Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2012

Open Access 01-12-2012 | Research article

Ingredients of Huangqi decoction slow biliary fibrosis progression by inhibiting the activation of the transforming growth factor-beta signaling pathway

Authors: Jin-Xing Du, Ming-Yu Sun, Guang-Li Du, Feng-Hua Li, Cheng Liu, Yong-Ping Mu, Gao-Feng Chen, Ai-Hua Long, Yan-Qin Bian, Jia Liu, Cheng-Hai Liu, Yi-Yang Hu, Lie-Ming Xu, Ping Liu

Published in: BMC Complementary Medicine and Therapies | Issue 1/2012

Login to get access

Abstract

Background

Huangqi decoction was first described in Prescriptions of the Bureau of Taiping People's Welfare Pharmacy in Song Dynasty (AD 1078), and it is an effective recipe that is usually used to treat consumptive disease, anorexia, and chronic liver diseases. Transforming growth factor beta 1 (TGFβ1) plays a key role in the progression of liver fibrosis, and Huangqi decoction and its ingredients (IHQD) markedly ameliorated hepatic fibrotic lesions induced by ligation of the common bile duct (BDL). However, the mechanism of IHQD on hepatic fibrotic lesions is not yet clear. The purpose of the present study is to elucidate the roles of TGFβ1 activation, Smad-signaling pathway, and extracellular signal-regulated kinase (ERK) in the pathogenesis of biliary fibrosis progression and the antifibrotic mechanism of IHQD.

Methods

A liver fibrosis model was induced by ligation of the common bile duct (BDL) in rats. Sham-operation was performed in control rats. The BDL rats were randomly divided into two groups: the BDL group and the IHQD group. IHQD was administrated intragastrically for 4 weeks. At the end of the fifth week after BDL, animals were sacrificed for sampling of blood serum and liver tissue. The effect of IHQD on the TGFβ1 signaling pathway was evaluated by western blotting and laser confocal microscopy.

Results

Decreased content of hepatic hydroxyproline and improved liver function and histopathology were observed in IHQD rats. Hepatocytes, cholangiocytes, and myofibroblasts in the cholestatic liver injury released TGFβ1, and activated TGFβ1 receptors can accelerate liver fibrosis. IHQD markedly inhibited the protein expression of TGFβ1, TGFβ1 receptors, Smad3, and p-ERK1/2 expression with no change of Smad7 expression.

