Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2019

Open Access 01-12-2019 | Insulins | Review

Short-acting insulin analogues versus regular human insulin on postprandial glucose and hypoglycemia in type 1 diabetes mellitus: a systematic review and meta-analysis

Authors: Karla F. S. Melo, Luciana R. Bahia, Bruna Pasinato, Gustavo J. M. Porfirio, Ana Luiza Martimbianco, Rachel Riera, Luis E. P. Calliari, Walter J. Minicucci, Luiz A. A. Turatti, Hermelinda C. Pedrosa, Beatriz D. Schaan

Published in: Diabetology & Metabolic Syndrome | Issue 1/2019

Login to get access

Abstract

Introduction

Strict glucose control using multiple doses of insulin is the standard treatment for type 1 diabetes mellitus (T1DM), but increased risk of hypoglycemia is a frequent drawback. Regular insulin in multiple doses is important for achieving strict glycemic control for T1DM, but short-acting insulin analogues may be better in reducing hypoglycemia and postprandial glucose levels.

Objective

We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) to assess the effects of short-acting insulin analogues vs regular human insulin on hypoglycemia and postprandial glucose in patients with T1DM.

Methods

Searches were run on the electronic databases MEDLINE, Cochrane-CENTRAL, EMBASE, ClinicalTrials.gov, LILACS, and DARE for RCTs published until August 2017. To be included in the study, the RCTs had to cover a minimum period of 4 weeks and had to assess the effects of short-acting insulin analogues vs regular human insulin on hypoglycemia and postprandial glucose levels in patients with T1DM. Two independent reviewers extracted the data and assessed the quality of the selected studies. The primary outcomes analyzed were hypoglycemia (total episodes, nocturnal hypoglycemia, and severe hypoglycemia) and postprandial glucose (at all times, after breakfast, after lunch, and after dinner). Glycated hemoglobin (HbA1c) levels and quality of life were considered secondary outcomes. The risk of bias of each RCT was assessed using the Cochrane Collaboration Risk of Bias table, while the quality of evidence for each outcome was assessed using the GRADEpro software. The pooled mean difference in the number of hypoglycemic episodes and postprandial glucose between short-acting insulin analogues vs. regular human insulin was calculated using the random-effects model.

Results

Of the 2897 articles retrieved, 22 (6235 patients) were included. Short-acting insulin analogues were associated with a decrease in total hypoglycemic episodes (risk rate 0.93, 95% CI 0.87–0.99; 6235 patients; I2 = 81%), nocturnal hypoglycemia (risk rate 0.55, 95% CI 0.40–0.76, 1995 patients, I2 = 84%), and severe hypoglycemia (risk rate 0.68, 95% CI 0.60–0.77; 5945 patients, I2 = 0%); and with lower postprandial glucose levels (mean difference/MD − 19.44 mg/dL; 95% CI − 21.49 to − 17.39; 5031 patients, I2 = 69%) and lower HbA1c (MD − 0,13%; IC 95% − 0.16 to − 0.10; 5204 patients; I2 = 73%) levels.

