reference Stamm LV, Drapp RL. TLR2 and TLR4 mediate the TNFα response to Vibrio vulnificus biotype 1. Pathog Dis. 2014;71:357–61.PubMedCrossRef Stamm LV, Drapp RL. TLR2 and TLR4 mediate the TNFα response to Vibrio vulnificus biotype 1. Pathog Dis. 2014;71:357–61.PubMedCrossRef
Metadata
Title
Mulberry leaf reduces inflammation and insulin resistance in type 2 diabetic mice by TLRs and insulin Signalling pathway
Authors
Simin Tian
Min Wang
Chenyue Liu
Hongbin Zhao
Baosheng Zhao
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2019
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-019-2742-y

Other articles of this Issue 1/2019

BMC Complementary Medicine and Therapies 1/2019 Go to the issue