Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2018

Open Access 01-12-2018 | Research article

Initiation of LPS-induced pulmonary dysfunction and its recovery occur independent of T cells

Authors: Eva Verjans, Stephanie Kanzler, Kim Ohl, Annette D. Rieg, Nadine Ruske, Angela Schippers, Norbert Wagner, Klaus Tenbrock, Stefan Uhlig, Christian Martin

Published in: BMC Pulmonary Medicine | Issue 1/2018

Login to get access

Abstract

Background

The acute respiratory distress syndrome (ARDS) is a serious disease in critically ill patients that is characterized by pulmonary dysfunctions, hypoxemia and significant mortality. Patients with immunodeficiency (e.g. SCID with T and B cell deficiency) are particularly susceptible to the development of severe ARDS. However, the role of T cells on pulmonary dysfunctions in immune-competent patients with ARDS is only incompletely understood.

Methods

Wild-type (wt) and RAG2−/− mice (lymphocyte deficient) received intratracheal instillations of LPS (4 mg/kg) or saline. On day 1, 4 and 10 lung mechanics and bronchial hyperresponsiveness towards acetylcholine were measured with the flexiVent ventilation set-up. The bronchoalveolar lavage fluid (BALF) was examined for leukocytes (FACS analysis) and pro-inflammatory cytokines (ELISA).

Results

In wt mice, lung mechanics, body weight and body temperature deteriorated in the LPS-group during the early phase (up to d4); these alterations were accompanied by increased leukocyte numbers and inflammatory cytokine levels in the BALF. During the late phase (day 10), both lung mechanics and the cell/cytokine homeostasis recovered in LPS-treated wt mice. RAG2−/− mice experienced changes in body weight, lung mechanics, BAL neutrophil numbers, BAL inflammatory cytokines levels that were comparable to wt mice.

