Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2023

Open Access 01-12-2023 | Insulins | Review

Efficacy and safety of tirzepatide, dual GLP-1/GIP receptor agonists, in the management of type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials

Authors: Qian Zhou, Xingxing Lei, Shunlian Fu, Pan Liu, Cong Long, Yanmei Wang, Zinan Li, Qian Xie, Qiu Chen

Published in: Diabetology & Metabolic Syndrome | Issue 1/2023

Login to get access

Abstract

Background

Glucose-dependent insulinotropic polypeptide (GIP) and GLP-1 are the main incretin hormones, and be responsible for the insulinotropic incretin effect. The addition of a GIP agonist to a GLP-1agonist has been hypothesized to significantly potentiate the weight-losing and glycemia control effect, which might offer a new therapeutic option in the treatment of type 2 diabetes. The current meta-analysis aims to synthesize evidence of primary efficacy and safety outcomes through clinically randomized controlled trials to evaluate integrated potency and signaling properties.

Method

We conducted comprehensive literature searches in Cochrane Library, Web of Science, Embase and PubMed for relevant literatures investigating the efficacy and/or safety of Tirzepatide published in the English as of May 30, 2023 was retrieved. We synthesized results using standardized mean differences (SMDs) and 95% confidence intervals (95 CIs) for continuous outcomes, and odds ratios (ORs) along with 95 Cis for dichotomous outcomes. All analyses were done using Revman version 5.3, STATA version 15.1 and the statistical package ‘meta’.

Results

Participants treated with weekly Tirzepatide achieved HbA1c and body weight target values significantly lower than any other comparator without clinically significant increase in the incidence of hypoglycemic events, serious and all-cause fatal adverse events. However, gastrointestinal adverse events and decreased appetite events were reported more frequently with Tirzepatide treatment than with placebo/controls.

