Skip to main content
Top
Published in: Reviews in Endocrine and Metabolic Disorders 4/2020

01-12-2020 | Insulins

Current perspectives of oleic acid: Regulation of molecular pathways in mitochondrial and endothelial functioning against insulin resistance and diabetes

Authors: Kanwal Rehman, Kamran Haider, Komal Jabeen, Muhammad Sajid Hamid Akash

Published in: Reviews in Endocrine and Metabolic Disorders | Issue 4/2020

Login to get access

Abstract

Insulin resistance (IR) and type 2 diabetes mellitus (T2DM) is a leading cause of deaths due to metabolic disorders in recent years. Molecular mechanisms involved in the initiation and development of IR and T2DM are multiples. The major factors include mitochondrial dysfunction which may cause incomplete fatty acid oxidation (FAO). Oleic acid upregulates the expression of genes causing FAO by deacetylation of PGC1α by PKA-dependent activation of SIRT1-PGC1α complex. Another potent factor for the development of IR and T2DM is endothelial dysfunction as damaged endothelium causes increased release of inflammatory mediators such as TNF-α, IL-6, IL-1β, sVCAM, sICAM, E-selectin and other proinflammatory cytokines. While, on the other hand, oleic acid has the ability to regulate E-selectin, and sICAM expression. Rest of the risk factors may include inflammation, β-cell dysfunction, oxidative stress, hormonal imbalance, apoptosis, and enzyme dysregulation. Here, we have highlighted how oleic acid regulates underlying causatives factors and hence, keeps surpassing effect in prevention and treatment of IR and T2DM. However, the percentage contribution of these factors in combating IR and ultimately averting T2DM is still debatable. Thus, because of its exceptional protective effect, it can be considered as an improved therapeutic agent in prophylaxis and/or treatment of IR and T2DM.
Literature
1.
go back to reference Neuenschwander M, Ballon A, Weber KS, Norat T, Aune D, Schwingshackl L, et al. Role of diet in type 2 diabetes incidence: umbrella review of meta-analyses of prospective observational studies. BMJ. 2019;366:l2368.PubMedPubMedCentral Neuenschwander M, Ballon A, Weber KS, Norat T, Aune D, Schwingshackl L, et al. Role of diet in type 2 diabetes incidence: umbrella review of meta-analyses of prospective observational studies. BMJ. 2019;366:l2368.PubMedPubMedCentral
2.
go back to reference Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A. Insulin resistance: review of the underlying molecular mechanisms. J Cell Physiol. 2019;234(6):8152–61.PubMed Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A. Insulin resistance: review of the underlying molecular mechanisms. J Cell Physiol. 2019;234(6):8152–61.PubMed
3.
go back to reference Hallberg SJ, Gershuni VM, Hazbun TL, Athinarayanan SJ. Reversing type 2 diabetes: a narrative review of the evidence. Nutrients. 2019;11(4):766.PubMedCentral Hallberg SJ, Gershuni VM, Hazbun TL, Athinarayanan SJ. Reversing type 2 diabetes: a narrative review of the evidence. Nutrients. 2019;11(4):766.PubMedCentral
4.
go back to reference Liu J, Liu Z. Muscle insulin resistance and the inflamed microvasculature: fire from within. Int J Mol Sci. 2019;20(3):562.PubMedCentral Liu J, Liu Z. Muscle insulin resistance and the inflamed microvasculature: fire from within. Int J Mol Sci. 2019;20(3):562.PubMedCentral
5.
go back to reference Ekpenyon CE. Relationship between insulin resistance and metabolic syndrome clusters: current knowledge. Acta Sci Med Sci. 2019;3(3):99–104. Ekpenyon CE. Relationship between insulin resistance and metabolic syndrome clusters: current knowledge. Acta Sci Med Sci. 2019;3(3):99–104.
6.
go back to reference Ingelfinger JR, Rosen CJ. Clinical credence - SGLT2 inhibitors, diabetes, and chronic kidney disease. N Engl J Med. 2019;380(24):2371–3. Ingelfinger JR, Rosen CJ. Clinical credence - SGLT2 inhibitors, diabetes, and chronic kidney disease. N Engl J Med. 2019;380(24):2371–3.
7.
go back to reference Arsic A, Stojanovic A, Mikic M. Oleic acid-health benefits and status in plasma phospholipids in the Serbian population. Serbian J Exp Clin Res. 2019;20(2):3–8. Arsic A, Stojanovic A, Mikic M. Oleic acid-health benefits and status in plasma phospholipids in the Serbian population. Serbian J Exp Clin Res. 2019;20(2):3–8.
8.
go back to reference Bowen KJ, Kris-Etherton PM, West SG, Fleming JA, Connelly PW, Lamarche B, et al. Diets enriched with conventional or high-oleic acid canola oils lower Atherogenic lipids and lipoproteins compared to a diet with a Western fatty acid profile in adults with central adiposity. J Nutr. 2019;149(3):471–8.PubMedPubMedCentral Bowen KJ, Kris-Etherton PM, West SG, Fleming JA, Connelly PW, Lamarche B, et al. Diets enriched with conventional or high-oleic acid canola oils lower Atherogenic lipids and lipoproteins compared to a diet with a Western fatty acid profile in adults with central adiposity. J Nutr. 2019;149(3):471–8.PubMedPubMedCentral
9.
go back to reference Gonçalves-de-Albuquerque CF, Medeiros-de-Moraes IM, de Jesus Oliveira FM, Burth P, Bozza PT, Faria MVC, et al. Omega-9 oleic acid induces fatty acid oxidation and decreases organ dysfunction and mortality in experimental sepsis. PLoS One. 2016;11(4):e0153607.PubMedPubMedCentral Gonçalves-de-Albuquerque CF, Medeiros-de-Moraes IM, de Jesus Oliveira FM, Burth P, Bozza PT, Faria MVC, et al. Omega-9 oleic acid induces fatty acid oxidation and decreases organ dysfunction and mortality in experimental sepsis. PLoS One. 2016;11(4):e0153607.PubMedPubMedCentral
10.
go back to reference Lim J-H, Gerhart-Hines Z, Dominy JE, Lee Y, Kim S, Tabata M, et al. Oleic acid stimulates complete oxidation of fatty acids through protein kinase A-dependent activation of SIRT1-PGC1α complex. J Biol Chem. 2013;288(10):7117–26.PubMedPubMedCentral Lim J-H, Gerhart-Hines Z, Dominy JE, Lee Y, Kim S, Tabata M, et al. Oleic acid stimulates complete oxidation of fatty acids through protein kinase A-dependent activation of SIRT1-PGC1α complex. J Biol Chem. 2013;288(10):7117–26.PubMedPubMedCentral
11.
go back to reference Naughton S, Hanson E, Mathai M, McAinch A. The acute effect of oleic-or linoleic acid-containing meals on appetite and metabolic markers; a pilot study in overweight or obese individuals. Nutrients. 2018;10(10):1376.PubMedCentral Naughton S, Hanson E, Mathai M, McAinch A. The acute effect of oleic-or linoleic acid-containing meals on appetite and metabolic markers; a pilot study in overweight or obese individuals. Nutrients. 2018;10(10):1376.PubMedCentral
12.
go back to reference Nemecz M, Constantin A, Dumitrescu M, Alexandru N, Filippi A, Tanko G, et al. The distinct effects of Palmitic and oleic acid on pancreatic Beta cell function: the elucidation of associated mechanisms and effector molecules. Front Pharmacol. 2018;9:1554.PubMed Nemecz M, Constantin A, Dumitrescu M, Alexandru N, Filippi A, Tanko G, et al. The distinct effects of Palmitic and oleic acid on pancreatic Beta cell function: the elucidation of associated mechanisms and effector molecules. Front Pharmacol. 2018;9:1554.PubMed
13.
go back to reference Melo HM, Santos LE, Ferreira ST. Diet-derived fatty acids, brain inflammation, and mental health. Front Neurosci. 2019;13. Melo HM, Santos LE, Ferreira ST. Diet-derived fatty acids, brain inflammation, and mental health. Front Neurosci. 2019;13.
14.
go back to reference Scoditti E, Massaro M, Carluccio MA, Pellegrino M, Wabitsch M, Calabriso N, et al. Additive regulation of adiponectin expression by the mediterranean diet olive oil components oleic acid and hydroxytyrosol in human adipocytes. PLoS One. 2015;10(6):e0128218.PubMedPubMedCentral Scoditti E, Massaro M, Carluccio MA, Pellegrino M, Wabitsch M, Calabriso N, et al. Additive regulation of adiponectin expression by the mediterranean diet olive oil components oleic acid and hydroxytyrosol in human adipocytes. PLoS One. 2015;10(6):e0128218.PubMedPubMedCentral
15.
go back to reference Chen X, Stein TP, Steer RA, Scholl TO. Individual free fatty acids have unique associations with inflammatory biomarkers, insulin resistance and insulin secretion in healthy and gestational diabetic pregnant women. BMJ Open Diabetes Res Care. 2019;7(1):e000632.PubMedPubMedCentral Chen X, Stein TP, Steer RA, Scholl TO. Individual free fatty acids have unique associations with inflammatory biomarkers, insulin resistance and insulin secretion in healthy and gestational diabetic pregnant women. BMJ Open Diabetes Res Care. 2019;7(1):e000632.PubMedPubMedCentral
16.
go back to reference Arab K, Rossary A, Soulere L, Steghens JP. Conjugated linoleic acid, unlike other unsaturated fatty acids, strongly induces glutathione synthesis without any lipoperoxidation. Br J Nutr. 2006;96(5):811–9.PubMed Arab K, Rossary A, Soulere L, Steghens JP. Conjugated linoleic acid, unlike other unsaturated fatty acids, strongly induces glutathione synthesis without any lipoperoxidation. Br J Nutr. 2006;96(5):811–9.PubMed
17.
go back to reference Pinti MV, Fink GK, Hathaway QA, Durr AJ, Kunovac A, Hollander JM. Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis. Am J Physiol Endocrinol Metab. 2019;316(2):E268–E85.PubMedPubMedCentral Pinti MV, Fink GK, Hathaway QA, Durr AJ, Kunovac A, Hollander JM. Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis. Am J Physiol Endocrinol Metab. 2019;316(2):E268–E85.PubMedPubMedCentral
18.
19.
go back to reference Sergi D, Naumovski NN, Heilbronn LHK, Abeywardena M, O'Callaghan N, Lionetti L, et al. Mitochondrial (Dys) function and insulin resistance: from pathophysiological molecular mechanisms to the impact of diet. Front Physiol. 2019;10:532.PubMedPubMedCentral Sergi D, Naumovski NN, Heilbronn LHK, Abeywardena M, O'Callaghan N, Lionetti L, et al. Mitochondrial (Dys) function and insulin resistance: from pathophysiological molecular mechanisms to the impact of diet. Front Physiol. 2019;10:532.PubMedPubMedCentral
20.
go back to reference Coll T, Eyre E, Rodríguez-Calvo R, Palomer X, Sánchez RM, Merlos M, et al. Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells. J Biol Chem. 2008;283(17):11107–16.PubMed Coll T, Eyre E, Rodríguez-Calvo R, Palomer X, Sánchez RM, Merlos M, et al. Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells. J Biol Chem. 2008;283(17):11107–16.PubMed
21.
go back to reference Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta. 2011;1813(7):1269–78.PubMed Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta. 2011;1813(7):1269–78.PubMed
22.
go back to reference Hu W, Ross J, Geng T, Brice SE, Cowart LA. Differential regulation of dihydroceramide desaturase by palmitate versus monounsaturated fatty acids: implications for insulin resistance. J Biol Chem. 2011;286(19):16596–605.PubMedPubMedCentral Hu W, Ross J, Geng T, Brice SE, Cowart LA. Differential regulation of dihydroceramide desaturase by palmitate versus monounsaturated fatty acids: implications for insulin resistance. J Biol Chem. 2011;286(19):16596–605.PubMedPubMedCentral
23.
go back to reference Herrero L, Rubí B, Sebastián D, Serra D, Asins G, Maechler P, et al. Alteration of the malonyl-CoA/carnitine palmitoyltransferase I interaction in the β-cell impairs glucose-induced insulin secretion. Diabetes. 2005;54(2):462–71.PubMed Herrero L, Rubí B, Sebastián D, Serra D, Asins G, Maechler P, et al. Alteration of the malonyl-CoA/carnitine palmitoyltransferase I interaction in the β-cell impairs glucose-induced insulin secretion. Diabetes. 2005;54(2):462–71.PubMed
24.
