Skip to main content
Top
Published in: Inflammation 2/2013

01-04-2013

Inhibitory Mechanism of 10-Hydroxy-trans-2-decenoic Acid (Royal Jelly Acid) Against Lipopolysaccharide- and Interferon-β-Induced Nitric Oxide Production

Authors: Tsuyoshi Sugiyama, Keita Takahashi, Akihiro Kuzumaki, Shunji Tokoro, Paola Neri, Hiroshi Mori

Published in: Inflammation | Issue 2/2013

Login to get access

Abstract

Royal jelly acid, 10-hydroxy-trans-2-decenoic acid (10H2DA), is a major lipid component of royal jelly, which is the exclusive diet of queen honeybees. Previously, we showed partial inhibition of lipopolysaccharide (LPS)-induced NF-κB activation by 10H2DA. In this study, the ability of 10H2DA to inhibit LPS-induced nitric oxide (NO) production was investigated. LPS-induced NO production and inducible NO synthase (iNOS) gene transcription were inhibited by 10H2DA. LPS-stimulated interferon (IFN)-β production, IFN regulatory factor-1 induction and IFN-stimulated response element activation, which are required for iNOS induction, were unaffected by 10H2DA. IFN-β-induced NO production, however, was significantly inhibited by 10H2DA. Furthermore, IFN-β-induced nuclear factor (NF)-κB activation and tumour necrosis factor (TNF)-α production were significantly inhibited by 10H2DA, and TNF-α-induced NF-κB activation was also inhibited by 10H2DA. These results and our previous study suggest that 10H2DA inhibits LPS- and IFN-β-induced NO production via inhibition of NF-κB activation induced by LPS or IFN-β.
Appendix
Available only for authorised users
Literature
1.
go back to reference Rembold, H. 1965. Biologically active substances in royal jelly. Vitamins and Hormones 23: 359–382.PubMedCrossRef Rembold, H. 1965. Biologically active substances in royal jelly. Vitamins and Hormones 23: 359–382.PubMedCrossRef
2.
go back to reference Shuel, R., and S. Dixon. 1960. The early establishment of dimorphism in the female honeybee, Apis mellifera L. Insectes Sociaux 7: 265–282.CrossRef Shuel, R., and S. Dixon. 1960. The early establishment of dimorphism in the female honeybee, Apis mellifera L. Insectes Sociaux 7: 265–282.CrossRef
3.
go back to reference Kohno, K., I. Okamoto, O. Sano, N. Arai, K. Iwaki, M. Ikeda, and M. Kurimoto. 2004. Royal jelly inhibits the production of proinflammatory cytokines by activated macrophages. Bioscience, Biotechnology, and Biochemistry 68: 138–145.PubMedCrossRef Kohno, K., I. Okamoto, O. Sano, N. Arai, K. Iwaki, M. Ikeda, and M. Kurimoto. 2004. Royal jelly inhibits the production of proinflammatory cytokines by activated macrophages. Bioscience, Biotechnology, and Biochemistry 68: 138–145.PubMedCrossRef
4.
go back to reference Tamura, T., A. Fujii, and N. Kuboyama. 1987. Antitumor effects of royal jelly (RJ). Folia Pharmacologica Japonica 89: 73–80.PubMedCrossRef Tamura, T., A. Fujii, and N. Kuboyama. 1987. Antitumor effects of royal jelly (RJ). Folia Pharmacologica Japonica 89: 73–80.PubMedCrossRef
5.
go back to reference Helleu, C. 1956. Antibacterial properties of royal jelly; bactericidal and antibiotic effects of neutralized royal jelly. Annals of Institute Pasteur (Paris) 91: 231–237. Helleu, C. 1956. Antibacterial properties of royal jelly; bactericidal and antibiotic effects of neutralized royal jelly. Annals of Institute Pasteur (Paris) 91: 231–237.
6.