Conclusion

The Tirzepatide, a dual GIP/GLP-1 receptor co-agonist, for diabetes therapy has opened a new era on personalized glycemia control and weight loss in a safe manner with broad and promising clinical implications.
Appendix
Available only for authorised users
Literature
1.
go back to reference Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015;38(1):140–9.PubMedCrossRef Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015;38(1):140–9.PubMedCrossRef
2.
go back to reference Targets G. Standards of medical care in diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S73-s84. Targets G. Standards of medical care in diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S73-s84.
3.
go back to reference Toplak H, Leitner DR, Harreiter J, et al. “Diabesity”-obesity and type 2 diabetes (update 2019). Wien Klin Wochenschr. 2019;131(Suppl 1):71–6.CrossRef Toplak H, Leitner DR, Harreiter J, et al. “Diabesity”-obesity and type 2 diabetes (update 2019). Wien Klin Wochenschr. 2019;131(Suppl 1):71–6.CrossRef
4.
go back to reference Andersen A, Lund A, Knop FK, et al. Glucagon-like peptide 1 in health and disease. Nat Rev Endocrinol. 2018;14(7):390–403.PubMedCrossRef Andersen A, Lund A, Knop FK, et al. Glucagon-like peptide 1 in health and disease. Nat Rev Endocrinol. 2018;14(7):390–403.PubMedCrossRef
5.
go back to reference Samms RJ, Coghlan MP, Sloop KW. How may GIP enhance the therapeutic efficacy of GLP-1? Trends Endocrinol Metab. 2020;31(6):410–21.PubMedCrossRef Samms RJ, Coghlan MP, Sloop KW. How may GIP enhance the therapeutic efficacy of GLP-1? Trends Endocrinol Metab. 2020;31(6):410–21.PubMedCrossRef
6.
go back to reference English WJ, Williams DB. Metabolic and bariatric surgery: an effective treatment option for obesity and cardiovascular disease. Prog Cardiovasc Dis. 2018;61(2):253–69.PubMedCrossRef English WJ, Williams DB. Metabolic and bariatric surgery: an effective treatment option for obesity and cardiovascular disease. Prog Cardiovasc Dis. 2018;61(2):253–69.PubMedCrossRef
7.
go back to reference Erratum. Glycemic Targets. Sec. 6. In Standards of Medical Care in Diabetes-2017. Diabetes Care 2017;40 (Suppl. 1);S48-S56. Diabetes Care. 2017;40 (7):985. Erratum. Glycemic Targets. Sec. 6. In Standards of Medical Care in Diabetes-2017. Diabetes Care 2017;40 (Suppl. 1);S48-S56. Diabetes Care. 2017;40 (7):985.
8.
go back to reference Gasbjerg LS, Bergmann NC, Stensen S, et al. Evaluation of the incretin effect in humans using GIP and GLP-1 receptor antagonists. Peptides. 2020;125: 170183.CrossRef Gasbjerg LS, Bergmann NC, Stensen S, et al. Evaluation of the incretin effect in humans using GIP and GLP-1 receptor antagonists. Peptides. 2020;125: 170183.CrossRef
9.
go back to reference Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008;60(4):470–512.PubMedCrossRef Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008;60(4):470–512.PubMedCrossRef
10.
go back to reference Holst JJ, Rosenkilde MM. GIP as a therapeutic target in diabetes and obesity: insight from incretin co-agonists. J Clin Endocrinol Metab. 2020;105(8):e2710-2716.PubMedPubMedCentralCrossRef Holst JJ, Rosenkilde MM. GIP as a therapeutic target in diabetes and obesity: insight from incretin co-agonists. J Clin Endocrinol Metab. 2020;105(8):e2710-2716.PubMedPubMedCentralCrossRef
11.
go back to reference Coskun T, Sloop KW, Loghin C, et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. Mol Metab. 2018;18:3–14.PubMedPubMedCentralCrossRef Coskun T, Sloop KW, Loghin C, et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. Mol Metab. 2018;18:3–14.PubMedPubMedCentralCrossRef
12.
go back to reference Frias JP, Nauck MA, Van J, et al. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet. 2018;392(10160):2180–93.PubMedCrossRef Frias JP, Nauck MA, Van J, et al. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet. 2018;392(10160):2180–93.PubMedCrossRef
13.
14.
go back to reference Lyu XZ, Sun F, Zhan SY. Risk related to bias assessment: (4) revised cochrane risk of bias tool for cluster-randomized control trials (RoB2.0). Zhonghua Liu Xing Bing Xue Za Zhi. 2018;39(2):240–4.PubMed Lyu XZ, Sun F, Zhan SY. Risk related to bias assessment: (4) revised cochrane risk of bias tool for cluster-randomized control trials (RoB2.0). Zhonghua Liu Xing Bing Xue Za Zhi. 2018;39(2):240–4.PubMed