go back to reference Zang Y, Wang T, Xie W, Wang-Fischer YL, Getty L, Han J, et al. Regulation of acetyl CoA carboxylase and carnitine palmitoyl transferase-1 in rat adipocytes. Obes Res. 2005;13(9):1530–9.PubMed Zang Y, Wang T, Xie W, Wang-Fischer YL, Getty L, Han J, et al. Regulation of acetyl CoA carboxylase and carnitine palmitoyl transferase-1 in rat adipocytes. Obes Res. 2005;13(9):1530–9.PubMed
25.
go back to reference Priore P, Gnoni A, Natali F, Testini M, Gnoni GV, Siculella L, et al. Oleic acid and hydroxytyrosol inhibit cholesterol and fatty acid synthesis in C6 glioma cells. Oxidative Med Cell Longev. 2017;2017:9076052. Priore P, Gnoni A, Natali F, Testini M, Gnoni GV, Siculella L, et al. Oleic acid and hydroxytyrosol inhibit cholesterol and fatty acid synthesis in C6 glioma cells. Oxidative Med Cell Longev. 2017;2017:9076052.
26.
go back to reference Pierelli G, Stanzione R, Forte M, Migliarino S, Perelli M, Volpe M, et al. Uncoupling protein 2: a key player and a potential therapeutic target in vascular diseases. Oxidative Med Cell Longev. 2017;2017:7348372. Pierelli G, Stanzione R, Forte M, Migliarino S, Perelli M, Volpe M, et al. Uncoupling protein 2: a key player and a potential therapeutic target in vascular diseases. Oxidative Med Cell Longev. 2017;2017:7348372.
27.
go back to reference Teshima Y, Akao M, Jones SP, Marbán E. Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ Res. 2003;93(3):192–200.PubMed Teshima Y, Akao M, Jones SP, Marbán E. Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ Res. 2003;93(3):192–200.PubMed
28.
go back to reference Krauss S, Zhang CY, Lowell BB. The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol. 2005;6(3):248–61.PubMed Krauss S, Zhang CY, Lowell BB. The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol. 2005;6(3):248–61.PubMed
29.
go back to reference Pi J, Collins S. Reactive oxygen species and uncoupling protein 2 in pancreatic beta-cell function. Diabetes Obes Metab. 2010;12(Suppl 2):141–8.PubMed Pi J, Collins S. Reactive oxygen species and uncoupling protein 2 in pancreatic beta-cell function. Diabetes Obes Metab. 2010;12(Suppl 2):141–8.PubMed
30.
go back to reference Medvedev AV, Robidoux J, Bai X, Cao W, Floering LM, Daniel KW, et al. Regulation of the uncoupling protein-2 gene in INS-1 beta-cells by oleic acid. J Biol Chem. 2002;277(45):42639–44.PubMed Medvedev AV, Robidoux J, Bai X, Cao W, Floering LM, Daniel KW, et al. Regulation of the uncoupling protein-2 gene in INS-1 beta-cells by oleic acid. J Biol Chem. 2002;277(45):42639–44.PubMed
31.
go back to reference Šrámek J, Němcová-Fürstová V, Pavlíková N, Kovář J. Effect of saturated stearic acid on MAP kinase and ER stress signaling pathways during apoptosis induction in human pancreatic β-cells is inhibited by unsaturated oleic acid. Int J Mol Sci. 2017;18(11):2313.PubMedCentral Šrámek J, Němcová-Fürstová V, Pavlíková N, Kovář J. Effect of saturated stearic acid on MAP kinase and ER stress signaling pathways during apoptosis induction in human pancreatic β-cells is inhibited by unsaturated oleic acid. Int J Mol Sci. 2017;18(11):2313.PubMedCentral
32.
33.
go back to reference Esser N, Paquot N, Scheen AJ. Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin Investig Drugs. 2015;24(3):283–307.PubMed Esser N, Paquot N, Scheen AJ. Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin Investig Drugs. 2015;24(3):283–307.PubMed
34.
go back to reference Wieser V, Moschen AR, Tilg H. Inflammation, cytokines and insulin resistance: a clinical perspective. Arch Immunol Ther Exp. 2013;61(2):119–25. Wieser V, Moschen AR, Tilg H. Inflammation, cytokines and insulin resistance: a clinical perspective. Arch Immunol Ther Exp. 2013;61(2):119–25.
36.
go back to reference Kraakman MJ, Murphy AJ, Jandeleit-Dahm K, Kammoun HL. Macrophage polarization in obesity and type 2 diabetes: weighing down our understanding of macrophage function? Front Immunol. 2014;5:470.PubMedPubMedCentral Kraakman MJ, Murphy AJ, Jandeleit-Dahm K, Kammoun HL. Macrophage polarization in obesity and type 2 diabetes: weighing down our understanding of macrophage function? Front Immunol. 2014;5:470.PubMedPubMedCentral
37.
go back to reference Camell C, Smith CW. Dietary oleic acid increases m2 macrophages in the mesenteric adipose tissue. PLoS One. 2013;8(9):e75147.PubMedPubMedCentral Camell C, Smith CW. Dietary oleic acid increases m2 macrophages in the mesenteric adipose tissue. PLoS One. 2013;8(9):e75147.PubMedPubMedCentral
38.
go back to reference Mandavia C, Sowers JR. Phosphoprotein phosphatase PP2A regulation of insulin receptor substrate 1 and insulin metabolic signaling. Cardiorenal Med. 2012;2(4):308–13.PubMedPubMedCentral Mandavia C, Sowers JR. Phosphoprotein phosphatase PP2A regulation of insulin receptor substrate 1 and insulin metabolic signaling. Cardiorenal Med. 2012;2(4):308–13.PubMedPubMedCentral
39.
go back to reference Nardi F, Lipina C, Magill D, Hassan RH, Hajduch E, Gray A, et al. Enhanced insulin sensitivity associated with provision of mono and polyunsaturated fatty acids in skeletal muscle cells involves counter modulation of PP2A. PLoS One. 2014;9(3):e92255.PubMedPubMedCentral Nardi F, Lipina C, Magill D, Hassan RH, Hajduch E, Gray A, et al. Enhanced insulin sensitivity associated with provision of mono and polyunsaturated fatty acids in skeletal muscle cells involves counter modulation of PP2A. PLoS One. 2014;9(3):e92255.PubMedPubMedCentral
40.
go back to reference Li J, Song J, Li X, Rock SB, Sinner HF, Weiss HL, et al. FFAR4 is involved in regulation of neurotensin release from neuroendocrine cells and male C57BL/6 mice. Endocrinology. 2018;159(8):2939–52.PubMedPubMedCentral Li J, Song J, Li X, Rock SB, Sinner HF, Weiss HL, et al. FFAR4 is involved in regulation of neurotensin release from neuroendocrine cells and male C57BL/6 mice. Endocrinology. 2018;159(8):2939–52.PubMedPubMedCentral
41.
go back to reference Houthuijzen JM. For better or worse: FFAR1 and FFAR4 signaling in cancer and diabetes. Mol Pharmacol. 2016;90(6):738–43.PubMed Houthuijzen JM. For better or worse: FFAR1 and FFAR4 signaling in cancer and diabetes. Mol Pharmacol. 2016;90(6):738–43.PubMed
42.
go back to reference Kebede MA, Alquier T, Latour MG, Poitout V. Lipid receptors and islet function: therapeutic implications? Diabetes Obes Metab. 2009;11(Suppl 4):10–20.PubMedPubMedCentral Kebede MA, Alquier T, Latour MG, Poitout V. Lipid receptors and islet function: therapeutic implications? Diabetes Obes Metab. 2009;11(Suppl 4):10–20.PubMedPubMedCentral
43.
go back to reference Morgan NG, Dhayal S. G-protein coupled receptors mediating long chain fatty acid signalling in the pancreatic beta-cell. Biochem Pharmacol. 2009;78(12):1419–27.PubMed Morgan NG, Dhayal S. G-protein coupled receptors mediating long chain fatty acid signalling in the pancreatic beta-cell. Biochem Pharmacol. 2009;78(12):1419–27.PubMed
44.
go back to reference Rogers K, Davis D, Kurjiaka D. Role of the free fatty acid 4 receptor in endothelial cell responses to oleic acid. FASEB J. 2017;31(1_supplement):lb763-lb. Rogers K, Davis D, Kurjiaka D. Role of the free fatty acid 4 receptor in endothelial cell responses to oleic acid. FASEB J. 2017;31(1_supplement):lb763-lb.
45.
go back to reference Bloemer J, Pinky PD, Govindarajulu M, Hong H, Judd R, Amin RH, et al. Role of adiponectin in central nervous system disorders. Neural Plast. 2018;2018. Bloemer J, Pinky PD, Govindarajulu M, Hong H, Judd R, Amin RH, et al. Role of adiponectin in central nervous system disorders. Neural Plast. 2018;2018.
46.
go back to reference Kawano J, Arora R. The role of adiponectin in obesity, diabetes, and cardiovascular disease. J Cardiometab Syndr. 2009;4(1):44–9.PubMed Kawano J, Arora R. The role of adiponectin in obesity, diabetes, and cardiovascular disease. J Cardiometab Syndr. 2009;4(1):44–9.PubMed
47.
go back to reference Patel S, Hoehn K, Lawrence R, Sawbridge L, Talbot N, Tomsig J, et al. Overexpression of the adiponectin receptor AdipoR1 in rat skeletal muscle amplifies local insulin sensitivity. Endocrinology. 2012;153(11):5231–46.PubMedPubMedCentral Patel S, Hoehn K, Lawrence R, Sawbridge L, Talbot N, Tomsig J, et al. Overexpression of the adiponectin receptor AdipoR1 in rat skeletal muscle amplifies local insulin sensitivity. Endocrinology. 2012;153(11):5231–46.PubMedPubMedCentral
48.
go back to reference Deng G, Long Y, Yu YR, Li MR. Adiponectin directly improves endothelial dysfunction in obese rats through the AMPK-eNOS Pathway. Int J Obes. 2010;34(1):165–71. Deng G, Long Y, Yu YR, Li MR. Adiponectin directly improves endothelial dysfunction in obese rats through the AMPK-eNOS Pathway. Int J Obes. 2010;34(1):165–71.
49.
go back to reference Civitarese AE, Ukropcova B, Carling S, Hulver M, DeFronzo RA, Mandarino L, et al. Role of adiponectin in human skeletal muscle bioenergetics. Cell Metab. 2006;4(1):75–87.PubMedPubMedCentral Civitarese AE, Ukropcova B, Carling S, Hulver M, DeFronzo RA, Mandarino L, et al. Role of adiponectin in human skeletal muscle bioenergetics. Cell Metab. 2006;4(1):75–87.PubMedPubMedCentral
50.
go back to reference Vinciguerra M, Sgroi A, Veyrat-Durebex C, Rubbia-Brandt L, Buhler LH, Foti M. Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes. Hepatology. 2009;49(4):1176–84.PubMed Vinciguerra M, Sgroi A, Veyrat-Durebex C, Rubbia-Brandt L, Buhler LH, Foti M. Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes. Hepatology. 2009;49(4):1176–84.PubMed
51.
go back to reference Janus A, Szahidewicz-Krupska E, Mazur G, Doroszko A. Insulin resistance and endothelial dysfunction constitute a common therapeutic target in cardiometabolic disorders. Mediat Inflamm. 2016;2016:3634948. Janus A, Szahidewicz-Krupska E, Mazur G, Doroszko A. Insulin resistance and endothelial dysfunction constitute a common therapeutic target in cardiometabolic disorders. Mediat Inflamm. 2016;2016:3634948.
52.
go back to reference D'Oria R, Laviola L, Giorgino F, Unfer V, Bettocchi S, Scioscia M. PKB/Akt and MAPK/ERK phosphorylation is highly induced by inositols: novel potential insights in endothelial dysfunction in preeclampsia. Pregnancy Hypertens. 2017;10:107–12.PubMed D'Oria R, Laviola L, Giorgino F, Unfer V, Bettocchi S, Scioscia M. PKB/Akt and MAPK/ERK phosphorylation is highly induced by inositols: novel potential insights in endothelial dysfunction in preeclampsia. Pregnancy Hypertens. 2017;10:107–12.PubMed
53.
go back to reference Akash MSH, Rehman K, Liaqat A. Tumor necrosis factor-alpha: role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2018;119(1):105–10.PubMed Akash MSH, Rehman K, Liaqat A. Tumor necrosis factor-alpha: role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2018;119(1):105–10.PubMed
54.
go back to reference Medeiros-de-Moraes IM, Gonçalves-de-Albuquerque CF, Kurz AR, Oliveira FM, Abreu VHP, Torres RC, et al. Omega-9 oleic acid, the main compound of olive oil, mitigates inflammation during experimental sepsis. Oxidative Med Cell Longev. 2018;2018. Medeiros-de-Moraes IM, Gonçalves-de-Albuquerque CF, Kurz AR, Oliveira FM, Abreu VHP, Torres RC, et al. Omega-9 oleic acid, the main compound of olive oil, mitigates inflammation during experimental sepsis. Oxidative Med Cell Longev. 2018;2018.
55.
go back to reference Fichtlscherer S, Breuer S, Heeschen C, Dimmeler S, Zeiher AM. Interleukin-10 serum levels and systemic endothelial vasoreactivity in patients with coronary artery disease. J Am Coll Cardiol. 2004;44(1):44–9.PubMed Fichtlscherer S, Breuer S, Heeschen C, Dimmeler S, Zeiher AM. Interleukin-10 serum levels and systemic endothelial vasoreactivity in patients with coronary artery disease. J Am Coll Cardiol. 2004;44(1):44–9.PubMed
56.
go back to reference Powell LA, Flood A, Jewhurst V, Owens D. Effects of oleic versus linoleic acids on adhesion molecule expression in glucose-treated vascular endothelial cells. Diabetes. 2005;54:A188. Powell LA, Flood A, Jewhurst V, Owens D. Effects of oleic versus linoleic acids on adhesion molecule expression in glucose-treated vascular endothelial cells. Diabetes. 2005;54:A188.
57.
go back to reference Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol. 2018;9:754.PubMedPubMedCentral Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol. 2018;9:754.PubMedPubMedCentral
58.
go back to reference Doi Y, Kiyohara Y, Kubo M, Tanizaki Y, Okubo K, Ninomiya T, et al. Relationship between C-reactive protein and glucose levels in community-dwelling subjects without diabetes: the Hisayama study. Diabetes Care. 2005;28(5):1211–3.PubMed Doi Y, Kiyohara Y, Kubo M, Tanizaki Y, Okubo K, Ninomiya T, et al. Relationship between C-reactive protein and glucose levels in community-dwelling subjects without diabetes: the Hisayama study. Diabetes Care. 2005;28(5):1211–3.PubMed
59.
go back to reference Mugabo Y, Li L, Renier G. The connection between C-reactive protein (CRP) and diabetic vasculopathy. Focus on preclinical findings. Curr Diabetes Rev. 2010;6(1):27–34.PubMed Mugabo Y, Li L, Renier G. The connection between C-reactive protein (CRP) and diabetic vasculopathy. Focus on preclinical findings. Curr Diabetes Rev. 2010;6(1):27–34.PubMed
60.
go back to reference Kusche-Vihrog K, Urbanova K, Blanqué A, Wilhelmi M, Schillers H, Kliche K, et al. C-reactive protein makes human endothelium stiff and tight. Hypertension. 2011;57(2):231–7.PubMed Kusche-Vihrog K, Urbanova K, Blanqué A, Wilhelmi M, Schillers H, Kliche K, et al. C-reactive protein makes human endothelium stiff and tight. Hypertension. 2011;57(2):231–7.PubMed
61.
go back to reference Carrero JJ, Fonollá J, Marti JL, Jiménez J, Boza JJ, López-Huertas E. Intake of fish oil, oleic acid, folic acid, and vitamins B-6 and E for 1 year decreases plasma C-reactive protein and reduces coronary heart disease risk factors in male patients in a cardiac rehabilitation program. J Nutr. 2007;137(2):384–90.PubMed Carrero JJ, Fonollá J, Marti JL, Jiménez J, Boza JJ, López-Huertas E. Intake of fish oil, oleic acid, folic acid, and vitamins B-6 and E for 1 year decreases plasma C-reactive protein and reduces coronary heart disease risk factors in male patients in a cardiac rehabilitation program. J Nutr. 2007;137(2):384–90.PubMed
62.
go back to reference Ala OA, Akintunde AA, Ikem RT, Kolawole BA, Ala OO, Adedeji T. Association between insulin resistance and total plasma homocysteine levels in type 2 diabetes mellitus patients in south West Nigeria. Diabetes Metab Syndr. 2017;11:S803–S9.PubMed Ala OA, Akintunde AA, Ikem RT, Kolawole BA, Ala OO, Adedeji T. Association between insulin resistance and total plasma homocysteine levels in type 2 diabetes mellitus patients in south West Nigeria. Diabetes Metab Syndr. 2017;11:S803–S9.PubMed
63.
go back to reference Tripathi M, Zhang CW, Singh BK, Sinha RA, Moe KT, DeSilva DA, et al. Hyperhomocysteinemia causes ER stress and impaired autophagy that is reversed by vitamin B supplementation. Cell Death Dis. 2016;7(12):e2513.PubMedPubMedCentral Tripathi M, Zhang CW, Singh BK, Sinha RA, Moe KT, DeSilva DA, et al. Hyperhomocysteinemia causes ER stress and impaired autophagy that is reversed by vitamin B supplementation. Cell Death Dis. 2016;7(12):e2513.PubMedPubMedCentral
64.
go back to reference Shpilberg Y, Beaudry JL, D’Souza A, Campbell JE, Peckett A, Riddell MC. A rodent model of rapid-onset diabetes induced by glucocorticoids and high-fat feeding. Dis Model Mech. 2012;5(5):671–80.PubMed Shpilberg Y, Beaudry JL, D’Souza A, Campbell JE, Peckett A, Riddell MC. A rodent model of rapid-onset diabetes induced by glucocorticoids and high-fat feeding. Dis Model Mech. 2012;5(5):671–80.PubMed
65.
go back to reference Verhoeven F, Prati C, Maguin-Gaté K, Wendling D, Demougeot C. Glucocorticoids and endothelial function in inflammatory diseases: focus on rheumatoid arthritis. Arthritis Res Ther. 2016;18(1):258.PubMedPubMedCentral Verhoeven F, Prati C, Maguin-Gaté K, Wendling D, Demougeot C. Glucocorticoids and endothelial function in inflammatory diseases: focus on rheumatoid arthritis. Arthritis Res Ther. 2016;18(1):258.PubMedPubMedCentral
66.
go back to reference Bodnaruc AM, Prud’homme D, Blanchet R, Giroux I. Nutritional modulation of endogenous glucagon-like peptide-1 secretion: a review. Nutr Metab. 2016;13(1):92. Bodnaruc AM, Prud’homme D, Blanchet R, Giroux I. Nutritional modulation of endogenous glucagon-like peptide-1 secretion: a review. Nutr Metab. 2016;13(1):92.
67.
go back to reference Andersen A, Lund A, Knop FK, Vilsbøll T. Glucagon-like peptide 1 in health and disease. Nat Rev Endocrinol. 2018;14(7):390–403.PubMed Andersen A, Lund A, Knop FK, Vilsbøll T. Glucagon-like peptide 1 in health and disease. Nat Rev Endocrinol. 2018;14(7):390–403.PubMed
68.
go back to reference Rowlands J, Heng J, Newsholme P, Carlessi R. Pleiotropic effects of GLP-1 and analogs on cell signaling, metabolism, and function. Front Endocrinol. 2018;9:672. Rowlands J, Heng J, Newsholme P, Carlessi R. Pleiotropic effects of GLP-1 and analogs on cell signaling, metabolism, and function. Front Endocrinol. 2018;9:672.
69.
go back to reference An FM, Chen S, Xu Z, Yin L, Wang Y, Liu AR, et al. Glucagon-like peptide-1 regulates mitochondrial biogenesis and tau phosphorylation against advanced glycation end product-induced neuronal insult: studies in vivo and in vitro. Neuroscience. 2015;300:75–84.PubMed An FM, Chen S, Xu Z, Yin L, Wang Y, Liu AR, et al. Glucagon-like peptide-1 regulates mitochondrial biogenesis and tau phosphorylation against advanced glycation end product-induced neuronal insult: studies in vivo and in vitro. Neuroscience. 2015;300:75–84.PubMed
70.
71.
go back to reference Zhang LW, Tobin GAM, Rouse RL. Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line. Toxicol Appl Pharmacol. 2012;264(2):274–83.PubMed Zhang LW, Tobin GAM, Rouse RL. Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line. Toxicol Appl Pharmacol. 2012;264(2):274–83.PubMed
72.
go back to reference Iakoubov R, Ahmed A, Lauffer LM, Bazinet RP, Brubaker PL. Essential role for protein kinase Czeta in oleic acid-induced glucagon-like peptide-1 secretion in vivo in the rat. Endocrinology. 2011;152(4):1244–52.PubMed Iakoubov R, Ahmed A, Lauffer LM, Bazinet RP, Brubaker PL. Essential role for protein kinase Czeta in oleic acid-induced glucagon-like peptide-1 secretion in vivo in the rat. Endocrinology. 2011;152(4):1244–52.PubMed
73.
go back to reference Khound R, Taher J, Baker C, Adeli K, Su Q. GLP-1 elicits an intrinsic gut–liver metabolic signal to ameliorate diet-induced VLDL overproduction and insulin resistance. Arterioscler Thromb Vasc Biol. 2017;37(12):2252–9.PubMed Khound R, Taher J, Baker C, Adeli K, Su Q. GLP-1 elicits an intrinsic gut–liver metabolic signal to ameliorate diet-induced VLDL overproduction and insulin resistance. Arterioscler Thromb Vasc Biol. 2017;37(12):2252–9.PubMed
75.
go back to reference Morton GJ, Schwartz MW. Leptin and the central nervous system control of glucose metabolism. Physiol Rev. 2011;91(2):389–411.PubMedPubMedCentral Morton GJ, Schwartz MW. Leptin and the central nervous system control of glucose metabolism. Physiol Rev. 2011;91(2):389–411.PubMedPubMedCentral
76.
go back to reference Wang T-N, Chang W-T, Chiu Y-W, Lee C-Y, Lin K-D, Cheng YY, et al. Relationships between changes in leptin and insulin resistance levels in obese individuals following weight loss. Kaohsiung J Med Sci. 2013;29(8):436–43.PubMed Wang T-N, Chang W-T, Chiu Y-W, Lee C-Y, Lin K-D, Cheng YY, et al. Relationships between changes in leptin and insulin resistance levels in obese individuals following weight loss. Kaohsiung J Med Sci. 2013;29(8):436–43.PubMed
77.
go back to reference Blanquer-Rossello MM, Santandreu FM, Oliver J, Roca P, Valle A. Leptin modulates mitochondrial function, dynamics and biogenesis in MCF-7 cells. J Cell Biochem. 2015;116(9):2039–48.PubMed Blanquer-Rossello MM, Santandreu FM, Oliver J, Roca P, Valle A. Leptin modulates mitochondrial function, dynamics and biogenesis in MCF-7 cells. J Cell Biochem. 2015;116(9):2039–48.PubMed
78.
go back to reference Paz-Filho G, Mastronardi C, Wong M-L, Licinio J. Leptin therapy, insulin sensitivity, and glucose homeostasis. Indian J Endocrinol Metab. 2012;16(Suppl 3):S549–55.PubMedPubMedCentral Paz-Filho G, Mastronardi C, Wong M-L, Licinio J. Leptin therapy, insulin sensitivity, and glucose homeostasis. Indian J Endocrinol Metab. 2012;16(Suppl 3):S549–55.PubMedPubMedCentral
79.
go back to reference Dong H-Y, Xu M, Ji Z-Y, Wang Y-X, Dong M-Q, Liu M-L, et al. Leptin attenuates lipopolysaccharide or oleic acid-induced acute lung injury in mice. Am J Respir Cell Mol Biol. 2013;49(6):1057–63.PubMed Dong H-Y, Xu M, Ji Z-Y, Wang Y-X, Dong M-Q, Liu M-L, et al. Leptin attenuates lipopolysaccharide or oleic acid-induced acute lung injury in mice. Am J Respir Cell Mol Biol. 2013;49(6):1057–63.PubMed
80.
81.
go back to reference Cai D. One step from prediabetes to diabetes: hypothalamic inflammation? Oxford: Oxford University Press; 2012. Cai D. One step from prediabetes to diabetes: hypothalamic inflammation? Oxford: Oxford University Press; 2012.
82.
go back to reference Siva ZO, Uluduz D, Keskin FE, Erenler F, Balci H, Uygunoglu U, et al. Determinants of glucose metabolism and the role of NPY in the progression of insulin resistance in chronic migraine. Cephalalgia. 2018;38(11):1773–81.PubMed Siva ZO, Uluduz D, Keskin FE, Erenler F, Balci H, Uygunoglu U, et al. Determinants of glucose metabolism and the role of NPY in the progression of insulin resistance in chronic migraine. Cephalalgia. 2018;38(11):1773–81.PubMed
83.
go back to reference Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L. Central administration of oleic acid inhibits glucose production and food intake. Diabetes. 2002;51(2):271–5.PubMed Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L. Central administration of oleic acid inhibits glucose production and food intake. Diabetes. 2002;51(2):271–5.PubMed
84.
go back to reference Luo G, Xu X, Guo W, Luo C, Wang H, Meng X, et al. Neuropeptide Y damages the integrity of mitochondrial structure and disrupts energy metabolism in cultured neonatal rat cardiomyocytes. Peptides. 2015;71:162–9.PubMed Luo G, Xu X, Guo W, Luo C, Wang H, Meng X, et al. Neuropeptide Y damages the integrity of mitochondrial structure and disrupts energy metabolism in cultured neonatal rat cardiomyocytes. Peptides. 2015;71:162–9.PubMed
85.
go back to reference Jin S, Diano S. Mitochondrial dynamics and hypothalamic regulation of metabolism. Endocrinology. 2018;159(10):3596–604.PubMedPubMedCentral Jin S, Diano S. Mitochondrial dynamics and hypothalamic regulation of metabolism. Endocrinology. 2018;159(10):3596–604.PubMedPubMedCentral
86.
go back to reference Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol. 2013;4:37. Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol. 2013;4:37.
87.
88.
go back to reference Perdomo L, Beneit N, Otero YF, Escribano Ó, Díaz-Castroverde S, Gómez-Hernández A, et al. Protective role of oleic acid against cardiovascular insulin resistance and in the early and late cellular atherosclerotic process. Cardiovasc Diabetol. 2015;14(1):75.PubMedPubMedCentral Perdomo L, Beneit N, Otero YF, Escribano Ó, Díaz-Castroverde S, Gómez-Hernández A, et al. Protective role of oleic acid against cardiovascular insulin resistance and in the early and late cellular atherosclerotic process. Cardiovasc Diabetol. 2015;14(1):75.PubMedPubMedCentral
89.
go back to reference Henriksen EJ, Diamond-Stanic MK, Marchionne EM. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med. 2011;51(5):993–9.PubMed Henriksen EJ, Diamond-Stanic MK, Marchionne EM. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med. 2011;51(5):993–9.PubMed
90.
go back to reference Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, et al. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9(10):1057–69.PubMedPubMedCentral Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, et al. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9(10):1057–69.PubMedPubMedCentral
91.
go back to reference Victor VM, Rocha M, Herance R, Hernandez-Mijares A. Oxidative stress and mitochondrial dysfunction in type 2 diabetes. Curr Pharm Des. 2011;17(36):3947–58.PubMed Victor VM, Rocha M, Herance R, Hernandez-Mijares A. Oxidative stress and mitochondrial dysfunction in type 2 diabetes. Curr Pharm Des. 2011;17(36):3947–58.PubMed
92.
go back to reference Nakbi A, Tayeb W, Dabbou S, Issaoui M, Grissa AK, Attia N, et al. Dietary olive oil effect on antioxidant status and fatty acid profile in the erythrocyte of 2, 4-D-exposed rats. Lipids Health Dis. 2010;9(1):89.PubMedPubMedCentral Nakbi A, Tayeb W, Dabbou S, Issaoui M, Grissa AK, Attia N, et al. Dietary olive oil effect on antioxidant status and fatty acid profile in the erythrocyte of 2, 4-D-exposed rats. Lipids Health Dis. 2010;9(1):89.PubMedPubMedCentral
93.
go back to reference Akash MSH, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2013;114(3):525–31.PubMed Akash MSH, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2013;114(3):525–31.PubMed
94.
go back to reference Karakaya P, Ozdemir B, Mert M, Okuturlar Y. Relation of Paraoxonase 1 activity with biochemical variables, brachial artery intima-media thickness in patients with diabetes with or without obesity. Obes Facts. 2018;11(1):56–66.PubMedPubMedCentral Karakaya P, Ozdemir B, Mert M, Okuturlar Y. Relation of Paraoxonase 1 activity with biochemical variables, brachial artery intima-media thickness in patients with diabetes with or without obesity. Obes Facts. 2018;11(1):56–66.PubMedPubMedCentral
95.
go back to reference Jornayvaz FR, Brulhart-Meynet M-C, James RW. Myeloperoxidase and paraoxonase-1 in type 2 diabetic patients. Nutr Metab Cardiovasc Dis. 2009;19(9):613–9.PubMed Jornayvaz FR, Brulhart-Meynet M-C, James RW. Myeloperoxidase and paraoxonase-1 in type 2 diabetic patients. Nutr Metab Cardiovasc Dis. 2009;19(9):613–9.PubMed
96.
go back to reference Palomer X, Pizarro-Delgado J, Barroso E, Vázquez-Carrera M. Palmitic and oleic acid: the yin and yang of fatty acids in type 2 diabetes mellitus. Trends Endocrinol Metab. 2018;29(3):178–90.PubMed Palomer X, Pizarro-Delgado J, Barroso E, Vázquez-Carrera M. Palmitic and oleic acid: the yin and yang of fatty acids in type 2 diabetes mellitus. Trends Endocrinol Metab. 2018;29(3):178–90.PubMed
97.
go back to reference Chen K. Athero-protective actions of two oral antidiabetic drugs: suppression of inflammation and oxidative stress. J Cardiovasc Dis Res. 2012;3(1):3–4.PubMedPubMedCentral Chen K. Athero-protective actions of two oral antidiabetic drugs: suppression of inflammation and oxidative stress. J Cardiovasc Dis Res. 2012;3(1):3–4.PubMedPubMedCentral
98.
go back to reference Ma L, Guo X, Chen W. Inhibitory effects of oleoylethanolamide (OEA) on H(2)O(2)-induced human umbilical vein endothelial cell (HUVEC) injury and apolipoprotein E knockout (ApoE−/−) atherosclerotic mice. Int J Clin Exp Pathol. 2015;8(6):6301–11.PubMedPubMedCentral Ma L, Guo X, Chen W. Inhibitory effects of oleoylethanolamide (OEA) on H(2)O(2)-induced human umbilical vein endothelial cell (HUVEC) injury and apolipoprotein E knockout (ApoE−/−) atherosclerotic mice. Int J Clin Exp Pathol. 2015;8(6):6301–11.PubMedPubMedCentral
99.
go back to reference Hardy OT, Czech MP, Corvera S. What causes the insulin resistance underlying obesity? Curr Opin Endocrinol Diabetes Obes. 2012;19(2):81.PubMedPubMedCentral Hardy OT, Czech MP, Corvera S. What causes the insulin resistance underlying obesity? Curr Opin Endocrinol Diabetes Obes. 2012;19(2):81.PubMedPubMedCentral
100.
go back to reference Dhayal S, Morgan NG. The significance of GPR119 agonists as a future treatment for type 2 diabetes. Drug News Perspect. 2010;23(7):418–24.PubMed Dhayal S, Morgan NG. The significance of GPR119 agonists as a future treatment for type 2 diabetes. Drug News Perspect. 2010;23(7):418–24.PubMed
101.
go back to reference Liu J, Wu X, Franklin JL, Messina JL, Hill HS, Moellering DR, et al. Mammalian Tribbles homolog 3 impairs insulin action in skeletal muscle: role in glucose-induced insulin resistance. Am J Physiol Endocrinol Metab. 2009;298(3):E565–E76.PubMedPubMedCentral Liu J, Wu X, Franklin JL, Messina JL, Hill HS, Moellering DR, et al. Mammalian Tribbles homolog 3 impairs insulin action in skeletal muscle: role in glucose-induced insulin resistance. Am J Physiol Endocrinol Metab. 2009;298(3):E565–E76.PubMedPubMedCentral
102.
go back to reference Guo L, Guo ZX, Gong HP, Shang YY, Zhong M, Zhang Y, et al. Tribbles homolog 3 is induced by high glucose and associated with apoptosis in human endothelial cells. Mol Med Rep. 2015;12(2):1963–70.PubMed Guo L, Guo ZX, Gong HP, Shang YY, Zhong M, Zhang Y, et al. Tribbles homolog 3 is induced by high glucose and associated with apoptosis in human endothelial cells. Mol Med Rep. 2015;12(2):1963–70.PubMed
103.
go back to reference Geng T, Hu W, Broadwater M, Snider J, Bielawski J, Russo S, et al. Fatty acids differentially regulate insulin resistance through endoplasm reticulum stress-mediated induction of tribbles homologue 3: a potential link between dietary fat composition and the pathophysiological outcomes of obesity. Diabetologia. 2013;56(9):2078–87.PubMed Geng T, Hu W, Broadwater M, Snider J, Bielawski J, Russo S, et al. Fatty acids differentially regulate insulin resistance through endoplasm reticulum stress-mediated induction of tribbles homologue 3: a potential link between dietary fat composition and the pathophysiological outcomes of obesity. Diabetologia. 2013;56(9):2078–87.PubMed
104.
go back to reference Sun X, Bao B, Gao X, Yan D, Zhou Y. Effect of glycated hemoglobin on heart function of the patients with revascularization of coronary artery. Int J Clin Exp Pathol. 2015;8(6):7181–8.PubMedPubMedCentral Sun X, Bao B, Gao X, Yan D, Zhou Y. Effect of glycated hemoglobin on heart function of the patients with revascularization of coronary artery. Int J Clin Exp Pathol. 2015;8(6):7181–8.PubMedPubMedCentral
105.
go back to reference Ye S, Ruan P, Yong J, Shen H, Liao Z, Dong X. The impact of the HbA1c level of type 2 diabetics on the structure of haemoglobin. Sci Rep. 2016;6:33352.PubMedPubMedCentral Ye S, Ruan P, Yong J, Shen H, Liao Z, Dong X. The impact of the HbA1c level of type 2 diabetics on the structure of haemoglobin. Sci Rep. 2016;6:33352.PubMedPubMedCentral
106.
go back to reference Moreno B, de Faria AP, Ritter AMV, Yugar LBT, Ferreira-Melo SE, Amorim R, et al. Glycated hemoglobin correlates with arterial stiffness and endothelial dysfunction in patients with resistant hypertension and uncontrolled diabetes mellitus. J Clin Hypertens (Greenwich). 2018;20(5):910–7. Moreno B, de Faria AP, Ritter AMV, Yugar LBT, Ferreira-Melo SE, Amorim R, et al. Glycated hemoglobin correlates with arterial stiffness and endothelial dysfunction in patients with resistant hypertension and uncontrolled diabetes mellitus. J Clin Hypertens (Greenwich). 2018;20(5):910–7.
107.
go back to reference Silva FP, Carla IA, Marcelino G, Maiara LCC, de Cássia FK, de Cássia AGR, et al. Fatty acids consumption: the role metabolic aspects involved in obesity and its associated disorders. Nutrients. 2017;9(10):1158. Silva FP, Carla IA, Marcelino G, Maiara LCC, de Cássia FK, de Cássia AGR, et al. Fatty acids consumption: the role metabolic aspects involved in obesity and its associated disorders. Nutrients. 2017;9(10):1158.
108.
go back to reference Soleimani M. Insulin resistance and hypertension: new insights. Kidney Int. 2015;87(3):497–9.PubMed Soleimani M. Insulin resistance and hypertension: new insights. Kidney Int. 2015;87(3):497–9.PubMed
109.
go back to reference Eirin A, Lerman A, Lerman LO. Mitochondrial injury and dysfunction in hypertension-induced cardiac damage. Eur Heart J. 2014;35(46):3258–66.PubMedPubMedCentral Eirin A, Lerman A, Lerman LO. Mitochondrial injury and dysfunction in hypertension-induced cardiac damage. Eur Heart J. 2014;35(46):3258–66.PubMedPubMedCentral
110.
go back to reference Terés S, Barceló-Coblijn G, Benet M, Alvarez R, Bressani R, Halver J, et al. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc Natl Acad Sci U S A. 2008;105(37):13811–6.PubMedPubMedCentral Terés S, Barceló-Coblijn G, Benet M, Alvarez R, Bressani R, Halver J, et al. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc Natl Acad Sci U S A. 2008;105(37):13811–6.PubMedPubMedCentral
Metadata
Title
Current perspectives of oleic acid: Regulation of molecular pathways in mitochondrial and endothelial functioning against insulin resistance and diabetes
Authors
Kanwal Rehman
Kamran Haider
Komal Jabeen
Muhammad Sajid Hamid Akash
Publication date
01-12-2020
Publisher
Springer US
Keywords
Insulins
Insulins
Published in
Reviews in Endocrine and Metabolic Disorders / Issue 4/2020
Print ISSN: 1389-9155
Electronic ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-020-09549-6

Other articles of this Issue 4/2020

Reviews in Endocrine and Metabolic Disorders 4/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.