go back to reference Lercker, G., P. Capella, L.S. Conte, F. Ruini, and G. Giordani. 1982. Components of royal jelly II. The lipid fraction, hydrocarbons and sterols. Journal of Apicultural Research 21: 178–184. Lercker, G., P. Capella, L.S. Conte, F. Ruini, and G. Giordani. 1982. Components of royal jelly II. The lipid fraction, hydrocarbons and sterols. Journal of Apicultural Research 21: 178–184.
7.
go back to reference Townsend, G.F., J.F. Morgan, and B. Hazlett. 1959. Activity of 10-hydroxydecenoic acid from royal jelly against experimental leukaemia and ascitic tumours. Nature 183: 1270–1271.PubMedCrossRef Townsend, G.F., J.F. Morgan, and B. Hazlett. 1959. Activity of 10-hydroxydecenoic acid from royal jelly against experimental leukaemia and ascitic tumours. Nature 183: 1270–1271.PubMedCrossRef
8.
go back to reference Townsend, G.F., J.F. Morgan, S. Tolnai, B. Hazlett, H.J. Morton, and R.W. Shuel. 1960. Studies on the in vitro antitumor activity of fatty acids. I. 10-Hydroxy-2-decenoic acid from royal jelly. Cancer Research 20: 503–510.PubMed Townsend, G.F., J.F. Morgan, S. Tolnai, B. Hazlett, H.J. Morton, and R.W. Shuel. 1960. Studies on the in vitro antitumor activity of fatty acids. I. 10-Hydroxy-2-decenoic acid from royal jelly. Cancer Research 20: 503–510.PubMed
9.
go back to reference Blum, M.S., A.F. Novak, and S. Taber 3rd. 1959. 10-Hydroxy-δ 2-decenoic acid, an antibiotic found in royal jelly. Science 130: 452–453.PubMedCrossRef Blum, M.S., A.F. Novak, and S. Taber 3rd. 1959. 10-Hydroxy-δ 2-decenoic acid, an antibiotic found in royal jelly. Science 130: 452–453.PubMedCrossRef
10.
go back to reference Sugiyama, T., K. Takahashi, S. Tokoro, T. Gotou, P. Neri, and H. Mori. 2011. Inhibitory effect of 10-hydroxy-trans-2-decenoic acid on LPS-induced IL-6 production via reducing IκB-ζ expression. Innate Immunity 18: 429–437.PubMedCrossRef Sugiyama, T., K. Takahashi, S. Tokoro, T. Gotou, P. Neri, and H. Mori. 2011. Inhibitory effect of 10-hydroxy-trans-2-decenoic acid on LPS-induced IL-6 production via reducing IκB-ζ expression. Innate Immunity 18: 429–437.PubMedCrossRef
11.
go back to reference Takahashi, K., T. Sugiyama, S. Tokoro, P. Neri, and H. Mori. 2012. Inhibition of interferon-γ-induced nitric oxide production by 10-hydroxy-trans-2-decenoic acid through inhibition of interferon regulatory factor-8 induction. Cellular Immunology 273: 73–78.PubMedCrossRef Takahashi, K., T. Sugiyama, S. Tokoro, P. Neri, and H. Mori. 2012. Inhibition of interferon-γ-induced nitric oxide production by 10-hydroxy-trans-2-decenoic acid through inhibition of interferon regulatory factor-8 induction. Cellular Immunology 273: 73–78.PubMedCrossRef
12.
go back to reference Vila-del Sol, V., M.D. Diaz-Munoz, and M. Fresno. 2007. Requirement of tumor necrosis factor α and nuclear factor-κB in the induction by IFN-γ of inducible nitric oxide synthase in macrophages. Journal of Leukocyte Biology 81: 272–283.PubMedCrossRef Vila-del Sol, V., M.D. Diaz-Munoz, and M. Fresno. 2007. Requirement of tumor necrosis factor α and nuclear factor-κB in the induction by IFN-γ of inducible nitric oxide synthase in macrophages. Journal of Leukocyte Biology 81: 272–283.PubMedCrossRef
13.