Conclusions

Short-acting insulin analogues are superior to regular human insulin in T1DM patients for the following outcomes: total hypoglycemic episodes, nocturnal hypoglycemia, severe hypoglycemia, postprandial glucose, and HbA1c.
Appendix
Available only for authorised users
Literature
2.
go back to reference Nathan DM, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.PubMedCrossRef Nathan DM, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.PubMedCrossRef
3.
4.
go back to reference Cavalot F. Do data in the literature indicate that glycaemic variability is a clinical problem? Glycaemic variability and vascular complications of diabetes. Diabetes ObesMetab. 2013;15(Suppl 2):3–8. Cavalot F. Do data in the literature indicate that glycaemic variability is a clinical problem? Glycaemic variability and vascular complications of diabetes. Diabetes ObesMetab. 2013;15(Suppl 2):3–8.
5.
go back to reference Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. The DECODE study group. European Diabetes Epidemiology Group. Diabetes Epidemiology: collaborative analysis of diagnostic criteria in Europe. Lancet. 1999;354(9179):617–21.CrossRef Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. The DECODE study group. European Diabetes Epidemiology Group. Diabetes Epidemiology: collaborative analysis of diagnostic criteria in Europe. Lancet. 1999;354(9179):617–21.CrossRef
6.
go back to reference Fulcher G, et al. The psychosocial and financial impact of non-severe hypoglycemic events on people with diabetes: two international surveys. J Med Econ. 2014;17(10):751–61.PubMedCrossRef Fulcher G, et al. The psychosocial and financial impact of non-severe hypoglycemic events on people with diabetes: two international surveys. J Med Econ. 2014;17(10):751–61.PubMedCrossRef
7.
go back to reference Davis RE, et al. Impact of hypoglycaemia on quality of life and productivity in type 1 and type 2 diabetes. Curr Med Res Opin. 2005;21(9):1477–83.PubMedCrossRef Davis RE, et al. Impact of hypoglycaemia on quality of life and productivity in type 1 and type 2 diabetes. Curr Med Res Opin. 2005;21(9):1477–83.PubMedCrossRef
8.
go back to reference Cryer PE. Mechanisms of hypoglycemia-associated autonomic failure and its component syndromes in diabetes. Diabetes. 2005;54(12):3592–601.PubMedCrossRef Cryer PE. Mechanisms of hypoglycemia-associated autonomic failure and its component syndromes in diabetes. Diabetes. 2005;54(12):3592–601.PubMedCrossRef
9.
go back to reference Harris SB, et al. Descriptions of health states associated with increasing severity and frequency of hypoglycemia: a patient-level perspective. Patient Prefer Adherence. 2013;7:925–36.PubMedPubMedCentralCrossRef Harris SB, et al. Descriptions of health states associated with increasing severity and frequency of hypoglycemia: a patient-level perspective. Patient Prefer Adherence. 2013;7:925–36.PubMedPubMedCentralCrossRef
10.
go back to reference Harris S, et al. The effect of hypoglycemia on health-related quality of life: Canadian results from a multinational time trade-off survey. Can J Diabetes. 2014;38(1):45–52.PubMedCrossRef Harris S, et al. The effect of hypoglycemia on health-related quality of life: Canadian results from a multinational time trade-off survey. Can J Diabetes. 2014;38(1):45–52.PubMedCrossRef
11.
go back to reference Desouza C, et al. Association of hypoglycemia and cardiac ischemia: a study based on continuous monitoring. Diabetes Care. 2003;26(5):1485–9.PubMedCrossRef Desouza C, et al. Association of hypoglycemia and cardiac ischemia: a study based on continuous monitoring. Diabetes Care. 2003;26(5):1485–9.PubMedCrossRef
12.
go back to reference Gerstein HC, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–59.PubMedCrossRef Gerstein HC, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–59.PubMedCrossRef
14.