15.
go back to reference Lipsey MW, Wilson DB. Practical meta-analysis. Thousand Oaks: SAGE Publications Inc; 2001. Lipsey MW, Wilson DB. Practical meta-analysis. Thousand Oaks: SAGE Publications Inc; 2001.
16.
go back to reference Ludvik B, Giorgino F, Jódar E, et al. Once-weekly tirzepatide versus once-daily insulin degludec as add-on to metformin with or without SGLT2 inhibitors in patients with type 2 diabetes (SURPASS-3): a randomised, open-label, parallel-group, phase 3 trial. Lancet. 2021;398(10300):583–98.PubMedCrossRef Ludvik B, Giorgino F, Jódar E, et al. Once-weekly tirzepatide versus once-daily insulin degludec as add-on to metformin with or without SGLT2 inhibitors in patients with type 2 diabetes (SURPASS-3): a randomised, open-label, parallel-group, phase 3 trial. Lancet. 2021;398(10300):583–98.PubMedCrossRef
17.
go back to reference Del Prato S, Kahn SE, Pavo I, et al. Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4): a randomised, open-label, parallel-group, multicentre, phase 3 trial. Lancet. 2021;398(10313):1811–24.PubMedCrossRef Del Prato S, Kahn SE, Pavo I, et al. Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4): a randomised, open-label, parallel-group, multicentre, phase 3 trial. Lancet. 2021;398(10313):1811–24.PubMedCrossRef
18.
go back to reference Dahl D, Onishi Y, Norwood P, et al. Effect of subcutaneous tirzepatide vs placebo added to titrated insulin glargine on glycemic control in patients with type 2 diabetes: the SURPASS-5 randomized clinical trial. JAMA. 2022;327(6):534–45.PubMedPubMedCentralCrossRef Dahl D, Onishi Y, Norwood P, et al. Effect of subcutaneous tirzepatide vs placebo added to titrated insulin glargine on glycemic control in patients with type 2 diabetes: the SURPASS-5 randomized clinical trial. JAMA. 2022;327(6):534–45.PubMedPubMedCentralCrossRef
19.
go back to reference Gao L, Lee BW, Chawla M, et al. Tirzepatide versus insulin glargine as second-line or third-line therapy in type 2 diabetes in the Asia-Pacific region: the SURPASS-AP-Combo trial. Nat Med. 2023;29(6):1500–10.PubMedCrossRef Gao L, Lee BW, Chawla M, et al. Tirzepatide versus insulin glargine as second-line or third-line therapy in type 2 diabetes in the Asia-Pacific region: the SURPASS-AP-Combo trial. Nat Med. 2023;29(6):1500–10.PubMedCrossRef
20.
go back to reference Vadher K, Patel H, Mody R, et al. Efficacy of tirzepatide 5, 10 and 15 mg versus semaglutide 2 mg in patients with type 2 diabetes: an adjusted indirect treatment comparison. Diabetes Obes Metab. 2022;24(9):1861–8.PubMedPubMedCentralCrossRef Vadher K, Patel H, Mody R, et al. Efficacy of tirzepatide 5, 10 and 15 mg versus semaglutide 2 mg in patients with type 2 diabetes: an adjusted indirect treatment comparison. Diabetes Obes Metab. 2022;24(9):1861–8.PubMedPubMedCentralCrossRef
21.
go back to reference Rosenstock J, Wysham C, Frías JP, et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. Lancet. 2021;398(10295):143–55.PubMedCrossRef Rosenstock J, Wysham C, Frías JP, et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. Lancet. 2021;398(10295):143–55.PubMedCrossRef
22.
go back to reference Frías JP, Davies MJ, Rosenstock J, et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med. 2021;385(6):503–15.PubMedCrossRef Frías JP, Davies MJ, Rosenstock J, et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med. 2021;385(6):503–15.PubMedCrossRef
23.
go back to reference Wilson JM, Nikooienejad A, Robins DA, et al. The dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist, tirzepatide, improves lipoprotein biomarkers associated with insulin resistance and cardiovascular risk in patients with type 2 diabetes. Diabetes Obes Metab. 2020;22(12):2451–9.PubMedCrossRef Wilson JM, Nikooienejad A, Robins DA, et al. The dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist, tirzepatide, improves lipoprotein biomarkers associated with insulin resistance and cardiovascular risk in patients with type 2 diabetes. Diabetes Obes Metab. 2020;22(12):2451–9.PubMedCrossRef
24.
go back to reference Nauck MA, D’Alessio DA. Tirzepatide, a dual GIP/GLP-1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regrading glycaemic control and body weight reduction. Cardiovasc Diabetol. 2022;21(1):169.PubMedPubMedCentralCrossRef Nauck MA, D’Alessio DA. Tirzepatide, a dual GIP/GLP-1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regrading glycaemic control and body weight reduction. Cardiovasc Diabetol. 2022;21(1):169.PubMedPubMedCentralCrossRef
25.
go back to reference Bokvist K, Brown R, Coskun T, et al. LY3298176, a novel long-acting GIP/GLP-1 coagonist, shows enhanced activity on weight loss and energy utilisation whilst maintaining its efficacy for glycaemic control. Diabetologia: SPRINGER, NY; 2017, pp S399-S399. Bokvist K, Brown R, Coskun T, et al. LY3298176, a novel long-acting GIP/GLP-1 coagonist, shows enhanced activity on weight loss and energy utilisation whilst maintaining its efficacy for glycaemic control. Diabetologia: SPRINGER, NY; 2017, pp S399-S399.
26.
go back to reference Finan B, Yang B, Ottaway N, et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med. 2015;21(1):27–36.PubMedCrossRef Finan B, Yang B, Ottaway N, et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med. 2015;21(1):27–36.PubMedCrossRef
27.
go back to reference Frias JP, Nauck MA, Van J, et al. Efficacy and tolerability of tirzepatide, a dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist in patients with type 2 diabetes: a 12-week, randomized, double-blind, placebo-controlled study to evaluate different dose-escalation regimens. Diabetes Obes Metab. 2020;22(6):938–46.PubMedPubMedCentralCrossRef Frias JP, Nauck MA, Van J, et al. Efficacy and tolerability of tirzepatide, a dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist in patients with type 2 diabetes: a 12-week, randomized, double-blind, placebo-controlled study to evaluate different dose-escalation regimens. Diabetes Obes Metab. 2020;22(6):938–46.PubMedPubMedCentralCrossRef
29.
go back to reference Karagiannis T, Avgerinos I, Liakos A, et al. Management of type 2 diabetes with the dual GIP/GLP-1 receptor agonist tirzepatide: a systematic review and meta-analysis. Diabetologia. 2022;65(8):1251–61.PubMedPubMedCentralCrossRef Karagiannis T, Avgerinos I, Liakos A, et al. Management of type 2 diabetes with the dual GIP/GLP-1 receptor agonist tirzepatide: a systematic review and meta-analysis. Diabetologia. 2022;65(8):1251–61.PubMedPubMedCentralCrossRef
30.
go back to reference Dutta D, Surana V, Singla R, et al. Efficacy and safety of novel twincretin tirzepatide a dual GIP and GLP-1 receptor agonist in the management of type-2 diabetes: a cochrane meta-analysis. Indian J Endocrinol Metab. 2021;25(6):475–89.PubMedCrossRef Dutta D, Surana V, Singla R, et al. Efficacy and safety of novel twincretin tirzepatide a dual GIP and GLP-1 receptor agonist in the management of type-2 diabetes: a cochrane meta-analysis. Indian J Endocrinol Metab. 2021;25(6):475–89.PubMedCrossRef
31.
go back to reference Bastin M, Andreelli F. Dual GIP-GLP1-receptor agonists in the treatment of type 2 diabetes: a short review on emerging data and therapeutic potential. Diabetes Metab Syndr Obes. 2019;12:1973–85.PubMedPubMedCentralCrossRef Bastin M, Andreelli F. Dual GIP-GLP1-receptor agonists in the treatment of type 2 diabetes: a short review on emerging data and therapeutic potential. Diabetes Metab Syndr Obes. 2019;12:1973–85.PubMedPubMedCentralCrossRef
32.
go back to reference Asmar M, Simonsen L, Madsbad S, et al. Glucose-dependent insulinotropic polypeptide may enhance fatty acid re-esterification in subcutaneous abdominal adipose tissue in lean humans. Diabetes. 2010;59(9):2160–3.PubMedPubMedCentralCrossRef Asmar M, Simonsen L, Madsbad S, et al. Glucose-dependent insulinotropic polypeptide may enhance fatty acid re-esterification in subcutaneous abdominal adipose tissue in lean humans. Diabetes. 2010;59(9):2160–3.PubMedPubMedCentralCrossRef
33.