Conclusion

Following LPS instillation, lung mechanics deteriorate within the first 4 days and recover towards day 10. This response is not altered by the lack of T lymphocytes suggesting that T cells play only a minor role for the initiation, propagation or recovery of LPS-induced lung dysfunctions or function of T lymphocytes can be compensated by other immune cells, such as alveolar macrophages.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ, Hudson LD. Incidence and outcomes of acute lung injury. N Engl J Med. 2005;353:1685–93.CrossRef Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ, Hudson LD. Incidence and outcomes of acute lung injury. N Engl J Med. 2005;353:1685–93.CrossRef
2.
go back to reference Vadasz I, Sznajder JI. Update in acute lung injury and critical care 2010. Am J Respir Crit Care Med. 2011;183:1147–52.CrossRef Vadasz I, Sznajder JI. Update in acute lung injury and critical care 2010. Am J Respir Crit Care Med. 2011;183:1147–52.CrossRef
3.
go back to reference Tsushima K, King LS, Aggarwal NR, De Gorordo A, D'Alessio FR, Kubo K. Acute lung injury review. Intern Med. 2009;48:621–30.CrossRef Tsushima K, King LS, Aggarwal NR, De Gorordo A, D'Alessio FR, Kubo K. Acute lung injury review. Intern Med. 2009;48:621–30.CrossRef
4.
go back to reference Fan E, Needham DM, Stewart TE. Ventilatory management of acute lung injury and acute respiratory distress syndrome. JAMA. 2005;294:2889–96.CrossRef Fan E, Needham DM, Stewart TE. Ventilatory management of acute lung injury and acute respiratory distress syndrome. JAMA. 2005;294:2889–96.CrossRef
5.
go back to reference Yasuda H, Nishimura T, Kamo T, Sanui M, Nango E, Abe T, Takebayashi T, Lefor AK, Hashimoto S. Optimal plateau pressure for patients with acute respiratory distress syndrome: a protocol for a systematic review and meta-analysis with meta-regression. BMJ Open. 2017;7:e015091.CrossRef Yasuda H, Nishimura T, Kamo T, Sanui M, Nango E, Abe T, Takebayashi T, Lefor AK, Hashimoto S. Optimal plateau pressure for patients with acute respiratory distress syndrome: a protocol for a systematic review and meta-analysis with meta-regression. BMJ Open. 2017;7:e015091.CrossRef
6.
go back to reference Theerawit P, Sutherasan Y, Ball L, Pelosi P. Respiratory monitoring in adult intensive care unit. Expert Rev Respir Med. 2017;11:453–68.CrossRef Theerawit P, Sutherasan Y, Ball L, Pelosi P. Respiratory monitoring in adult intensive care unit. Expert Rev Respir Med. 2017;11:453–68.CrossRef
7.
go back to reference Wheeler AP, Bernard GR. Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet. 2007;369:1553–64.CrossRef Wheeler AP, Bernard GR. Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet. 2007;369:1553–64.CrossRef
8.
go back to reference Nakajima T, Suarez CJ, Lin KW, Jen KY, Schnitzer JE, Makani SS, Parker N, Perkins DL, Finn PW. T cell pathways involving CTLA4 contribute to a model of acute lung injury. J Immunol. 2010;184:5835–41.CrossRef Nakajima T, Suarez CJ, Lin KW, Jen KY, Schnitzer JE, Makani SS, Parker N, Perkins DL, Finn PW. T cell pathways involving CTLA4 contribute to a model of acute lung injury. J Immunol. 2010;184:5835–41.CrossRef
9.
go back to reference Abraham E. Neutrophils and acute lung injury. Crit Care Med. 2003;31:S195–9.CrossRef Abraham E. Neutrophils and acute lung injury. Crit Care Med. 2003;31:S195–9.CrossRef
10.
go back to reference Risso K, Kumar G, Ticchioni M, Sanfiorenzo C, Dellamonica J, Guillouet-de Salvador F, Bernardin G, Marquette CH, Roger PM. Early infectious acute respiratory distress syndrome is characterized by activation and proliferation of alveolar T-cells. Eur J Clin Microbiol Infect Dis. 2015;34:1111–8.CrossRef Risso K, Kumar G, Ticchioni M, Sanfiorenzo C, Dellamonica J, Guillouet-de Salvador F, Bernardin G, Marquette CH, Roger PM. Early infectious acute respiratory distress syndrome is characterized by activation and proliferation of alveolar T-cells. Eur J Clin Microbiol Infect Dis. 2015;34:1111–8.CrossRef
11.
go back to reference Allenspach E, Rawlings DJ, Scharenberg AM. X-Linked Severe Combined Immunodeficiency. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, LJH B, Bird TD, Ledbetter N, Mefford HC, RJH S, Stephens K, editors. GeneReviews(R). Seattle; 1993. PMID: 20301584 Allenspach E, Rawlings DJ, Scharenberg AM. X-Linked Severe Combined Immunodeficiency. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, LJH B, Bird TD, Ledbetter N, Mefford HC, RJH S, Stephens K, editors. GeneReviews(R). Seattle; 1993. PMID: 20301584
12.
go back to reference Fazlollahi MR, Pourpak Z, Hamidieh AA, Movahedi M, Houshmand M, Badalzadeh M, Nourizadeh M, Mahloujirad M, Arshi S, Nabavi AM, et al. Clinical, laboratory and molecular findings of 63 patients with severe combined immunodeficiency: a decade’s experience. J Investig Allergol Clin Immunol. 2017;27(5):299-304. Fazlollahi MR, Pourpak Z, Hamidieh AA, Movahedi M, Houshmand M, Badalzadeh M, Nourizadeh M, Mahloujirad M, Arshi S, Nabavi AM, et al. Clinical, laboratory and molecular findings of 63 patients with severe combined immunodeficiency: a decade’s experience. J Investig Allergol Clin Immunol. 2017;27(5):299-304.
13.
go back to reference Reisi M, Azizi G, Kiaee F, Masiha F, Shirzadi R, Momen T, Rafiemanesh H, Tavakolinia N, Modaresi M, Aghamohammadi A. Evaluation of pulmonary complications in patients with primary immunodeficiency disorders. Eur Ann Allergy Clin Immunol. 2017;49:122–8.PubMed Reisi M, Azizi G, Kiaee F, Masiha F, Shirzadi R, Momen T, Rafiemanesh H, Tavakolinia N, Modaresi M, Aghamohammadi A. Evaluation of pulmonary complications in patients with primary immunodeficiency disorders. Eur Ann Allergy Clin Immunol. 2017;49:122–8.PubMed
14.
go back to reference Verjans E, Ohl K, Yu Y, Lippe R, Schippers A, Wiener A, Roth J, Wagner N, Uhlig S, Tenbrock K, Martin C. Overexpression of CREMalpha in T cells aggravates lipopolysaccharide-induced acute lung injury. J Immunol. 2013;191:1316–23.CrossRef Verjans E, Ohl K, Yu Y, Lippe R, Schippers A, Wiener A, Roth J, Wagner N, Uhlig S, Tenbrock K, Martin C. Overexpression of CREMalpha in T cells aggravates lipopolysaccharide-induced acute lung injury. J Immunol. 2013;191:1316–23.CrossRef
15.
go back to reference Morris PE, Glass J, Cross R, Cohen DA. Role of T-lymphocytes in the resolution of endotoxin-induced lung injury. Inflammation. 1997;21:269–78.CrossRef Morris PE, Glass J, Cross R, Cohen DA. Role of T-lymphocytes in the resolution of endotoxin-induced lung injury. Inflammation. 1997;21:269–78.CrossRef
16.
go back to reference D'Alessio FR, Tsushima K, Aggarwal NR, West EE, Willett MH, Britos MF, Pipeling MR, Brower RG, Tuder RM, McDyer JF, King LS. CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury. J Clin Invest. 2009;119:2898–913.CrossRef D'Alessio FR, Tsushima K, Aggarwal NR, West EE, Willett MH, Britos MF, Pipeling MR, Brower RG, Tuder RM, McDyer JF, King LS. CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury. J Clin Invest. 2009;119:2898–913.CrossRef
17.
go back to reference Clark JG, Madtes DK, Hackman RC, Chen W, Cheever MA, Martin PJ. Lung injury induced by alloreactive Th1 cells is characterized by host-derived mononuclear cell inflammation and activation of alveolar macrophages. J Immunol. 1998;161:1913–20.PubMed Clark JG, Madtes DK, Hackman RC, Chen W, Cheever MA, Martin PJ. Lung injury induced by alloreactive Th1 cells is characterized by host-derived mononuclear cell inflammation and activation of alveolar macrophages. J Immunol. 1998;161:1913–20.PubMed
18.
go back to reference Reiss LK, Kowallik A, Uhlig S. Recurrent recruitment manoeuvres improve lung mechanics and minimize lung injury during mechanical ventilation of healthy mice. PLoS One. 2011;6:e24527.CrossRef Reiss LK, Kowallik A, Uhlig S. Recurrent recruitment manoeuvres improve lung mechanics and minimize lung injury during mechanical ventilation of healthy mice. PLoS One. 2011;6:e24527.CrossRef
19.
go back to reference Reiss LK, Uhlig U, Uhlig S. Models and mechanisms of acute lung injury caused by direct insults. Eur J Cell Biol. 2012;91:590–601.CrossRef Reiss LK, Uhlig U, Uhlig S. Models and mechanisms of acute lung injury caused by direct insults. Eur J Cell Biol. 2012;91:590–601.CrossRef
20.
go back to reference Gold MI, Helrich M. Pulmonary compliance during anesthesia. Anesthesiology. 1965;26:281–8.CrossRef Gold MI, Helrich M. Pulmonary compliance during anesthesia. Anesthesiology. 1965;26:281–8.CrossRef
21.
go back to reference Thompson BT, Hayden D, Matthay MA, Brower R, Parsons PE. Clinicians’ approaches to mechanical ventilation in acute lung injury and ARDS. Chest. 2001;120:1622–7.CrossRef Thompson BT, Hayden D, Matthay MA, Brower R, Parsons PE. Clinicians’ approaches to mechanical ventilation in acute lung injury and ARDS. Chest. 2001;120:1622–7.CrossRef
22.
go back to reference Aggarwal NR, D'Alessio FR, Tsushima K, Sidhaye VK, Cheadle C, Grigoryev DN, Barnes KC, King LS. Regulatory T cell-mediated resolution of lung injury: identification of potential target genes via expression profiling. Physiol Genomics. 2010;41:109–19.CrossRef Aggarwal NR, D'Alessio FR, Tsushima K, Sidhaye VK, Cheadle C, Grigoryev DN, Barnes KC, King LS. Regulatory T cell-mediated resolution of lung injury: identification of potential target genes via expression profiling. Physiol Genomics. 2010;41:109–19.CrossRef
23.
go back to reference Pietropaoli A, Georas SN. Resolving lung injury: a new role for Tregs in controlling the innate immune response. J Clin Invest. 2009;119:2891–4.CrossRef Pietropaoli A, Georas SN. Resolving lung injury: a new role for Tregs in controlling the innate immune response. J Clin Invest. 2009;119:2891–4.CrossRef
24.
go back to reference Wehrmann F, Lavelle JC, Collins CB, Tinega AN, Thurman JM, Burnham EL, Simonian PL. gammadelta T cells protect against LPS-induced lung injury. J Leukoc Biol. 2016;99:373–86.CrossRef Wehrmann F, Lavelle JC, Collins CB, Tinega AN, Thurman JM, Burnham EL, Simonian PL. gammadelta T cells protect against LPS-induced lung injury. J Leukoc Biol. 2016;99:373–86.CrossRef
25.
go back to reference Jones JM, Gellert M. The taming of a transposon: V(D)J recombination and the immune system. Immunol Rev. 2004;200:233–48.CrossRef Jones JM, Gellert M. The taming of a transposon: V(D)J recombination and the immune system. Immunol Rev. 2004;200:233–48.CrossRef
26.
go back to reference Zaynagetdinov R, Sherrill TP, Kendall PL, Segal BH, Weller KP, Tighe RM, Blackwell TS. Identification of myeloid cell subsets in murine lungs using flow cytometry. Am J Respir Cell Mol Biol. 2013;49:180–9.CrossRef Zaynagetdinov R, Sherrill TP, Kendall PL, Segal BH, Weller KP, Tighe RM, Blackwell TS. Identification of myeloid cell subsets in murine lungs using flow cytometry. Am J Respir Cell Mol Biol. 2013;49:180–9.CrossRef
27.
go back to reference Rentsendorj O, D'Alessio FR, Pearse DB. Phosphodiesterase 2A is a major negative regulator of iNOS expression in lipopolysaccharide-treated mouse alveolar macrophages. J Leukoc Biol. 2014;96:907–15.CrossRef Rentsendorj O, D'Alessio FR, Pearse DB. Phosphodiesterase 2A is a major negative regulator of iNOS expression in lipopolysaccharide-treated mouse alveolar macrophages. J Leukoc Biol. 2014;96:907–15.CrossRef
28.
go back to reference Johnston LK, Rims CR, Gill SE, McGuire JK, Manicone AM. Pulmonary macrophage subpopulations in the induction and resolution of acute lung injury. Am J Respir Cell Mol Biol. 2012;47:417–26.CrossRef Johnston LK, Rims CR, Gill SE, McGuire JK, Manicone AM. Pulmonary macrophage subpopulations in the induction and resolution of acute lung injury. Am J Respir Cell Mol Biol. 2012;47:417–26.CrossRef
29.
go back to reference Hume DA. The many alternative faces of macrophage activation. Front Immunol. 2015;6:370.CrossRef Hume DA. The many alternative faces of macrophage activation. Front Immunol. 2015;6:370.CrossRef
30.
go back to reference Fehrenbach H. Alveolar epithelial type II cell: defender of the alveolus revisited. Respir Res. 2001;2:33–46.CrossRef Fehrenbach H. Alveolar epithelial type II cell: defender of the alveolus revisited. Respir Res. 2001;2:33–46.CrossRef
Metadata
Title
Initiation of LPS-induced pulmonary dysfunction and its recovery occur independent of T cells
Authors
Eva Verjans
Stephanie Kanzler
Kim Ohl
Annette D. Rieg
Nadine Ruske
Angela Schippers
Norbert Wagner
Klaus Tenbrock
Stefan Uhlig
Christian Martin
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2018
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-018-0741-2

Other articles of this Issue 1/2018

BMC Pulmonary Medicine 1/2018 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.