go back to reference Del Sindaco P, et al. Use of the short-acting insulin analogue lispro in intensive treatment of type 1 diabetes mellitus: importance of appropriate replacement of basal insulin and time-interval injection-meal. Diabet Med. 1998;15(7):592–600.PubMedCrossRef Del Sindaco P, et al. Use of the short-acting insulin analogue lispro in intensive treatment of type 1 diabetes mellitus: importance of appropriate replacement of basal insulin and time-interval injection-meal. Diabet Med. 1998;15(7):592–600.PubMedCrossRef
15.
go back to reference Nielsen FS, et al. Long-term comparison of human insulin analogue B10Asp and soluble human insulin in IDDM patients on a basal/bolus insulin regimen. Diabetologia. 1995;38(5):592–8.PubMedCrossRef Nielsen FS, et al. Long-term comparison of human insulin analogue B10Asp and soluble human insulin in IDDM patients on a basal/bolus insulin regimen. Diabetologia. 1995;38(5):592–8.PubMedCrossRef
16.
go back to reference Rolla A. Pharmacokinetic and pharmacodynamic advantages of insulin analogues and premixed insulin analogues over human insulins: impact on efficacy and safety. Am J Med. 2008;121(6 Suppl):S9–s19.PubMedCrossRef Rolla A. Pharmacokinetic and pharmacodynamic advantages of insulin analogues and premixed insulin analogues over human insulins: impact on efficacy and safety. Am J Med. 2008;121(6 Suppl):S9–s19.PubMedCrossRef
17.
go back to reference Fullerton B, et al. Short-acting insulin analogues versus regular human insulin for adults with type 1 diabetes mellitus. Cochrane Database Syst Rev. 2016;6:CD012161. Fullerton B, et al. Short-acting insulin analogues versus regular human insulin for adults with type 1 diabetes mellitus. Cochrane Database Syst Rev. 2016;6:CD012161.
18.
19.
go back to reference Plank J, et al. Systematic review and meta-analysis of short-acting insulin analogues in patients with diabetes mellitus. Arch Intern Med. 2005;165(12):1337–44.PubMedCrossRef Plank J, et al. Systematic review and meta-analysis of short-acting insulin analogues in patients with diabetes mellitus. Arch Intern Med. 2005;165(12):1337–44.PubMedCrossRef
21.
go back to reference Higgins JPT. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0 updated March 2011. New York: Wiley; 2011. Higgins JPT. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0 updated March 2011. New York: Wiley; 2011.
22.
go back to reference Anderson JH Jr, et al. Improved mealtime treatment of diabetes mellitus using an insulin analogue. Multicenter Insulin Lispro Study Group. Clin Ther. 1997;19(1):62–72.PubMedCrossRef Anderson JH Jr, et al. Improved mealtime treatment of diabetes mellitus using an insulin analogue. Multicenter Insulin Lispro Study Group. Clin Ther. 1997;19(1):62–72.PubMedCrossRef
23.
go back to reference Jacobs MA, et al. Metabolic efficacy of preprandial administration of Lys(B28), Pro(B29) human insulin analog in IDDM patients. A comparison with human regular insulin during a three-meal test period. Diabetes Care. 1997;20(8):1279–86.PubMedCrossRef Jacobs MA, et al. Metabolic efficacy of preprandial administration of Lys(B28), Pro(B29) human insulin analog in IDDM patients. A comparison with human regular insulin during a three-meal test period. Diabetes Care. 1997;20(8):1279–86.PubMedCrossRef
24.
go back to reference Holleman F, et al. Reduced frequency of severe hypoglycemia and coma in well-controlled IDDM patients treated with insulin lispro. The Benelux-UK Insulin Lispro Study Group. Diabetes Care. 1997;20(12):1827–32.PubMedCrossRef Holleman F, et al. Reduced frequency of severe hypoglycemia and coma in well-controlled IDDM patients treated with insulin lispro. The Benelux-UK Insulin Lispro Study Group. Diabetes Care. 1997;20(12):1827–32.PubMedCrossRef
25.
go back to reference Heller SR, Amiel SA, Mansell P. Effect of the fast-acting insulin analog lispro on the risk of nocturnal hypoglycemia during intensified insulin therapy. UK Lispro Study Group. Diabetes Care. 1999;22(10):1607–11.PubMedCrossRef Heller SR, Amiel SA, Mansell P. Effect of the fast-acting insulin analog lispro on the risk of nocturnal hypoglycemia during intensified insulin therapy. UK Lispro Study Group. Diabetes Care. 1999;22(10):1607–11.PubMedCrossRef
26.