go back to reference Finan B, Müller TD, Clemmensen C, et al. Reappraisal of GIP pharmacology for metabolic diseases. Trends Mol Med. 2016;22(5):359–76.PubMedCrossRef Finan B, Müller TD, Clemmensen C, et al. Reappraisal of GIP pharmacology for metabolic diseases. Trends Mol Med. 2016;22(5):359–76.PubMedCrossRef
34.
go back to reference Holst JJ, Orskov C, Nielsen OV, et al. Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett. 1987;211(2):169–74.PubMedCrossRef Holst JJ, Orskov C, Nielsen OV, et al. Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett. 1987;211(2):169–74.PubMedCrossRef
35.
go back to reference Kreymann B, Williams G, Ghatei MA, et al. Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet. 1987;2(8571):1300–4.PubMedCrossRef Kreymann B, Williams G, Ghatei MA, et al. Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet. 1987;2(8571):1300–4.PubMedCrossRef
36.
go back to reference Imeryüz N, Yeğen BC, Bozkurt A, et al. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am J Physiol. 1997;273(4):G920-927.PubMed Imeryüz N, Yeğen BC, Bozkurt A, et al. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am J Physiol. 1997;273(4):G920-927.PubMed
37.
go back to reference Nauck MA, Niedereichholz U, Ettler R, et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol. 1997;273(5):E981-988.PubMed Nauck MA, Niedereichholz U, Ettler R, et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol. 1997;273(5):E981-988.PubMed
38.
go back to reference Schirra J, Leicht P, Hildebrand P, et al. Mechanisms of the antidiabetic action of subcutaneous glucagon-like peptide-1 (7–36)amide in non-insulin dependent diabetes mellitus. J Endocrinol. 1998;156(1):177–86.PubMedCrossRef Schirra J, Leicht P, Hildebrand P, et al. Mechanisms of the antidiabetic action of subcutaneous glucagon-like peptide-1 (7–36)amide in non-insulin dependent diabetes mellitus. J Endocrinol. 1998;156(1):177–86.PubMedCrossRef
39.
go back to reference Turton MD, O’Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature. 1996;379(6560):69–72.PubMedCrossRef Turton MD, O’Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature. 1996;379(6560):69–72.PubMedCrossRef
40.
go back to reference Christensen M, Vedtofte L, Holst JJ, et al. Glucose-dependent insulinotropic polypeptide: a bifunctional glucose-dependent regulator of glucagon and insulin secretion in humans. Diabetes. 2011;60(12):3103–9.PubMedPubMedCentralCrossRef Christensen M, Vedtofte L, Holst JJ, et al. Glucose-dependent insulinotropic polypeptide: a bifunctional glucose-dependent regulator of glucagon and insulin secretion in humans. Diabetes. 2011;60(12):3103–9.PubMedPubMedCentralCrossRef
41.
go back to reference Song DH, Getty-Kaushik L, Tseng E, et al. Glucose-dependent insulinotropic polypeptide enhances adipocyte development and glucose uptake in part through Akt activation. Gastroenterology. 2007;133(6):1796–805.CrossRef Song DH, Getty-Kaushik L, Tseng E, et al. Glucose-dependent insulinotropic polypeptide enhances adipocyte development and glucose uptake in part through Akt activation. Gastroenterology. 2007;133(6):1796–805.CrossRef
42.
go back to reference Getty-Kaushik L, Song DH, Boylan MO, et al. Glucose-dependent insulinotropic polypeptide modulates adipocyte lipolysis and reesterification. Obesity (Silver Spring). 2006;14(7):1124–31.PubMedCrossRef Getty-Kaushik L, Song DH, Boylan MO, et al. Glucose-dependent insulinotropic polypeptide modulates adipocyte lipolysis and reesterification. Obesity (Silver Spring). 2006;14(7):1124–31.PubMedCrossRef
43.
go back to reference Kim SJ, Nian C, McIntosh CH. Activation of lipoprotein lipase by glucose-dependent insulinotropic polypeptide in adipocytes. A role for a protein kinase B, LKB1, and AMP-activated protein kinase cascade. J Biol Chem. 2007;282(12):8557–67.PubMedCrossRef Kim SJ, Nian C, McIntosh CH. Activation of lipoprotein lipase by glucose-dependent insulinotropic polypeptide in adipocytes. A role for a protein kinase B, LKB1, and AMP-activated protein kinase cascade. J Biol Chem. 2007;282(12):8557–67.PubMedCrossRef
44.
go back to reference Miyawaki K, Yamada Y, Ban N, et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med. 2002;8(7):738–42.PubMedCrossRef Miyawaki K, Yamada Y, Ban N, et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med. 2002;8(7):738–42.PubMedCrossRef
