Skip to main content
Top
Published in: BMC Public Health 1/2019

Open Access 01-12-2019 | Research article

Influence of the built environment of Nanjing’s Urban Community on the leisure physical activity of the elderly: an empirical study

Authors: Zhi-jian Wu, Yanliqing Song, Hou-lei Wang, Fan Zhang, Fang-hui Li, Zhu-ying Wang

Published in: BMC Public Health | Issue 1/2019

Login to get access

Abstract

Background

Urbanization and aging are global phenomena that offer unique challenges in different countries. A supportive environment plays an important role in addressing the issues of health behavioral change and health promotion (e.g., prevent chronic illnesses, promote mental health) among older adults. With the development of the socio-ecological theoretical model, studies on the impact of supportive environments on physical activity have become popular in the public health field in the EU and US. Meanwhile, very few Chinese studies have examined the relationship between built environment features and older adults’ physical activity at the ecological level. The purpose of the study is to investigate how the factors part of the built environment of Nanjing’s communities also influence leisure time physical activity among the elderly.

Methods

Using a socio-ecological model as a theoretical framework, we conducted a cross-sectional study of 399 elderly people from 19 communities in Nanjing, China, using a one-on-one questionnaire to collect data, including participants’ perceived built environment and self-reported physical activity. A multivariate linear regression method was used to analyze the factors influencing their recreational physical activity.

Results

This study found that compared to older people with low average monthly income, the recreational physical activity of the elderly with average monthly incomes between 1001 and 2000 ¥ (β = 23.31, p < 0.001) and 2001 ¥ or more (β = 21.15, p < 0.001) are significantly higher. After controlling for individual covariates, street connectivity (β = 7.34, p = 0.030) and street pavement slope (β = − 7.72, p = 0.020), we found that two out of ten built environment factors indicators influence their physical activity. The importance of each influencing factor ranked from highest to lowest are monthly average income, street pavement slope, and street connectivity. Other factors were not significantly related to recreational physical activity by the elderly.