go back to reference Fairchild JM, et al. Insulin lispro versus regular insulin in children with type 1 diabetes on twice daily insulin. Pediatr Diabetes. 2000;1(3):135–41.PubMedCrossRef Fairchild JM, et al. Insulin lispro versus regular insulin in children with type 1 diabetes on twice daily insulin. Pediatr Diabetes. 2000;1(3):135–41.PubMedCrossRef
27.
go back to reference Ferguson SC, et al. Severe hypoglycaemia in patients with type 1 diabetes and impaired awareness of hypoglycaemia: a comparative study of insulin lispro and regular human insulin. Diabetes Metab Res Rev. 2001;17(4):285–91.PubMedCrossRef Ferguson SC, et al. Severe hypoglycaemia in patients with type 1 diabetes and impaired awareness of hypoglycaemia: a comparative study of insulin lispro and regular human insulin. Diabetes Metab Res Rev. 2001;17(4):285–91.PubMedCrossRef
28.
go back to reference Gale EA. A randomized, controlled trial comparing insulin lispro with human soluble insulin in patients with Type 1 diabetes on intensified insulin therapy. The UK Trial Group. Diabet Med. 2000;17(3):209–14.PubMedCrossRef Gale EA. A randomized, controlled trial comparing insulin lispro with human soluble insulin in patients with Type 1 diabetes on intensified insulin therapy. The UK Trial Group. Diabet Med. 2000;17(3):209–14.PubMedCrossRef
29.
go back to reference Annuzzi G, et al. Preprandial combination of lispro and NPH insulin improves overall blood glucose control in type 1 diabetic patients: a multicenter randomized crossover trial. Nutr Metab Cardiovasc Dis. 2001;11(3):168–75.PubMed Annuzzi G, et al. Preprandial combination of lispro and NPH insulin improves overall blood glucose control in type 1 diabetic patients: a multicenter randomized crossover trial. Nutr Metab Cardiovasc Dis. 2001;11(3):168–75.PubMed
30.
go back to reference Provenzano C, et al. Lispro insulin in type 1 diabetic patients on a Mediterranean or normal diet: a randomized, cross-over comparative study with regular insulin. Diabetes NutrMetab. 2001;14(3):133–9. Provenzano C, et al. Lispro insulin in type 1 diabetic patients on a Mediterranean or normal diet: a randomized, cross-over comparative study with regular insulin. Diabetes NutrMetab. 2001;14(3):133–9.
31.
go back to reference Tupola S, et al. Post-prandial insulin lispro vs. human regular insulin in prepubertal children with Type 1 diabetes mellitus. Diabet Med. 2001;18(8):654–8.PubMedCrossRef Tupola S, et al. Post-prandial insulin lispro vs. human regular insulin in prepubertal children with Type 1 diabetes mellitus. Diabet Med. 2001;18(8):654–8.PubMedCrossRef
32.
go back to reference Valle D, et al. Italian multicentre study of intensive therapy with insulin lispro in 1184 patients with Type 1 diabetes. Diabetes NutrMetab. 2001;14(3):126–32. Valle D, et al. Italian multicentre study of intensive therapy with insulin lispro in 1184 patients with Type 1 diabetes. Diabetes NutrMetab. 2001;14(3):126–32.
33.
go back to reference Holcombe JH, et al. Comparison of insulin lispro with regular human insulin for the treatment of type 1 diabetes in adolescents. ClinTher. 2002;24(4):629–38. Holcombe JH, et al. Comparison of insulin lispro with regular human insulin for the treatment of type 1 diabetes in adolescents. ClinTher. 2002;24(4):629–38.
34.
go back to reference Ford-Adams ME, et al. Insulin lispro: a potential role in preventing nocturnal hypoglycaemia in young children with diabetes mellitus. Diabet Med. 2003;20(8):656–60.PubMedCrossRef Ford-Adams ME, et al. Insulin lispro: a potential role in preventing nocturnal hypoglycaemia in young children with diabetes mellitus. Diabet Med. 2003;20(8):656–60.PubMedCrossRef
35.
go back to reference Home PD, et al. Improved glycemic control with insulin aspart: a multicenter randomized double-blind crossover trial in type 1 diabetic patients. UK Insulin Aspart Study Group. Diabetes Care. 1998;21(11):1904–9.PubMedCrossRef Home PD, et al. Improved glycemic control with insulin aspart: a multicenter randomized double-blind crossover trial in type 1 diabetic patients. UK Insulin Aspart Study Group. Diabetes Care. 1998;21(11):1904–9.PubMedCrossRef