go back to reference Xie, Q.W., R. Whisnant, and C. Nathan. 1993. Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon γ and bacterial lipopolysaccharide. The Journal of Experimental Medicine 177: 1779–1784.PubMedCrossRef Xie, Q.W., R. Whisnant, and C. Nathan. 1993. Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon γ and bacterial lipopolysaccharide. The Journal of Experimental Medicine 177: 1779–1784.PubMedCrossRef
14.
go back to reference Kamijo, R., H. Harada, T. Matsuyama, M. Bosland, J. Gerecitano, D. Shapiro, J. Le, S.I. Koh, T. Kimura, S.J. Green, T.W. Mak, T. Taniguchi, and J. Vilcek. 1994. Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science 263: 1612–1615.PubMedCrossRef Kamijo, R., H. Harada, T. Matsuyama, M. Bosland, J. Gerecitano, D. Shapiro, J. Le, S.I. Koh, T. Kimura, S.J. Green, T.W. Mak, T. Taniguchi, and J. Vilcek. 1994. Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science 263: 1612–1615.PubMedCrossRef
15.
go back to reference Kim, Y.M., B.S. Lee, K.Y. Yi, and S.G. Paik. 1997. Upstream NF-κB site is required for the maximal expression of mouse inducible nitric oxide synthase gene in interferon-γ plus lipopolysaccharide-induced RAW 264.7 macrophages. Biochemical and Biophysical Research Communications 236: 655–660.PubMedCrossRef Kim, Y.M., B.S. Lee, K.Y. Yi, and S.G. Paik. 1997. Upstream NF-κB site is required for the maximal expression of mouse inducible nitric oxide synthase gene in interferon-γ plus lipopolysaccharide-induced RAW 264.7 macrophages. Biochemical and Biophysical Research Communications 236: 655–660.PubMedCrossRef
16.
go back to reference Martin, E., C. Nathan, and Q.W. Xie. 1994. Role of interferon regulatory factor 1 in induction of nitric oxide synthase. The Journal of Experimental Medicine 180: 977–984.PubMedCrossRef Martin, E., C. Nathan, and Q.W. Xie. 1994. Role of interferon regulatory factor 1 in induction of nitric oxide synthase. The Journal of Experimental Medicine 180: 977–984.PubMedCrossRef
17.
go back to reference Ohmori, Y., and T.A. Hamilton. 2001. Requirement for STAT1 in LPS-induced gene expression in macrophages. Journal of Leukocyte Biology 69: 598–604.PubMed Ohmori, Y., and T.A. Hamilton. 2001. Requirement for STAT1 in LPS-induced gene expression in macrophages. Journal of Leukocyte Biology 69: 598–604.PubMed
18.
go back to reference Sugiyama, T., T. Gotou, K. Moriyama, N. Kajiura, T. Hasegawa, J. Tomida, K. Takahashi, T. Komatsu, H. Ueda, K. Sato, S. Tokoro, P. Neri, and H. Mori. 2012. Mechanism of inhibition of lipopolysaccharide-induced interferon-β production by 2-aminopurine. Molecular Immunology 52: 299–304.PubMedCrossRef Sugiyama, T., T. Gotou, K. Moriyama, N. Kajiura, T. Hasegawa, J. Tomida, K. Takahashi, T. Komatsu, H. Ueda, K. Sato, S. Tokoro, P. Neri, and H. Mori. 2012. Mechanism of inhibition of lipopolysaccharide-induced interferon-β production by 2-aminopurine. Molecular Immunology 52: 299–304.PubMedCrossRef
19.
go back to reference Sugiyama, T., M. Fujita, N. Koide, I. Mori, T. Yoshida, H. Mori, and T. Yokochi. 2004. 2-Aminopurine inhibits lipopolysaccharide-induced nitric oxide production by preventing IFN-β production. Microbiology and Immunology 48: 957–963.PubMed Sugiyama, T., M. Fujita, N. Koide, I. Mori, T. Yoshida, H. Mori, and T. Yokochi. 2004. 2-Aminopurine inhibits lipopolysaccharide-induced nitric oxide production by preventing IFN-β production. Microbiology and Immunology 48: 957–963.PubMed
20.
go back to reference Green, L.C., D.A. Wagner, J. Glogowski, P.L. Skipper, J.S. Wishnok, and S.R. Tannenbaum. 1982. Analysis of nitrate, nitrite, and [15 N]nitrate in biological fluids. Analytical Biochemistry 126: 131–138.PubMedCrossRef Green, L.C., D.A. Wagner, J. Glogowski, P.L. Skipper, J.S. Wishnok, and S.R. Tannenbaum. 1982. Analysis of nitrate, nitrite, and [15 N]nitrate in biological fluids. Analytical Biochemistry 126: 131–138.PubMedCrossRef
21.
go back to reference McWhirter, S.M., K.A. Fitzgerald, J. Rosains, D.C. Rowe, D.T. Golenbock, and T. Maniatis. 2004. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proceedings of the National Academy of Sciences of the United States of America 101: 233–238.PubMedCrossRef McWhirter, S.M., K.A. Fitzgerald, J. Rosains, D.C. Rowe, D.T. Golenbock, and T. Maniatis. 2004. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proceedings of the National Academy of Sciences of the United States of America 101: 233–238.PubMedCrossRef
22.
go back to reference Yang, C.H., A. Murti, S.R. Pfeffer, J.G. Kim, D.B. Donner, and L.M. Pfeffer. 2001. Interferon α/β promotes cell survival by activating nuclear factor κB through phosphatidylinositol 3-kinase and Akt. The Journal of Biological Chemistry 276: 13756–13761.PubMed Yang, C.H., A. Murti, S.R. Pfeffer, J.G. Kim, D.B. Donner, and L.M. Pfeffer. 2001. Interferon α/β promotes cell survival by activating nuclear factor κB through phosphatidylinositol 3-kinase and Akt. The Journal of Biological Chemistry 276: 13756–13761.PubMed
23.
go back to reference Pahl, H.L. 1999. Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18: 6853–6866.PubMedCrossRef Pahl, H.L. 1999. Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18: 6853–6866.PubMedCrossRef
24.
go back to reference Schafer, S.L., R. Lin, P.A. Moore, J. Hiscott, and P.M. Pitha. 1998. Regulation of type I interferon gene expression by interferon regulatory factor-3. The Journal of Biological Chemistry 273: 2714–2720.PubMedCrossRef Schafer, S.L., R. Lin, P.A. Moore, J. Hiscott, and P.M. Pitha. 1998. Regulation of type I interferon gene expression by interferon regulatory factor-3. The Journal of Biological Chemistry 273: 2714–2720.PubMedCrossRef
25.
go back to reference Yamamoto, M., S. Yamazaki, S. Uematsu, S. Sato, H. Hemmi, K. Hoshino, T. Kaisho, H. Kuwata, O. Takeuchi, K. Takeshige, T. Saitoh, S. Yamaoka, N. Yamamoto, S. Yamamoto, T. Muta, K. Takeda, and S. Akira. 2004. Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IκBζ. Nature 430: 218–222.PubMedCrossRef Yamamoto, M., S. Yamazaki, S. Uematsu, S. Sato, H. Hemmi, K. Hoshino, T. Kaisho, H. Kuwata, O. Takeuchi, K. Takeshige, T. Saitoh, S. Yamaoka, N. Yamamoto, S. Yamamoto, T. Muta, K. Takeda, and S. Akira. 2004. Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IκBζ. Nature 430: 218–222.PubMedCrossRef
Metadata
Title
Inhibitory Mechanism of 10-Hydroxy-trans-2-decenoic Acid (Royal Jelly Acid) Against Lipopolysaccharide- and Interferon-β-Induced Nitric Oxide Production
Authors
Tsuyoshi Sugiyama
Keita Takahashi
Akihiro Kuzumaki
Shunji Tokoro
Paola Neri
Hiroshi Mori
Publication date
01-04-2013
Publisher
Springer US
Published in
Inflammation / Issue 2/2013
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-012-9556-0

Other articles of this Issue 2/2013

Inflammation 2/2013 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.