Conclusion

IHQD exert significant therapeutic effects on BDL-induced fibrosis in rats through inhibition of the activation of TGFβ1-Smad3 and TGFβ1-ERK1/2 signaling pathways.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bedossa P, Paradis V: Liver extracellular matrix in health and disease. J Pathol. 2003, 200: 504-515. 10.1002/path.1397.CrossRefPubMed Bedossa P, Paradis V: Liver extracellular matrix in health and disease. J Pathol. 2003, 200: 504-515. 10.1002/path.1397.CrossRefPubMed
3.
go back to reference Dooley S, Hamzavi J, Breitkopf K: Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology. 2003, 125: 178-191. 10.1016/S0016-5085(03)00666-8.CrossRefPubMed Dooley S, Hamzavi J, Breitkopf K: Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology. 2003, 125: 178-191. 10.1016/S0016-5085(03)00666-8.CrossRefPubMed
4.
go back to reference Du JX, Qiu BF, Liu P: Huangqi decoction inhibits cholangiocyte proliferation and transdifferentiation in cholestatic liver fibrosis induced by BDL in rats. Zhonghua Gan Zang Bing Za Zhi. 2010, 18: 13-18.PubMed Du JX, Qiu BF, Liu P: Huangqi decoction inhibits cholangiocyte proliferation and transdifferentiation in cholestatic liver fibrosis induced by BDL in rats. Zhonghua Gan Zang Bing Za Zhi. 2010, 18: 13-18.PubMed
5.
go back to reference Erwin P, Bottinger MB: TGF-beta signaling in renal disease. J Am Soc Nephrol. 2002, 13: 2600-2610. 10.1097/01.ASN.0000033611.79556.AE.CrossRef Erwin P, Bottinger MB: TGF-beta signaling in renal disease. J Am Soc Nephrol. 2002, 13: 2600-2610. 10.1097/01.ASN.0000033611.79556.AE.CrossRef
6.
go back to reference Feng XH, Derynck R: Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol. 2005, 21: 659-693. 10.1146/annurev.cellbio.21.022404.142018.CrossRefPubMed Feng XH, Derynck R: Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol. 2005, 21: 659-693. 10.1146/annurev.cellbio.21.022404.142018.CrossRefPubMed
7.
go back to reference Franck V, Alain M: Transforming growth factor-beta and fibrosis. World J Gastroenterol. 2007, 13: 3056-3062. Franck V, Alain M: Transforming growth factor-beta and fibrosis. World J Gastroenterol. 2007, 13: 3056-3062.
8.
go back to reference Inagaki Y, Mamura M, Kanamaru Y: Constitutive phosphorylation and nuclear localization of Smad3 are correlated with increased collagen gene transcription in activated hepatic stellate cells. J Cell Physiol. 2001, 187: 117-123. 10.1002/1097-4652(2001)9999:9999<00::AID-JCP1059>3.0.CO;2-S.CrossRefPubMed Inagaki Y, Mamura M, Kanamaru Y: Constitutive phosphorylation and nuclear localization of Smad3 are correlated with increased collagen gene transcription in activated hepatic stellate cells. J Cell Physiol. 2001, 187: 117-123. 10.1002/1097-4652(2001)9999:9999<00::AID-JCP1059>3.0.CO;2-S.CrossRefPubMed
9.
go back to reference Jamall IS, Finelli VN, Que Hee SS: A simple method to determine nanogram levels of 4-hydroxyproline in biological tissues. Anal Biochem. 1981, 112: 70-75. 10.1016/0003-2697(81)90261-X.CrossRefPubMed Jamall IS, Finelli VN, Que Hee SS: A simple method to determine nanogram levels of 4-hydroxyproline in biological tissues. Anal Biochem. 1981, 112: 70-75. 10.1016/0003-2697(81)90261-X.CrossRefPubMed
10.
go back to reference Xia JL, Dai C, Michalopoulos GK: Hepatocyte growth factor attenuates liver fibrosis induced by bile duct ligation. Am J Pathol. 2006, 168: 1500-1512. 10.2353/ajpath.2006.050747.CrossRefPubMedPubMedCentral Xia JL, Dai C, Michalopoulos GK: Hepatocyte growth factor attenuates liver fibrosis induced by bile duct ligation. Am J Pathol. 2006, 168: 1500-1512. 10.2353/ajpath.2006.050747.CrossRefPubMedPubMedCentral
11.
go back to reference Khimji AK, Shao R, Rockey DC: Divergent transforming growth factor-beta signaling in hepatic stellate cells after liver injury: functional effects on ECE-1 regulation. Am J Pathol. 2008, 173: 716-727. 10.2353/ajpath.2008.071121.CrossRefPubMedPubMedCentral Khimji AK, Shao R, Rockey DC: Divergent transforming growth factor-beta signaling in hepatic stellate cells after liver injury: functional effects on ECE-1 regulation. Am J Pathol. 2008, 173: 716-727. 10.2353/ajpath.2008.071121.CrossRefPubMedPubMedCentral
12.
go back to reference Liu P, Fang BW, Liu C: The role of transforming growth factor β1 and its receptor in immunological induced liver fibrogenesis in rats and effect of cordyceps polysaccharide on them. Zhonghua Gan Zang Bing Za Zhi. 1998, 6: 232-234. Liu P, Fang BW, Liu C: The role of transforming growth factor β1 and its receptor in immunological induced liver fibrogenesis in rats and effect of cordyceps polysaccharide on them. Zhonghua Gan Zang Bing Za Zhi. 1998, 6: 232-234.
