Skip to main content
Top
Published in: Virology Journal 1/2019

Open Access 01-12-2019 | Influenza Virus | Research

DMO-CAP inhibits influenza virus replication by activating heme oxygenase-1-mediated IFN response

Authors: Ming Zhong, Huiqiang Wang, Linlin Ma, Haiyan Yan, Shuo Wu, Zhengyi Gu, Yuhuan Li

Published in: Virology Journal | Issue 1/2019

Login to get access

Abstract

Background

As a leading cause of respiratory disease, influenza A virus (IAV) infection remains a pandemic threat in annual seasonal outbreaks. Given the limitation of existing anti-influenza therapeutic drugs, development of new drugs is urgently required. Flavonoids extracted from Artemisia rupestris L. have an inhibitory effect on virus infections. Despite this fact, the antiviral properties of 6-demethoxy-4′-O-methylcapillarisin (DMO-CAP), one of such flavonoids, against the influenza virus have not been reported. Thus, the aim of this study is to investigate the anti-IAV virus efficacy and antiviral mechanism of DMO-CAP.

Methods

The inhibitory activity of DMO-CAP against IAV was detected in vitro using viral titers by Western blot analysis, qRT-PCR, and immunofluorescence assays. The mechanism of DMO-CAP against influenza virus was analyzed by Western blot analysis, qRT-PCR, and luciferase assay.

Results

DMO-CAP exhibits broad spectrum of antiviral activities against IAV in vitro. Mechanistically, DMO-CAP treatment induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK), JNK MAPK, and ERK MAPK, which led to the activation of Nrf2/heme oxygenase-1 (HO-1) pathway. Then, the up-regulation of HO-1 expression activated the IFN response and induced the expression of IFN-stimulated genes, thereby leading to efficient anti-IAV effects.