36.
go back to reference Home PD, Lindholm A, Riis A. Insulin aspart vs. human insulin in the management of long-term blood glucose control in type 1 diabetes mellitus: a randomized controlled trial. Diabet Med. 2000;17(11):762–70.PubMedCrossRef Home PD, Lindholm A, Riis A. Insulin aspart vs. human insulin in the management of long-term blood glucose control in type 1 diabetes mellitus: a randomized controlled trial. Diabet Med. 2000;17(11):762–70.PubMedCrossRef
37.
go back to reference Raskin P, et al. Use of insulin aspart, a fast-acting insulin analog, as the mealtime insulin in the management of patients with type 1 diabetes. Diabetes Care. 2000;23(5):583–8.PubMedCrossRef Raskin P, et al. Use of insulin aspart, a fast-acting insulin analog, as the mealtime insulin in the management of patients with type 1 diabetes. Diabetes Care. 2000;23(5):583–8.PubMedCrossRef
38.
go back to reference Heller SR, et al. Hypoglycaemia with insulin aspart: a double-blind, randomised, crossover trial in subjects with Type 1 diabetes. Diabet Med. 2004;21(7):769–75.PubMedCrossRef Heller SR, et al. Hypoglycaemia with insulin aspart: a double-blind, randomised, crossover trial in subjects with Type 1 diabetes. Diabet Med. 2004;21(7):769–75.PubMedCrossRef
39.
go back to reference Cherubini V, et al. Premeal insulin treatment during basal-bolus regimen in young children with type 1 diabetes. Diabetes Care. 2006;29(10):2311–2.PubMedCrossRef Cherubini V, et al. Premeal insulin treatment during basal-bolus regimen in young children with type 1 diabetes. Diabetes Care. 2006;29(10):2311–2.PubMedCrossRef
40.
go back to reference Tamas G, et al. Glycaemic control in type 1 diabetic patients using optimised insulin aspart or human insulin in a randomised multinational study. Diabetes Res ClinPract. 2001;54(2):105–14.CrossRef Tamas G, et al. Glycaemic control in type 1 diabetic patients using optimised insulin aspart or human insulin in a randomised multinational study. Diabetes Res ClinPract. 2001;54(2):105–14.CrossRef
41.
go back to reference Danne T, et al. Parental preference of prandial insulin aspart compared with preprandial human insulin in a basal-bolus scheme with NPH insulin in a 12-week crossover study of preschool children with type 1 diabetes. Pediatr Diabetes. 2007;8(5):278–85.PubMedCrossRef Danne T, et al. Parental preference of prandial insulin aspart compared with preprandial human insulin in a basal-bolus scheme with NPH insulin in a 12-week crossover study of preschool children with type 1 diabetes. Pediatr Diabetes. 2007;8(5):278–85.PubMedCrossRef
42.
go back to reference Brock Jacobsen I, et al. Counter-regulatory hormone responses to spontaneous hypoglycaemia during treatment with insulin aspart or human soluble insulin: a double-blinded randomized cross-over study. ActaPhysiol (Oxf). 2011;202(3):337–47.CrossRef Brock Jacobsen I, et al. Counter-regulatory hormone responses to spontaneous hypoglycaemia during treatment with insulin aspart or human soluble insulin: a double-blinded randomized cross-over study. ActaPhysiol (Oxf). 2011;202(3):337–47.CrossRef
43.
go back to reference Garg SK, Rosenstock J, Ways K. Optimized Basal-bolus insulin regimens in type 1 diabetes: insulin glulisine versus regular human insulin in combination with Basal insulin glargine. EndocrPract. 2005;11(1):11–7. Garg SK, Rosenstock J, Ways K. Optimized Basal-bolus insulin regimens in type 1 diabetes: insulin glulisine versus regular human insulin in combination with Basal insulin glargine. EndocrPract. 2005;11(1):11–7.
44.
go back to reference Wojciechowski P, et al. Clinical efficacy and safety of insulin aspart compared with regular human insulin in patients with type 1 and type 2 diabetes: a systematic review and meta-analysis. Pol Arch Med Wewn. 2015;125(3):141–51.PubMed Wojciechowski P, et al. Clinical efficacy and safety of insulin aspart compared with regular human insulin in patients with type 1 and type 2 diabetes: a systematic review and meta-analysis. Pol Arch Med Wewn. 2015;125(3):141–51.PubMed