45.
go back to reference Kim SJ, Nian C, Karunakaran S, et al. GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis. PLoS ONE. 2012;7(7): e40156.PubMedPubMedCentralCrossRef Kim SJ, Nian C, Karunakaran S, et al. GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis. PLoS ONE. 2012;7(7): e40156.PubMedPubMedCentralCrossRef
46.
go back to reference Asmar M, Asmar A, Simonsen L, et al. WITHDRAWN: glucose-dependent insulinotropic polypeptide increases blood flow in adipose tissue of humans by recruiting capillaries. J Clin Endocrinol Metab. 2019;104(1):W1-w9.PubMedCrossRef Asmar M, Asmar A, Simonsen L, et al. WITHDRAWN: glucose-dependent insulinotropic polypeptide increases blood flow in adipose tissue of humans by recruiting capillaries. J Clin Endocrinol Metab. 2019;104(1):W1-w9.PubMedCrossRef
47.
go back to reference Finan B, Ma T, Ottaway N, et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci Transl Med. 2013;5(209): 209ra151.PubMedCrossRef Finan B, Ma T, Ottaway N, et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci Transl Med. 2013;5(209): 209ra151.PubMedCrossRef
48.
go back to reference Pocai A, Carrington PE, Adams JR, et al. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes. 2009;58(10):2258–66.PubMedPubMedCentralCrossRef Pocai A, Carrington PE, Adams JR, et al. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes. 2009;58(10):2258–66.PubMedPubMedCentralCrossRef
49.
go back to reference Day JW, Ottaway N, Patterson JT, et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol. 2009;5(10):749–57.PubMedCrossRef Day JW, Ottaway N, Patterson JT, et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol. 2009;5(10):749–57.PubMedCrossRef
51.
go back to reference Højberg PV, Vilsbøll T, Rabøl R, et al. Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia. 2009;52(2):199–207.PubMedCrossRef Højberg PV, Vilsbøll T, Rabøl R, et al. Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia. 2009;52(2):199–207.PubMedCrossRef
52.
go back to reference Gastaldelli A, Cusi K, Fernández Landó L, et al. Effect of tirzepatide versus insulin degludec on liver fat content and abdominal adipose tissue in people with type 2 diabetes (SURPASS-3 MRI): a substudy of the randomised, open-label, parallel-group, phase 3 SURPASS-3 trial. Lancet Diabetes Endocrinol. 2022;10(6):393–406.PubMedCrossRef Gastaldelli A, Cusi K, Fernández Landó L, et al. Effect of tirzepatide versus insulin degludec on liver fat content and abdominal adipose tissue in people with type 2 diabetes (SURPASS-3 MRI): a substudy of the randomised, open-label, parallel-group, phase 3 SURPASS-3 trial. Lancet Diabetes Endocrinol. 2022;10(6):393–406.PubMedCrossRef
53.
go back to reference Moon JS, Hong JH, Jung YJ, et al. SGLT-2 inhibitors and GLP-1 receptor agonists in metabolic dysfunction-associated fatty liver disease. Trends Endocrinol Metab. 2022;33(6):424–42.PubMedCrossRef Moon JS, Hong JH, Jung YJ, et al. SGLT-2 inhibitors and GLP-1 receptor agonists in metabolic dysfunction-associated fatty liver disease. Trends Endocrinol Metab. 2022;33(6):424–42.PubMedCrossRef
54.
go back to reference Lingvay I, Sumithran P, Cohen RV, et al. Obesity management as a primary treatment goal for type 2 diabetes: time to reframe the conversation. Lancet. 2022;399(10322):394–405.PubMedCrossRef Lingvay I, Sumithran P, Cohen RV, et al. Obesity management as a primary treatment goal for type 2 diabetes: time to reframe the conversation. Lancet. 2022;399(10322):394–405.PubMedCrossRef
55.
go back to reference Lean ME, Leslie WS, Barnes AC, et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet. 2018;391(10120):541–51.PubMedCrossRef Lean ME, Leslie WS, Barnes AC, et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet. 2018;391(10120):541–51.PubMedCrossRef
56.
go back to reference Lean MEJ, Leslie WS, Barnes AC, et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol. 2019;7(5):344–55.PubMedCrossRef Lean MEJ, Leslie WS, Barnes AC, et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol. 2019;7(5):344–55.PubMedCrossRef
57.
go back to reference Brandt SJ, Müller TD, DiMarchi RD, et al. Peptide-based multi-agonists: a new paradigm in metabolic pharmacology. J Intern Med. 2018;284(6):581–602.PubMedCrossRef Brandt SJ, Müller TD, DiMarchi RD, et al. Peptide-based multi-agonists: a new paradigm in metabolic pharmacology. J Intern Med. 2018;284(6):581–602.PubMedCrossRef
58.
go back to reference Nauck MA, Wefers J, Meier JJ. Treatment of type 2 diabetes: challenges, hopes, and anticipated successes. Lancet Diabetes Endocrinol. 2021;9(8):525–44.PubMedCrossRef Nauck MA, Wefers J, Meier JJ. Treatment of type 2 diabetes: challenges, hopes, and anticipated successes. Lancet Diabetes Endocrinol. 2021;9(8):525–44.PubMedCrossRef
59.
go back to reference Du YT, Rayner CK, Jones KL, et al. Gastrointestinal symptoms in diabetes: prevalence, assessment, pathogenesis, and management. Diabetes Care. 2018;41(3):627–37.PubMedCrossRef Du YT, Rayner CK, Jones KL, et al. Gastrointestinal symptoms in diabetes: prevalence, assessment, pathogenesis, and management. Diabetes Care. 2018;41(3):627–37.PubMedCrossRef
60.
go back to reference Veldhuyzen van Zanten SJ, Talley NJ, Bytzer P, et al. Design of treatment trials for functional gastrointestinal disorders. Gut. 1999;45(Suppl 2):Ii69-77.PubMed Veldhuyzen van Zanten SJ, Talley NJ, Bytzer P, et al. Design of treatment trials for functional gastrointestinal disorders. Gut. 1999;45(Suppl 2):Ii69-77.PubMed
61.
go back to reference Furihata K, Mimura H, Urva S, et al. A phase 1 multiple-ascending dose study of tirzepatide in Japanese participants with type 2 diabetes. Diabetes Obes Metab. 2022;24(2):239–46.PubMedCrossRef Furihata K, Mimura H, Urva S, et al. A phase 1 multiple-ascending dose study of tirzepatide in Japanese participants with type 2 diabetes. Diabetes Obes Metab. 2022;24(2):239–46.PubMedCrossRef
62.
go back to reference Heise T, Mari A, DeVries JH, et al. Effects of subcutaneous tirzepatide versus placebo or semaglutide on pancreatic islet function and insulin sensitivity in adults with type 2 diabetes: a multicentre, randomised, double-blind, parallel-arm, phase 1 clinical trial. Lancet Diabetes Endocrinol. 2022;10(6):418–29.PubMedCrossRef Heise T, Mari A, DeVries JH, et al. Effects of subcutaneous tirzepatide versus placebo or semaglutide on pancreatic islet function and insulin sensitivity in adults with type 2 diabetes: a multicentre, randomised, double-blind, parallel-arm, phase 1 clinical trial. Lancet Diabetes Endocrinol. 2022;10(6):418–29.PubMedCrossRef
63.
go back to reference Inagaki N, Takeuchi M, Oura T, et al. Efficacy and safety of tirzepatide monotherapy compared with dulaglutide in Japanese patients with type 2 diabetes (SURPASS J-mono): a double-blind, multicentre, randomised, phase 3 trial. Lancet Diabetes Endocrinol. 2022;10(9):623–33.PubMedCrossRef Inagaki N, Takeuchi M, Oura T, et al. Efficacy and safety of tirzepatide monotherapy compared with dulaglutide in Japanese patients with type 2 diabetes (SURPASS J-mono): a double-blind, multicentre, randomised, phase 3 trial. Lancet Diabetes Endocrinol. 2022;10(9):623–33.PubMedCrossRef
64.
go back to reference Garvey WT, Frias JP, Jastreboff AM, et al. Tirzepatide once weekly for the treatment of obesity in people with type 2 diabetes (SURMOUNT-2): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2023;402(10402):613–26.PubMedCrossRef Garvey WT, Frias JP, Jastreboff AM, et al. Tirzepatide once weekly for the treatment of obesity in people with type 2 diabetes (SURMOUNT-2): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2023;402(10402):613–26.PubMedCrossRef
Metadata
Title
Efficacy and safety of tirzepatide, dual GLP-1/GIP receptor agonists, in the management of type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials
Authors
Qian Zhou
Xingxing Lei
Shunlian Fu
Pan Liu
Cong Long
Yanmei Wang
Zinan Li
Qian Xie
Qiu Chen
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2023
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-023-01198-4

Other articles of this Issue 1/2023

Diabetology & Metabolic Syndrome 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.