13.
go back to reference Lutz M, Knaus P: Integration of the TGF-beta pathway into the cellular signalling network. Cell Signal. 2002, 14: 977-988. 10.1016/S0898-6568(02)00058-X.CrossRefPubMed Lutz M, Knaus P: Integration of the TGF-beta pathway into the cellular signalling network. Cell Signal. 2002, 14: 977-988. 10.1016/S0898-6568(02)00058-X.CrossRefPubMed
14.
go back to reference Massague J: TGF-β signal transduction. Annu Rev Biochem. 1998, 67: 753-791. 10.1146/annurev.biochem.67.1.753.CrossRefPubMed Massague J: TGF-β signal transduction. Annu Rev Biochem. 1998, 67: 753-791. 10.1146/annurev.biochem.67.1.753.CrossRefPubMed
15.
go back to reference Mehra A, Wrana JL: TGF-beta and the Smad signal transduction pathway. Biochem Cell Biol. 2002, 80: 605-622. 10.1139/o02-161.CrossRefPubMed Mehra A, Wrana JL: TGF-beta and the Smad signal transduction pathway. Biochem Cell Biol. 2002, 80: 605-622. 10.1139/o02-161.CrossRefPubMed
16.
go back to reference Ming DJ, Shu MZ, Hui X: An experimental study of extracellular signal-regulated kinase and its interventional treatments in hepatic fibrosis. Hepatobiliary Pancreat Dis Int. 2008, 7: 51-57. Ming DJ, Shu MZ, Hui X: An experimental study of extracellular signal-regulated kinase and its interventional treatments in hepatic fibrosis. Hepatobiliary Pancreat Dis Int. 2008, 7: 51-57.
17.
go back to reference Qiu BF, Du JX, Shen DZ: Mechanism of hepatocytes transdifferentiation to bile duct epithelial cells and intervention of huangqi decoction. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2010, 30: 513-518.PubMed Qiu BF, Du JX, Shen DZ: Mechanism of hepatocytes transdifferentiation to bile duct epithelial cells and intervention of huangqi decoction. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2010, 30: 513-518.PubMed
18.
go back to reference Schnabl B, Kweon YO, Frederick JP: The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology. 2001, 34: 89-100.CrossRefPubMed Schnabl B, Kweon YO, Frederick JP: The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology. 2001, 34: 89-100.CrossRefPubMed
19.
go back to reference Seyhan H, Hamzavi J, Wiercinska E: Liver fibrogenesis due to cholestasis is associated with increased Smad7 expression and Smad3 signalng. J Cell Mol Med. 2006, 10: 922-932. 10.1111/j.1582-4934.2006.tb00535.x.CrossRefPubMedPubMedCentral Seyhan H, Hamzavi J, Wiercinska E: Liver fibrogenesis due to cholestasis is associated with increased Smad7 expression and Smad3 signalng. J Cell Mol Med. 2006, 10: 922-932. 10.1111/j.1582-4934.2006.tb00535.x.CrossRefPubMedPubMedCentral
20.
go back to reference Shi LS, Zuo JG, Quan RZ: Effects of Chinese traditional compound, JinSanE, on expression of TGF-β1 and TGF-β1 type II receptor mRNA, Smad3 and Smad7 on experimental hepatic fibrosis in vivo. World J Gastroenterol. 2005, 11: 2269-2276.CrossRef Shi LS, Zuo JG, Quan RZ: Effects of Chinese traditional compound, JinSanE, on expression of TGF-β1 and TGF-β1 type II receptor mRNA, Smad3 and Smad7 on experimental hepatic fibrosis in vivo. World J Gastroenterol. 2005, 11: 2269-2276.CrossRef
21.
go back to reference Shi Y, Massague J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003, 113: 685-700. 10.1016/S0092-8674(03)00432-X.CrossRefPubMed Shi Y, Massague J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003, 113: 685-700. 10.1016/S0092-8674(03)00432-X.CrossRefPubMed
22.
go back to reference Sime PJ, O' Reilly KM: Fibrosis of the lung and other tissues: new concepts in pathogenesis and treatment. Clin Immunol. 2001, 99: 308-319. 10.1006/clim.2001.5008.CrossRefPubMed Sime PJ, O' Reilly KM: Fibrosis of the lung and other tissues: new concepts in pathogenesis and treatment. Clin Immunol. 2001, 99: 308-319. 10.1006/clim.2001.5008.CrossRefPubMed
23.
go back to reference Stedman C, Robertson G, Coulter S: Feed-forward regulation of bile acid detoxification by CYP3A4: studies in humanized transgenic mice. J Biol Chem. 2004, 279: 11336-11343. 10.1074/jbc.M310258200.CrossRefPubMed Stedman C, Robertson G, Coulter S: Feed-forward regulation of bile acid detoxification by CYP3A4: studies in humanized transgenic mice. J Biol Chem. 2004, 279: 11336-11343. 10.1074/jbc.M310258200.CrossRefPubMed
24.
go back to reference Tahashi Y, Matsuzaki K, Date M: Differential regulation of TGF-beta signal in hepatic stellate cells between acute and chronic rat liver injury. Hepatology. 2002, 35: 49-61. 10.1053/jhep.2002.30083.CrossRefPubMed Tahashi Y, Matsuzaki K, Date M: Differential regulation of TGF-beta signal in hepatic stellate cells between acute and chronic rat liver injury. Hepatology. 2002, 35: 49-61. 10.1053/jhep.2002.30083.CrossRefPubMed
25.
go back to reference Ten Dijke P, Hill CS: New insights into TGF-beta-Smad signalling. Trends Biochem Sci. 2004, 29: 265-273. 10.1016/j.tibs.2004.03.008.CrossRefPubMed Ten Dijke P, Hill CS: New insights into TGF-beta-Smad signalling. Trends Biochem Sci. 2004, 29: 265-273. 10.1016/j.tibs.2004.03.008.CrossRefPubMed
26.
go back to reference Uemura M, Swenson ES, Gaca MD: Smad2 and Smad3 play different roles in rat hepatic stellate cell function and alpha-smooth muscle actin organization. Mol Bilology Cell. 2005, 16: 4214-4224. 10.1091/mbc.E05-02-0149.CrossRef Uemura M, Swenson ES, Gaca MD: Smad2 and Smad3 play different roles in rat hepatic stellate cell function and alpha-smooth muscle actin organization. Mol Bilology Cell. 2005, 16: 4214-4224. 10.1091/mbc.E05-02-0149.CrossRef
27.
go back to reference Wahl SM: Transforming growth factor-beta: innately bipolar. Curr Opin Immunol. 2007, 19: 55-62. 10.1016/j.coi.2006.11.008.CrossRefPubMed Wahl SM: Transforming growth factor-beta: innately bipolar. Curr Opin Immunol. 2007, 19: 55-62. 10.1016/j.coi.2006.11.008.CrossRefPubMed
28.
go back to reference Watanabe H, de Caestecker MP, Yamada Y: Transcriptional cross-talk between Smad, ERK1/2, and p38 mitogen-activated protein kinase pathways regulates transforming growth factor-beta-induced aggrecan gene expression in chondrogenic ATDC5 cells. J Biol Chem. 2001, 276: 14466-14473.PubMed Watanabe H, de Caestecker MP, Yamada Y: Transcriptional cross-talk between Smad, ERK1/2, and p38 mitogen-activated protein kinase pathways regulates transforming growth factor-beta-induced aggrecan gene expression in chondrogenic ATDC5 cells. J Biol Chem. 2001, 276: 14466-14473.PubMed
29.
go back to reference Chen WY, Chen CJ, Liao JW: Chromium attenuates hepatic damage in a rat model of chronic cholestasis. Life Sci. 2009, 84: 606-614. 10.1016/j.lfs.2009.02.003.CrossRef Chen WY, Chen CJ, Liao JW: Chromium attenuates hepatic damage in a rat model of chronic cholestasis. Life Sci. 2009, 84: 606-614. 10.1016/j.lfs.2009.02.003.CrossRef
30.
31.
go back to reference Yoshiji H, Kuriyama S, Yoshii J: Angiotensin-II type 1 receptor interaction is a major regulator for liver fibrosis development in rats. Hepatology. 2001, 34: 745-750. 10.1053/jhep.2001.28231.CrossRefPubMed Yoshiji H, Kuriyama S, Yoshii J: Angiotensin-II type 1 receptor interaction is a major regulator for liver fibrosis development in rats. Hepatology. 2001, 34: 745-750. 10.1053/jhep.2001.28231.CrossRefPubMed
32.
go back to reference Nishikawa Y, Doi Y, Watanabe H: Transdifferentiation of mature rat hepatocytes into bile duct-like cells in Vitro. Am J Pathol. 2005, 166: 1077-1088. 10.1016/S0002-9440(10)62328-0.CrossRefPubMedPubMedCentral Nishikawa Y, Doi Y, Watanabe H: Transdifferentiation of mature rat hepatocytes into bile duct-like cells in Vitro. Am J Pathol. 2005, 166: 1077-1088. 10.1016/S0002-9440(10)62328-0.CrossRefPubMedPubMedCentral
33.
go back to reference Zhao J, Shi W, Wang YL: Smad3 deficiency attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Physiol Lung Cell Mol Physiol. 2002, 282: 585-593.CrossRef Zhao J, Shi W, Wang YL: Smad3 deficiency attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Physiol Lung Cell Mol Physiol. 2002, 282: 585-593.CrossRef
34.
go back to reference Zuo C, Xie C, Deng Y: Effect of Astragalus mongholicus on expression of transforming growth factor-beta1 in SD rats with unilateral ureteral occlusion. Zhongguo Zhong Yao Za Zhi. 2009, 34: 193-198.PubMed Zuo C, Xie C, Deng Y: Effect of Astragalus mongholicus on expression of transforming growth factor-beta1 in SD rats with unilateral ureteral occlusion. Zhongguo Zhong Yao Za Zhi. 2009, 34: 193-198.PubMed
Metadata
Title
Ingredients of Huangqi decoction slow biliary fibrosis progression by inhibiting the activation of the transforming growth factor-beta signaling pathway
Authors
Jin-Xing Du
Ming-Yu Sun
Guang-Li Du
Feng-Hua Li
Cheng Liu
Yong-Ping Mu
Gao-Feng Chen
Ai-Hua Long
Yan-Qin Bian
Jia Liu
Cheng-Hai Liu
Yi-Yang Hu
Lie-Ming Xu
Ping Liu
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2012
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/1472-6882-12-33

Other articles of this Issue 1/2012

BMC Complementary Medicine and Therapies 1/2012 Go to the issue