45.
go back to reference Rys P, et al. Efficacy and safety comparison of rapid-acting insulin aspart and regular human insulin in the treatment of type 1 and type 2 diabetes mellitus: a systematic review. Diabetes Metab. 2011;37(3):190–200.PubMedCrossRef Rys P, et al. Efficacy and safety comparison of rapid-acting insulin aspart and regular human insulin in the treatment of type 1 and type 2 diabetes mellitus: a systematic review. Diabetes Metab. 2011;37(3):190–200.PubMedCrossRef
46.
go back to reference Smith CB, et al. Hypoglycemia unawareness is associated with reduced adherence to therapeutic decisions in patients with type 1 diabetes: evidence from a clinical audit. Diabetes Care. 2009;32(7):1196–8.PubMedPubMedCentralCrossRef Smith CB, et al. Hypoglycemia unawareness is associated with reduced adherence to therapeutic decisions in patients with type 1 diabetes: evidence from a clinical audit. Diabetes Care. 2009;32(7):1196–8.PubMedPubMedCentralCrossRef
47.
go back to reference Pontiroli AE, Miele L, Morabito A. Metabolic control and risk of hypoglycaemia during the first year of intensive insulin treatment in type 2 diabetes: systematic review and meta-analysis. Diabetes ObesMetab. 2012;14(5):433–46. Pontiroli AE, Miele L, Morabito A. Metabolic control and risk of hypoglycaemia during the first year of intensive insulin treatment in type 2 diabetes: systematic review and meta-analysis. Diabetes ObesMetab. 2012;14(5):433–46.
48.
go back to reference Martyn-Nemeth P, et al. Fear of hypoglycemia in adults with type 1 diabetes: impact of therapeutic advances and strategies for prevention—a review. J Diabetes Compl. 2016;30(1):167–77.CrossRef Martyn-Nemeth P, et al. Fear of hypoglycemia in adults with type 1 diabetes: impact of therapeutic advances and strategies for prevention—a review. J Diabetes Compl. 2016;30(1):167–77.CrossRef
49.
go back to reference Riddle M, et al. Contributions of basal and postprandial hyperglycemia over a wide range of A1C levels before and after treatment intensification in type 2 diabetes. Diabetes Care. 2011;34(12):2508–14.PubMedPubMedCentralCrossRef Riddle M, et al. Contributions of basal and postprandial hyperglycemia over a wide range of A1C levels before and after treatment intensification in type 2 diabetes. Diabetes Care. 2011;34(12):2508–14.PubMedPubMedCentralCrossRef
50.
go back to reference Rapid-acting insulin analogues in children and adolescents with diabetes mellitus type 1—follow-up commission: executive summary of final report A08-01, Version 1.0, in Institute for Quality and Efficiency in Health Care: executive Summaries. 2005, Institute for Quality and Efficiency in Health Care (IQWiG). Cologne, Germany. Rapid-acting insulin analogues in children and adolescents with diabetes mellitus type 1—follow-up commission: executive summary of final report A08-01, Version 1.0, in Institute for Quality and Efficiency in Health Care: executive Summaries. 2005, Institute for Quality and Efficiency in Health Care (IQWiG). Cologne, Germany.
51.
go back to reference Siebenhofer A, et al. Short acting insulin analogues versus regular human insulin in patients with diabetes mellitus. Cochrane Database Syst Rev. 2006;2:CD003287. Siebenhofer A, et al. Short acting insulin analogues versus regular human insulin in patients with diabetes mellitus. Cochrane Database Syst Rev. 2006;2:CD003287.
Metadata
Title
Short-acting insulin analogues versus regular human insulin on postprandial glucose and hypoglycemia in type 1 diabetes mellitus: a systematic review and meta-analysis
Authors
Karla F. S. Melo
Luciana R. Bahia
Bruna Pasinato
Gustavo J. M. Porfirio
Ana Luiza Martimbianco
Rachel Riera
Luis E. P. Calliari
Walter J. Minicucci
Luiz A. A. Turatti
Hermelinda C. Pedrosa
Beatriz D. Schaan
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2019
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-018-0397-3

Other articles of this Issue 1/2019

Diabetology & Metabolic Syndrome 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine