Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 3/2008

01-03-2008 | Short Communication

Initial evaluation of 18F-fluorothymidine (FLT) PET/CT scanning for primary pancreatic cancer

Authors: A. Quon, S. T. Chang, F. Chin, A. Kamaya, D. W. Dick, B. W. Loo Jr., S. S. Gambhir, A. C. Koong

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 3/2008

Login to get access

Abstract

Purpose

The aim of this study was to evaluate the potential of 18F-fluorothymidine (FLT) PET/CT for imaging pancreatic adenocarcinoma.

Methods

This was a pilot study of five patients (four males, one female) with newly diagnosed and previously untreated pancreatic adenocarcinoma. Patients underwent FLT PET/CT, 18F-fluorodeoxyglucose (FDG) PET/CT, and contrast-enhanced CT scanning before treatment. The presence of cancer was confirmed by histopathological analysis at the time of scanning in all five patients. The degree of FLT and FDG uptake at the primary tumor site was assessed using visual interpretation and semi-quantitative SUV analyses.

Results

The primary tumor size ranged from 2.5×2.8 cm to 3.5 × 7.0 cm. The SUV of FLT uptake within the primary tumor ranged from 2.1 to 3.1. Using visual interpretation, the primary cancer could be detected from background activity in two of five patients (40%) on FLT PET/CT. By comparison, FDG uptake was higher in each patient with a SUV range of 3.4 to 10.8, and the primary cancer could be detected from background in all five patients (100%).

Conclusions

In this pilot study of five patients with primary pancreatic adenocarcinoma, FLT PET/CT scanning showed poor lesion detectability and relatively low levels of radiotracer uptake in the primary tumor.
Literature
1.
go back to reference Shields AF. PET imaging with 18F-FLT and thymidine analogs: promise and pitfalls. J Nucl Med Sep. 2003;44(9):1432–4.PubMed Shields AF. PET imaging with 18F-FLT and thymidine analogs: promise and pitfalls. J Nucl Med Sep. 2003;44(9):1432–4.PubMed
2.
go back to reference Buck AK, Halter G, Schirrmeister H, et al. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med Sep. 2003;44(9):1426–31. Buck AK, Halter G, Schirrmeister H, et al. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med Sep. 2003;44(9):1426–31.
3.
go back to reference Herrmann K, Wieder HA, Buck AK, et al. Early response assessment using 3′-deoxy-3′-[18F]fluorothymidine-positron emission tomography in high-grade non-Hodgkin’s lymphoma. Clin Cancer Res 2007;13(12):3552–8.PubMedCrossRef Herrmann K, Wieder HA, Buck AK, et al. Early response assessment using 3′-deoxy-3′-[18F]fluorothymidine-positron emission tomography in high-grade non-Hodgkin’s lymphoma. Clin Cancer Res 2007;13(12):3552–8.PubMedCrossRef
4.
go back to reference Pio BS, Park CK, Pietras R, et al. Usefulness of 3′-[F-18]fluoro-3′-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol Imaging Biol 2006;8(1):36–42.PubMedCrossRef Pio BS, Park CK, Pietras R, et al. Usefulness of 3′-[F-18]fluoro-3′-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol Imaging Biol 2006;8(1):36–42.PubMedCrossRef
5.
go back to reference Wieder HA, Geinitz H, Rosenberg R, et al. PET imaging with [(18)F]3′-deoxy-3′-fluorothymidine for prediction of response to neoadjuvant treatment in patients with rectal cancer. Eur J Nucl Med Mol Imaging 2007;34(6):878–83.PubMedCrossRef Wieder HA, Geinitz H, Rosenberg R, et al. PET imaging with [(18)F]3′-deoxy-3′-fluorothymidine for prediction of response to neoadjuvant treatment in patients with rectal cancer. Eur J Nucl Med Mol Imaging 2007;34(6):878–83.PubMedCrossRef
6.
go back to reference Seitz U, Wagner M, Neumaier B, et al. Evaluation of pyrimidine metabolising enzymes and in vitro uptake of 3′-[(18)F]fluoro-3′-deoxythymidine ([(18)F]FLT) in pancreatic cancer cell lines. Eur J Nucl Med Mol Imaging 2002;29(9):1174–81.PubMedCrossRef Seitz U, Wagner M, Neumaier B, et al. Evaluation of pyrimidine metabolising enzymes and in vitro uptake of 3′-[(18)F]fluoro-3′-deoxythymidine ([(18)F]FLT) in pancreatic cancer cell lines. Eur J Nucl Med Mol Imaging 2002;29(9):1174–81.PubMedCrossRef
7.
go back to reference Machulla HJ, Blocher A, Kuntzsch M, Piert M, Wei R, Grierson JR. Simplified labeling approach for synthesizing 3′-Deoxy-3′-[18F]fluorothymidine ([18F]FLT). J Radioanal Nucl Chem 2000;243(3):843–6.CrossRef Machulla HJ, Blocher A, Kuntzsch M, Piert M, Wei R, Grierson JR. Simplified labeling approach for synthesizing 3′-Deoxy-3′-[18F]fluorothymidine ([18F]FLT). J Radioanal Nucl Chem 2000;243(3):843–6.CrossRef
8.
go back to reference Strauss LG, Conti PS. The applications of PET in clinical oncology. J Nucl Med 1991;32(4):623–48; discussion 649–650.PubMed Strauss LG, Conti PS. The applications of PET in clinical oncology. J Nucl Med 1991;32(4):623–48; discussion 649–650.PubMed
9.
go back to reference Higashi T, Saga T, Nakamoto Y, et al. Diagnosis of pancreatic cancer using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET)—usefulness and limitations in “clinical reality”. Ann Nucl Med 2003;17(4):261–79.PubMedCrossRef Higashi T, Saga T, Nakamoto Y, et al. Diagnosis of pancreatic cancer using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET)—usefulness and limitations in “clinical reality”. Ann Nucl Med 2003;17(4):261–79.PubMedCrossRef
10.
go back to reference van Kouwen MC, Jansen JB, van Goor H, de Castro S, Oyen WJ, Drenth JP. FDG-PET is able to detect pancreatic carcinoma in chronic pancreatitis. Ann Nucl Med 2005;32(4):399–404. van Kouwen MC, Jansen JB, van Goor H, de Castro S, Oyen WJ, Drenth JP. FDG-PET is able to detect pancreatic carcinoma in chronic pancreatitis. Ann Nucl Med 2005;32(4):399–404.
11.
go back to reference Munch-Petersen B, Cloos L, Jensen HK, Tyrsted G. Human thymidine kinase 1 regulation in normal and malignant cells. Adv Enzyme Regul 1995;35:69–89.PubMedCrossRef Munch-Petersen B, Cloos L, Jensen HK, Tyrsted G. Human thymidine kinase 1 regulation in normal and malignant cells. Adv Enzyme Regul 1995;35:69–89.PubMedCrossRef
12.
go back to reference Barthel H, Perumal M, Latigo J, et al. The uptake of 3′-deoxy-3′-[18F]fluorothymidine into L5178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging 2005;32(3):257–63.PubMedCrossRef Barthel H, Perumal M, Latigo J, et al. The uptake of 3′-deoxy-3′-[18F]fluorothymidine into L5178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging 2005;32(3):257–63.PubMedCrossRef
13.
go back to reference Grierson JR, Schwartz JL, Muzi M, Jordan R, Krohn KA. Metabolism of 3′-deoxy-3′-[F-18]fluorothymidine in proliferating A549 cells: validations for positron emission tomography. Nucl Med Biology 2004;31(7):829–37.CrossRef Grierson JR, Schwartz JL, Muzi M, Jordan R, Krohn KA. Metabolism of 3′-deoxy-3′-[F-18]fluorothymidine in proliferating A549 cells: validations for positron emission tomography. Nucl Med Biology 2004;31(7):829–37.CrossRef
Metadata
Title
Initial evaluation of 18F-fluorothymidine (FLT) PET/CT scanning for primary pancreatic cancer
Authors
A. Quon
S. T. Chang
F. Chin
A. Kamaya
D. W. Dick
B. W. Loo Jr.
S. S. Gambhir
A. C. Koong
Publication date
01-03-2008
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 3/2008
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-007-0630-z

Other articles of this Issue 3/2008

European Journal of Nuclear Medicine and Molecular Imaging 3/2008 Go to the issue

Society communication

Society communication