Conclusions

DMO-CAP inhibited IAV replication by activating HO-1-mediated IFN response. DMO-CAP may be a potential agent or supplement against IAV infection.
Literature
1.
go back to reference Lansbury LE, Brown CS, Nguyen JS. Influenza in long-term care facilities. Influenza Other Respir Viruses. 2017;11:356–66.CrossRef Lansbury LE, Brown CS, Nguyen JS. Influenza in long-term care facilities. Influenza Other Respir Viruses. 2017;11:356–66.CrossRef
3.
go back to reference Vanderven HA, Liu L, Fernanda ASB, Nguyen TH, Wan Y, Wines B, Hogarth PM, Tilmanis D, Reynaldi A, Parsons MS, Hurt AC, Davenport MP, Kotsimbos T, Cheng AC, Kedzierska K, Zhang XY, Xu JQ, Stephen JK. Functional antibodies in humans with severe H7N9 and seasonal influenza. JCI insight. 2017;2:e92750.CrossRef Vanderven HA, Liu L, Fernanda ASB, Nguyen TH, Wan Y, Wines B, Hogarth PM, Tilmanis D, Reynaldi A, Parsons MS, Hurt AC, Davenport MP, Kotsimbos T, Cheng AC, Kedzierska K, Zhang XY, Xu JQ, Stephen JK. Functional antibodies in humans with severe H7N9 and seasonal influenza. JCI insight. 2017;2:e92750.CrossRef
4.
go back to reference Wong SS, Webby RJ. Traditional and new influenza vaccines. Clin Microbiol Rev. 2013;26:476–92.CrossRef Wong SS, Webby RJ. Traditional and new influenza vaccines. Clin Microbiol Rev. 2013;26:476–92.CrossRef
5.
go back to reference Erhard MS, Pieter F, Charles B, Albert O. Influenza virus resistance to antiviral therapy. Adv Pharmacol. 2013;67:217–46.CrossRef Erhard MS, Pieter F, Charles B, Albert O. Influenza virus resistance to antiviral therapy. Adv Pharmacol. 2013;67:217–46.CrossRef
6.
go back to reference Koszalka P, Tilmanis D, Hurt AC. Influenza antivirals currently in late-phase clinical trial. Influenza Other Respir Viruses. 2017;11:240–6.CrossRef Koszalka P, Tilmanis D, Hurt AC. Influenza antivirals currently in late-phase clinical trial. Influenza Other Respir Viruses. 2017;11:240–6.CrossRef
7.
go back to reference Hayden F. Baloxavir Marboxil for uncomplicated influenza in adults and adolescents. N Engl J Med. 2018;379:913–23.CrossRef Hayden F. Baloxavir Marboxil for uncomplicated influenza in adults and adolescents. N Engl J Med. 2018;379:913–23.CrossRef
9.
go back to reference Clark AM, DeDiego ML, Anderson CS, Wang J, Yang H, Nogales A, Martinez-Sobrido L, Zand MS, Sangster MY, Topham DJ. Antigenicity of the 2015-2016 seasonal H1N1 human influenza virus HA and NA proteins. PLoS One. 2017;12:e0188267.CrossRef Clark AM, DeDiego ML, Anderson CS, Wang J, Yang H, Nogales A, Martinez-Sobrido L, Zand MS, Sangster MY, Topham DJ. Antigenicity of the 2015-2016 seasonal H1N1 human influenza virus HA and NA proteins. PLoS One. 2017;12:e0188267.CrossRef
10.
go back to reference Baillie JK, Paul D. Influenza-time to target the host? N Engl J Med. 2013;369:191–3.CrossRef Baillie JK, Paul D. Influenza-time to target the host? N Engl J Med. 2013;369:191–3.CrossRef
11.
go back to reference Mandal P, Roychowdhury S, Park PH, Pratt BT, Roger T, Nagy LE. Adiponectin and heme oxygenase-1 suppress TLR4/MyD88-independent signaling in rat Kupffer cells and in mice after chronic ethanol exposure. J Immunol. 2010;185:4928–37.CrossRef Mandal P, Roychowdhury S, Park PH, Pratt BT, Roger T, Nagy LE. Adiponectin and heme oxygenase-1 suppress TLR4/MyD88-independent signaling in rat Kupffer cells and in mice after chronic ethanol exposure. J Immunol. 2010;185:4928–37.CrossRef
12.
go back to reference Ma LL, Zhang P, Wang HQ, Li YF, Hu J, Jiang JD, Li YH. heme oxygenase-1 agonist CoPP suppresses influenza virus replication through IRF3-mediated generation of IFN-α/β. Virol. 2019;528:80-88. Ma LL, Zhang P, Wang HQ, Li YF, Hu J, Jiang JD, Li YH. heme oxygenase-1 agonist CoPP suppresses influenza virus replication through IRF3-mediated generation of IFN-α/β. Virol. 2019;528:80-88.
13.
go back to reference Hill BL, Halfmann P, Neumann G, Kawaoka Y. The cytoprotective enzyme heme oxygenase-1 suppresses Ebola virus replication. J Virol. 2013;87:13795–802.CrossRef Hill BL, Halfmann P, Neumann G, Kawaoka Y. The cytoprotective enzyme heme oxygenase-1 suppresses Ebola virus replication. J Virol. 2013;87:13795–802.CrossRef
14.
go back to reference Bunse CE, Fortmeier V, Tischer S. Modulation of heme oxygenase-1 by metalloporphyrins increases anti-viral T cell responses. Clin Exp Immunol. 2015;179:265–76.CrossRef Bunse CE, Fortmeier V, Tischer S. Modulation of heme oxygenase-1 by metalloporphyrins increases anti-viral T cell responses. Clin Exp Immunol. 2015;179:265–76.CrossRef
15.
go back to reference Hossain MK, Saha SK, Abdal Dayem A. Bax Inhibitor-1 acts as an anti-influenza factor by inhibiting ROS mediated cell death and augmenting Heme-oxygenase 1 expression in influenza virus infected cells. Int J Mol Sci. 2018;19:712.CrossRef Hossain MK, Saha SK, Abdal Dayem A. Bax Inhibitor-1 acts as an anti-influenza factor by inhibiting ROS mediated cell death and augmenting Heme-oxygenase 1 expression in influenza virus infected cells. Int J Mol Sci. 2018;19:712.CrossRef
16.
go back to reference Ma LL, Wang HQ, Wu P, Hu J, Yin JQ, Wu S, Ge M, Sun WF, Zhao JY, Aisa HA, Li YH, Jiang JD. Rupestonic acid derivative YZH-106 suppresses influenza virus replication by activation of heme oxygenase-1-mediated interferon response. Free Radic Biol Med. 2016;96:347–61.CrossRef Ma LL, Wang HQ, Wu P, Hu J, Yin JQ, Wu S, Ge M, Sun WF, Zhao JY, Aisa HA, Li YH, Jiang JD. Rupestonic acid derivative YZH-106 suppresses influenza virus replication by activation of heme oxygenase-1-mediated interferon response. Free Radic Biol Med. 2016;96:347–61.CrossRef
17.
go back to reference Cummins NW, Weaver EA, May SM. Heme oxygenase-1 regulates the immune response to influenza virus infection and vaccination in aged mice. FASEB J. 2012;26:2911–8.CrossRef Cummins NW, Weaver EA, May SM. Heme oxygenase-1 regulates the immune response to influenza virus infection and vaccination in aged mice. FASEB J. 2012;26:2911–8.CrossRef
18.
go back to reference Yang L, Zhang SW, Liu ZQ, He JH, Rong XJ, Gu ZY XinJiang Medi University 2016; 5: 579. Yang L, Zhang SW, Liu ZQ, He JH, Rong XJ, Gu ZY XinJiang Medi University 2016; 5: 579.
19.
go back to reference Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J. 2013;2013:162750. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J. 2013;2013:162750.
20.
go back to reference Liu AL, Liu B, Qin HL, Lee SM, Wang YT, Du GH. Anti-influenza virus activities of flavonoids from the medicinal plant Elsholtzia rugulosa. Planta Med. 2008;74:847–51.CrossRef Liu AL, Liu B, Qin HL, Lee SM, Wang YT, Du GH. Anti-influenza virus activities of flavonoids from the medicinal plant Elsholtzia rugulosa. Planta Med. 2008;74:847–51.CrossRef
21.
go back to reference Serkedjieva J, Ivancheva S. Antiherpes virus activity of extracts from the medicinal plant Geranium sanguineum L. J Ethnopharmacol. 1998;64:59–68.CrossRef Serkedjieva J, Ivancheva S. Antiherpes virus activity of extracts from the medicinal plant Geranium sanguineum L. J Ethnopharmacol. 1998;64:59–68.CrossRef
22.
go back to reference Hashiba T, Suzuki M, Nagashima Y, Suzuki S, Inoue S, Tsuburai T, Matsuse T, Ishigatubo Y. Adenovirus-mediated transfer of heme oxygenase-1 cDNA attenuates severe lung injury induced by the influenza virus in mice. Gene Ther. 2001;8:1499–150720.CrossRef Hashiba T, Suzuki M, Nagashima Y, Suzuki S, Inoue S, Tsuburai T, Matsuse T, Ishigatubo Y. Adenovirus-mediated transfer of heme oxygenase-1 cDNA attenuates severe lung injury induced by the influenza virus in mice. Gene Ther. 2001;8:1499–150720.CrossRef
23.
go back to reference Choi AM, Knobil K, Otterbein SL, Eastman DA, Jacoby DB. Oxidant stress responses in influenza virus pneumonia: gene expression and transcription factor activation. Am J Phys. 1996;271:L383–L39121. Choi AM, Knobil K, Otterbein SL, Eastman DA, Jacoby DB. Oxidant stress responses in influenza virus pneumonia: gene expression and transcription factor activation. Am J Phys. 1996;271:L383–L39121.
24.
go back to reference Maines MD. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 1988;2:2557–256823.CrossRef Maines MD. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 1988;2:2557–256823.CrossRef
25.
go back to reference Applegate LA, Luscher P, Tyrrell RM. Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells. Cancer Res. 1991;51:974–8.PubMed Applegate LA, Luscher P, Tyrrell RM. Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells. Cancer Res. 1991;51:974–8.PubMed
26.
go back to reference Jawed A, Daniel S, Cheri T, Sujji B, Augustine MK, Choi JL. Cook. Nrf2, a Cap’n’Collar transcription factor, regulates induction of the Heme Oxygenase-1 gene cell Microbiol. J Biol Chem. 1999;274:26071–8.CrossRef Jawed A, Daniel S, Cheri T, Sujji B, Augustine MK, Choi JL. Cook. Nrf2, a Cap’n’Collar transcription factor, regulates induction of the Heme Oxygenase-1 gene cell Microbiol. J Biol Chem. 1999;274:26071–8.CrossRef
27.
go back to reference Maruyama A, Mimura J, Harada N, Itoh K. Nrf2 activation is associated with Z-DNA formation in the human HO-1 promoter. Nucleic Acids Res. 2013;41:5223–34.CrossRef Maruyama A, Mimura J, Harada N, Itoh K. Nrf2 activation is associated with Z-DNA formation in the human HO-1 promoter. Nucleic Acids Res. 2013;41:5223–34.CrossRef
28.
go back to reference Wang B, Pakpour N, Napoli E. Anopheles stephensi p38 MAPK signaling regulates innate immunity and bioenergetics during plasmodium falciparum infection. Parasit Vectors. 2015;8:424.CrossRef Wang B, Pakpour N, Napoli E. Anopheles stephensi p38 MAPK signaling regulates innate immunity and bioenergetics during plasmodium falciparum infection. Parasit Vectors. 2015;8:424.CrossRef
29.
go back to reference Taruna A, Georgia FS, Mark JE, Diane FJ. Dissociation between IFN-α-induced anti-viral and growth signaling pathways. J Immunol. 1999;162:3289–97. Taruna A, Georgia FS, Mark JE, Diane FJ. Dissociation between IFN-α-induced anti-viral and growth signaling pathways. J Immunol. 1999;162:3289–97.
30.
go back to reference Zhao M, Guo H, Chen J. 5-aminolevulinic acid combined with sodium ferrous citrate ameliorates H2O2-induced cardiomyocyte hypertrophy via activation of the MAPK/Nrf2/HO-1 pathway. ajpcell. 2015;31:00369. Zhao M, Guo H, Chen J. 5-aminolevulinic acid combined with sodium ferrous citrate ameliorates H2O2-induced cardiomyocyte hypertrophy via activation of the MAPK/Nrf2/HO-1 pathway. ajpcell. 2015;31:00369.
31.
go back to reference Tzima S, Victoratos P, Kranidioti K, Alexiou M, Kollias G. Myeloid heme oxygenase-1 regulates innate immunity and autoimmunity by modulating IFN-beta production. J Exp Med. 2009;206:1167–79.CrossRef Tzima S, Victoratos P, Kranidioti K, Alexiou M, Kollias G. Myeloid heme oxygenase-1 regulates innate immunity and autoimmunity by modulating IFN-beta production. J Exp Med. 2009;206:1167–79.CrossRef
32.
go back to reference Tseng CK, Lin CK, Wu YH. Human heme oxygenase 1 is a potential host cell factor against dengue virus replication. Sci Rep. 2016;6:32176.CrossRef Tseng CK, Lin CK, Wu YH. Human heme oxygenase 1 is a potential host cell factor against dengue virus replication. Sci Rep. 2016;6:32176.CrossRef
33.
go back to reference Hull TD, Agarwal A, George JF. The mononuclear phagocyte system in homeostasis and disease: a role for heme oxygenase-1. Antioxid Redox Signal. 2014;20:1770–88.CrossRef Hull TD, Agarwal A, George JF. The mononuclear phagocyte system in homeostasis and disease: a role for heme oxygenase-1. Antioxid Redox Signal. 2014;20:1770–88.CrossRef
34.
go back to reference Kovacsics CE, Gill AJ, Ambegaokar SS, Gelman BB, Kolson DL. Degradation of heme oxygenase-1 by the immunoproteasome in astrocytes: a potential interferon-γ-dependent mechanism contributing to HIV neuropathogenesis. Glia. 2017;65:1264–77.CrossRef Kovacsics CE, Gill AJ, Ambegaokar SS, Gelman BB, Kolson DL. Degradation of heme oxygenase-1 by the immunoproteasome in astrocytes: a potential interferon-γ-dependent mechanism contributing to HIV neuropathogenesis. Glia. 2017;65:1264–77.CrossRef
35.
go back to reference Kesic MJ, Simmons SO, Bauer R, Jaspers I. Nrf2 expression modifies influenza a entry and replication in nasal epithelial cells. Free Radic Biol Med. 2011;51:444–53.CrossRef Kesic MJ, Simmons SO, Bauer R, Jaspers I. Nrf2 expression modifies influenza a entry and replication in nasal epithelial cells. Free Radic Biol Med. 2011;51:444–53.CrossRef
36.
go back to reference Ibáñez FJ, Farías MA, Retamal-Díaz A, Espinoza JA, Kalergis AM, González PA. Pharmacological induction of Heme Oxygenase-1 impairs nuclear accumulation of herpes simplex virus capsids upon infection. Front Microbiol. 2017;8:2108.CrossRef Ibáñez FJ, Farías MA, Retamal-Díaz A, Espinoza JA, Kalergis AM, González PA. Pharmacological induction of Heme Oxygenase-1 impairs nuclear accumulation of herpes simplex virus capsids upon infection. Front Microbiol. 2017;8:2108.CrossRef
37.
go back to reference Anthony JS, Bryan RGW. Interferon-inducible antiviral effectors. Nat Rev Immunol. 2008;8:559–68.CrossRef Anthony JS, Bryan RGW. Interferon-inducible antiviral effectors. Nat Rev Immunol. 2008;8:559–68.CrossRef
38.
go back to reference Traboulsi H, Cloutier A, Boyapelly K. The flavonoid Isoliquiritigenin reduces lung inflammation and mouse morbidity during influenza virus infection. Antimicrob Agents Chemother. 2015;59:6317–27.CrossRef Traboulsi H, Cloutier A, Boyapelly K. The flavonoid Isoliquiritigenin reduces lung inflammation and mouse morbidity during influenza virus infection. Antimicrob Agents Chemother. 2015;59:6317–27.CrossRef
39.
go back to reference Zhong M, Wang HQ, Yan HY, Wu S, Gu ZY, Li YH. Santin inhibits influenza a virus replication through regulating MAPKs and NF-κB pathways. J Asian Nat Prod Res. 2018;10:1–10.CrossRef Zhong M, Wang HQ, Yan HY, Wu S, Gu ZY, Li YH. Santin inhibits influenza a virus replication through regulating MAPKs and NF-κB pathways. J Asian Nat Prod Res. 2018;10:1–10.CrossRef
Metadata
Title
DMO-CAP inhibits influenza virus replication by activating heme oxygenase-1-mediated IFN response
Authors
Ming Zhong
Huiqiang Wang
Linlin Ma
Haiyan Yan
Shuo Wu
Zhengyi Gu
Yuhuan Li
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2019
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-019-1125-9

Other articles of this Issue 1/2019

Virology Journal 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.