Conclusions

Older adults with a high income were more likely to participate in recreational physical activity than those with a low income. In order to positively impact physical activity in older adults and ultimately improve health, policymakers and urban planners need to ensure that street connectivity and street pavement slope are factored into the design and development of the urban environment.
Literature
1.
go back to reference Leung GM, Lu JR, Meng Q. Mainland China, Hong Kong, and Taiwan, Health Systems of. In: Quah SR, editor. International Encyclopedia of Public Health. 2nd ed. Oxford: Academic; 2017. p. 515–28.CrossRef Leung GM, Lu JR, Meng Q. Mainland China, Hong Kong, and Taiwan, Health Systems of. In: Quah SR, editor. International Encyclopedia of Public Health. 2nd ed. Oxford: Academic; 2017. p. 515–28.CrossRef
2.
go back to reference Gagnon E, Johannsen BK, López-Salido D. Comment on the demographic deficit. J Monetary Econ. 2018;93:63–7.CrossRef Gagnon E, Johannsen BK, López-Salido D. Comment on the demographic deficit. J Monetary Econ. 2018;93:63–7.CrossRef
3.
go back to reference Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol. 2012;2(2):1143–211.PubMedPubMedCentral Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol. 2012;2(2):1143–211.PubMedPubMedCentral
4.
go back to reference Mayosi BM, Flisher AJ, Lalloo UG, Sitas F, Tollman SM, Bradshaw D. The burden of non-communicable diseases in South Africa. Lancet. 2009;374(9693):934–47.PubMedCrossRef Mayosi BM, Flisher AJ, Lalloo UG, Sitas F, Tollman SM, Bradshaw D. The burden of non-communicable diseases in South Africa. Lancet. 2009;374(9693):934–47.PubMedCrossRef
5.
go back to reference Reiner M, Niermann C, Jekauc D, Woll A. Long-term health benefits of physical activity--a systematic review of longitudinal studies. BMC Public Health. 2013;13:813.PubMedPubMedCentralCrossRef Reiner M, Niermann C, Jekauc D, Woll A. Long-term health benefits of physical activity--a systematic review of longitudinal studies. BMC Public Health. 2013;13:813.PubMedPubMedCentralCrossRef
6.
go back to reference DiPietro L: Physical activity in aging: changes in patterns and their relationship to health and function. J Gerontol A Biol Sci Med Sci 2001, 56 Spec No 2:13–22. DiPietro L: Physical activity in aging: changes in patterns and their relationship to health and function. J Gerontol A Biol Sci Med Sci 2001, 56 Spec No 2:13–22.
7.
go back to reference Nawrocka A, Mynarski W. Objective assessment of adherence to global recommendations on physical activity for health in relation to Spirometric values in nonsmoker women aged 60-75 years. J Aging Phys Act. 2017;25(1):123–7.PubMedCrossRef Nawrocka A, Mynarski W. Objective assessment of adherence to global recommendations on physical activity for health in relation to Spirometric values in nonsmoker women aged 60-75 years. J Aging Phys Act. 2017;25(1):123–7.PubMedCrossRef
8.
go back to reference The World Health report 2002. MIDWIFERY 2003, 19(1):72–73. The World Health report 2002. MIDWIFERY 2003, 19(1):72–73.
9.
go back to reference Gibbs BB, Brach JS, Byard T, Creasy S, Davis KK, McCoy S, Peluso A, Rogers RJ, Rupp K, Jakicic JM. Reducing sedentary behavior versus increasing moderate-to-vigorous intensity physical activity in older adults: a 12-week randomized, Clinical Trial. J Aging Health. 2017;29(2):247–67.CrossRef Gibbs BB, Brach JS, Byard T, Creasy S, Davis KK, McCoy S, Peluso A, Rogers RJ, Rupp K, Jakicic JM. Reducing sedentary behavior versus increasing moderate-to-vigorous intensity physical activity in older adults: a 12-week randomized, Clinical Trial. J Aging Health. 2017;29(2):247–67.CrossRef
10.
go back to reference Bronfenbrenner U. The ecology of human development: experiments by nature and design; 1979. Bronfenbrenner U. The ecology of human development: experiments by nature and design; 1979.
11.
go back to reference McLeroy KR, Bibeau D, Steckler A, Glanz K. An ecological perspective on health promotion programs. Health Educ Q. 1988;15(4):351–77.PubMedCrossRef McLeroy KR, Bibeau D, Steckler A, Glanz K. An ecological perspective on health promotion programs. Health Educ Q. 1988;15(4):351–77.PubMedCrossRef
12.
go back to reference Pan SY, Cameron C, Desmeules M, Morrison H, Craig CL, Jiang X. Individual, social, environmental, and physical environmental correlates with physical activity among Canadians: a cross-sectional study. BMC Public Health. 2009;9:21.PubMedPubMedCentralCrossRef Pan SY, Cameron C, Desmeules M, Morrison H, Craig CL, Jiang X. Individual, social, environmental, and physical environmental correlates with physical activity among Canadians: a cross-sectional study. BMC Public Health. 2009;9:21.PubMedPubMedCentralCrossRef
13.
go back to reference Cunningham GO, Michael YL. Concepts guiding the study of the impact of the built environment on physical activity for older adults: a review of the literature. Am J Health Promot. 2004;18(6):435–43.PubMedPubMedCentralCrossRef Cunningham GO, Michael YL. Concepts guiding the study of the impact of the built environment on physical activity for older adults: a review of the literature. Am J Health Promot. 2004;18(6):435–43.PubMedPubMedCentralCrossRef
14.
go back to reference Levinger P, Sales M, Polman R, Haines T, Dow B, Biddle S, Duque G, Hill KD. Outdoor physical activity for older people-the senior exercise park: current research, challenges and future directions. Health Promot J Austr. 2018;29(3):353–9.PubMedCrossRef Levinger P, Sales M, Polman R, Haines T, Dow B, Biddle S, Duque G, Hill KD. Outdoor physical activity for older people-the senior exercise park: current research, challenges and future directions. Health Promot J Austr. 2018;29(3):353–9.PubMedCrossRef
15.
go back to reference Barnett DW, Barnett A, Nathan A, Van Cauwenberg J, Cerin E. Built environmental correlates of older adults’ total physical activity and walking: a systematic review and meta-analysis. Int J Behav Nutr Phys Act. 2017;14(1):103.PubMedPubMedCentralCrossRef Barnett DW, Barnett A, Nathan A, Van Cauwenberg J, Cerin E. Built environmental correlates of older adults’ total physical activity and walking: a systematic review and meta-analysis. Int J Behav Nutr Phys Act. 2017;14(1):103.PubMedPubMedCentralCrossRef
16.
go back to reference Van Cauwenberg J, Nathan A, Barnett A, Barnett DW, Cerin E. Relationships between Neighbourhood physical environmental attributes and older Adults’ leisure-time physical activity: a systematic review and meta-analysis. Sports Med. 2018;48(7):1635–60.PubMedCrossRef Van Cauwenberg J, Nathan A, Barnett A, Barnett DW, Cerin E. Relationships between Neighbourhood physical environmental attributes and older Adults’ leisure-time physical activity: a systematic review and meta-analysis. Sports Med. 2018;48(7):1635–60.PubMedCrossRef
17.
go back to reference Hanibuchi T, Kawachi I, Nakaya T, Hirai H, Kondo K. Neighborhood built environment and physical activity of Japanese older adults: results from the Aichi Gerontological Evaluation Study (AGES). BMC Public Health. 2011;11:657.PubMedPubMedCentralCrossRef Hanibuchi T, Kawachi I, Nakaya T, Hirai H, Kondo K. Neighborhood built environment and physical activity of Japanese older adults: results from the Aichi Gerontological Evaluation Study (AGES). BMC Public Health. 2011;11:657.PubMedPubMedCentralCrossRef
18.
go back to reference Smith M, Hosking J, Woodward A, Witten K, MacMillan A, Field A, Baas P, Mackie H. Systematic literature review of built environment effects on physical activity and active transport - an update and new findings on health equity. Int J Behav Nutr Phys Act. 2017;14(1):158.PubMedPubMedCentralCrossRef Smith M, Hosking J, Woodward A, Witten K, MacMillan A, Field A, Baas P, Mackie H. Systematic literature review of built environment effects on physical activity and active transport - an update and new findings on health equity. Int J Behav Nutr Phys Act. 2017;14(1):158.PubMedPubMedCentralCrossRef
19.
go back to reference Sallis JF, Conway TL, Dillon LI, Frank LD, Adams MA, Cain KL, Saelens BE. Environmental and demographic correlates of bicycling. Prev Med. 2013;57(5):456–60.PubMedPubMedCentralCrossRef Sallis JF, Conway TL, Dillon LI, Frank LD, Adams MA, Cain KL, Saelens BE. Environmental and demographic correlates of bicycling. Prev Med. 2013;57(5):456–60.PubMedPubMedCentralCrossRef
20.
go back to reference McGinn AP, Evenson KR, Herring AH, Huston SL, Rodriguez DA. Exploring associations between physical activity and perceived and objective measures of the built environment. J Urban Health. 2007;84(2):162–84.PubMedPubMedCentralCrossRef McGinn AP, Evenson KR, Herring AH, Huston SL, Rodriguez DA. Exploring associations between physical activity and perceived and objective measures of the built environment. J Urban Health. 2007;84(2):162–84.PubMedPubMedCentralCrossRef
21.
go back to reference Baruch Y, Holtom BC. Survey response rate levels and trends in organizational research. Hum Relat. 2008;61(8):1139–60.CrossRef Baruch Y, Holtom BC. Survey response rate levels and trends in organizational research. Hum Relat. 2008;61(8):1139–60.CrossRef
22.
go back to reference Sallis JF, Johnson MF, Calfas KJ, Caparosa S, Nichols JF. Assessing perceived physical environmental variables that may influence physical activity. Res Q Exerc Sport. 1997;68(4):345–51.PubMedCrossRef Sallis JF, Johnson MF, Calfas KJ, Caparosa S, Nichols JF. Assessing perceived physical environmental variables that may influence physical activity. Res Q Exerc Sport. 1997;68(4):345–51.PubMedCrossRef
23.
go back to reference Cerin E, Saelens BE, Sallis JF, Frank LD. Neighborhood environment walkability scale: validity and development of a short form. Med Sci Sports Exerc. 2006;38(9):1682–91.PubMedCrossRef Cerin E, Saelens BE, Sallis JF, Frank LD. Neighborhood environment walkability scale: validity and development of a short form. Med Sci Sports Exerc. 2006;38(9):1682–91.PubMedCrossRef
24.
go back to reference Saelens BE, Sallis JF, Black JB, Chen D. Neighborhood-based differences in physical activity: an environment scale evaluation. Am J Public Health. 2003;93(9):1552–8.PubMedPubMedCentralCrossRef Saelens BE, Sallis JF, Black JB, Chen D. Neighborhood-based differences in physical activity: an environment scale evaluation. Am J Public Health. 2003;93(9):1552–8.PubMedPubMedCentralCrossRef
25.
go back to reference Ding D, Sallis JF, Conway TL, Saelens BE, Frank LD, Cain KL, Slymen DJ. Interactive effects of built environment and psychosocial attributes on physical activity: a test of ecological models. Ann Behav Med. 2012;44(3):365–74.PubMedCrossRef Ding D, Sallis JF, Conway TL, Saelens BE, Frank LD, Cain KL, Slymen DJ. Interactive effects of built environment and psychosocial attributes on physical activity: a test of ecological models. Ann Behav Med. 2012;44(3):365–74.PubMedCrossRef
26.
go back to reference Kolbe-Alexander TL, Pacheco K, Tomaz SA, Karpul D, Lambert EV. The relationship between the built environment and habitual levels of physical activity in south African older adults: a pilot study. BMC Public Health. 2015;15:518.PubMedPubMedCentralCrossRef Kolbe-Alexander TL, Pacheco K, Tomaz SA, Karpul D, Lambert EV. The relationship between the built environment and habitual levels of physical activity in south African older adults: a pilot study. BMC Public Health. 2015;15:518.PubMedPubMedCentralCrossRef
27.
go back to reference Washburn RA, McAuley E, Katula J, Mihalko SL, Boileau RA. The physical activity scale for the elderly (PASE): evidence for validity. J Clin Epidemiol. 1999;52(7):643–51.PubMedCrossRef Washburn RA, McAuley E, Katula J, Mihalko SL, Boileau RA. The physical activity scale for the elderly (PASE): evidence for validity. J Clin Epidemiol. 1999;52(7):643–51.PubMedCrossRef
28.
go back to reference Nagel CL, Carlson NE, Bosworth M, Michael YL. The relation between neighborhood built environment and walking activity among older adults. Am J Epidemiol. 2008;168(4):461–8.PubMedPubMedCentralCrossRef Nagel CL, Carlson NE, Bosworth M, Michael YL. The relation between neighborhood built environment and walking activity among older adults. Am J Epidemiol. 2008;168(4):461–8.PubMedPubMedCentralCrossRef
29.
go back to reference Canizares M, Badley EM. Generational differences in patterns of physical activities over time in the Canadian population: an age-period-cohort analysis. BMC Public Health. 2018;18(1):304.PubMedPubMedCentralCrossRef Canizares M, Badley EM. Generational differences in patterns of physical activities over time in the Canadian population: an age-period-cohort analysis. BMC Public Health. 2018;18(1):304.PubMedPubMedCentralCrossRef
30.
go back to reference Yang W, Spears K, Zhang F, Lee W, Himler HL. Evaluation of personal and built environment attributes to physical activity: a multilevel analysis on multiple population-based data sources. J Obes. 2012;2012:548910.PubMedPubMedCentralCrossRef Yang W, Spears K, Zhang F, Lee W, Himler HL. Evaluation of personal and built environment attributes to physical activity: a multilevel analysis on multiple population-based data sources. J Obes. 2012;2012:548910.PubMedPubMedCentralCrossRef
31.
go back to reference Cheah YK, Azahadi M, Phang SN, Hazilah N. Factors affecting participation decision and amount of physical activity among urban dwellers in Malaysia. Public Health. 2017;146:84–91.PubMedCrossRef Cheah YK, Azahadi M, Phang SN, Hazilah N. Factors affecting participation decision and amount of physical activity among urban dwellers in Malaysia. Public Health. 2017;146:84–91.PubMedCrossRef
32.
go back to reference Alemu ZA, Ahmed AA, Yalew AW, Birhanu BS. Non random distribution of child undernutrition in Ethiopia: spatial analysis from the 2011 Ethiopia demographic and health survey. Int J Equity Health. 2016;15(1):198.PubMedPubMedCentralCrossRef Alemu ZA, Ahmed AA, Yalew AW, Birhanu BS. Non random distribution of child undernutrition in Ethiopia: spatial analysis from the 2011 Ethiopia demographic and health survey. Int J Equity Health. 2016;15(1):198.PubMedPubMedCentralCrossRef
33.
go back to reference Lachman ME, Lipsitz L, Lubben J, Castaneda-Sceppa C, Jette AM. When adults Don't exercise: behavioral strategies to increase physical activity in sedentary middle-aged and older adults. Innov Aging. 2018;2(1):y7.CrossRef Lachman ME, Lipsitz L, Lubben J, Castaneda-Sceppa C, Jette AM. When adults Don't exercise: behavioral strategies to increase physical activity in sedentary middle-aged and older adults. Innov Aging. 2018;2(1):y7.CrossRef
34.
go back to reference Pannerec A, Springer M, Migliavacca E, Ireland A, Piasecki M, Karaz S, Jacot G, Metairon S, Danenberg E, Raymond F, et al. A robust neuromuscular system protects rat and human skeletal muscle from sarcopenia. Aging (Albany NY). 2016;8(4):712–29.PubMedCentralCrossRef Pannerec A, Springer M, Migliavacca E, Ireland A, Piasecki M, Karaz S, Jacot G, Metairon S, Danenberg E, Raymond F, et al. A robust neuromuscular system protects rat and human skeletal muscle from sarcopenia. Aging (Albany NY). 2016;8(4):712–29.PubMedCentralCrossRef
35.
go back to reference Leskinen T, Stenholm S, Aalto V, Head J, Kivimaki M, Vahtera J. Physical activity level as a predictor of healthy and chronic disease-free life expectancy between ages 50 and 75. Age Ageing. 2018;47(3):423–9.PubMedCrossRef Leskinen T, Stenholm S, Aalto V, Head J, Kivimaki M, Vahtera J. Physical activity level as a predictor of healthy and chronic disease-free life expectancy between ages 50 and 75. Age Ageing. 2018;47(3):423–9.PubMedCrossRef
36.
go back to reference de Sa E, Ardern CI. Associations between the built environment, total, recreational, and transit-related physical activity. BMC Public Health. 2014;14:693.PubMedPubMedCentralCrossRef de Sa E, Ardern CI. Associations between the built environment, total, recreational, and transit-related physical activity. BMC Public Health. 2014;14:693.PubMedPubMedCentralCrossRef
37.
go back to reference Marcucci DJ, Jordan LM. Benefits and challenges of linking green infrastructure and highway planning in the United States. Environ Manag. 2013;51(1):182–97.CrossRef Marcucci DJ, Jordan LM. Benefits and challenges of linking green infrastructure and highway planning in the United States. Environ Manag. 2013;51(1):182–97.CrossRef
38.
go back to reference Foster S, Giles-Corti B. The built environment, neighborhood crime and constrained physical activity: an exploration of inconsistent findings. Prev Med. 2008;47(3):241–51.PubMedCrossRef Foster S, Giles-Corti B. The built environment, neighborhood crime and constrained physical activity: an exploration of inconsistent findings. Prev Med. 2008;47(3):241–51.PubMedCrossRef
39.
go back to reference Su M, Tan YY, Liu QM, Ren YJ, Kawachi I, Li LM, Lv J. Association between perceived urban built environment attributes and leisure-time physical activity among adults in Hangzhou, China. Prev Med. 2014;66:60–4.PubMedCrossRef Su M, Tan YY, Liu QM, Ren YJ, Kawachi I, Li LM, Lv J. Association between perceived urban built environment attributes and leisure-time physical activity among adults in Hangzhou, China. Prev Med. 2014;66:60–4.PubMedCrossRef
40.
go back to reference Gomez LF, Parra DC, Buchner D, Brownson RC, Sarmiento OL, Pinzon JD, Ardila M, Moreno J, Serrato M, Lobelo F. Built environment attributes and walking patterns among the elderly population in Bogota. Am J Prev Med. 2010;38(6):592–9.PubMedCrossRef Gomez LF, Parra DC, Buchner D, Brownson RC, Sarmiento OL, Pinzon JD, Ardila M, Moreno J, Serrato M, Lobelo F. Built environment attributes and walking patterns among the elderly population in Bogota. Am J Prev Med. 2010;38(6):592–9.PubMedCrossRef
41.
go back to reference Forsyth A, Michael Oakes J, Lee B, Schmitz KH. The built environment, walking, and physical activity: is the environment more important to some people than others? Transp Res Part D: Transp Environ. 2009;14(1):42–9.CrossRef Forsyth A, Michael Oakes J, Lee B, Schmitz KH. The built environment, walking, and physical activity: is the environment more important to some people than others? Transp Res Part D: Transp Environ. 2009;14(1):42–9.CrossRef
42.
go back to reference Wang X, Liu QM, Ren YJ, Lv J, Li LM. Family influences on physical activity and sedentary behaviours in Chinese junior high school students: a cross-sectional study. BMC Public Health. 2015;15:287.PubMedPubMedCentralCrossRef Wang X, Liu QM, Ren YJ, Lv J, Li LM. Family influences on physical activity and sedentary behaviours in Chinese junior high school students: a cross-sectional study. BMC Public Health. 2015;15:287.PubMedPubMedCentralCrossRef
43.
go back to reference Gebel K, Ding D, Foster C, Bauman AE, Sallis JF. Improving current practice in reviews of the built environment and physical activity. Sports Med. 2015;45(3):297–302.PubMedCrossRef Gebel K, Ding D, Foster C, Bauman AE, Sallis JF. Improving current practice in reviews of the built environment and physical activity. Sports Med. 2015;45(3):297–302.PubMedCrossRef
44.
go back to reference Garrard J. Senior Victorians and walking: obstacles and opportunities: final report. Pedestrian Areas. 2013;10–20. Garrard J. Senior Victorians and walking: obstacles and opportunities: final report. Pedestrian Areas. 2013;10–20.
Metadata
Title
Influence of the built environment of Nanjing’s Urban Community on the leisure physical activity of the elderly: an empirical study
Authors
Zhi-jian Wu
Yanliqing Song
Hou-lei Wang
Fan Zhang
Fang-hui Li
Zhu-ying Wang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2019
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-019-7643-y

Other articles of this Issue 1/2019

BMC Public Health 1/2019 Go to the issue