Skip to main content
Top
Published in: BMC Oral Health 1/2023

Open Access 01-12-2023 | Research

Influence of inorganic nanoparticles on dental materials’ mechanical properties. A narrative review

Authors: Ghada Naguib, Abdulrahman A. Maghrabi, Abdulghani I. Mira, Hisham A. Mously, Maher Hajjaj, Mohamed T. Hamed

Published in: BMC Oral Health | Issue 1/2023

Login to get access

Abstract

Inorganic nanoparticles have been widely incorporated in conventional dental materials to help in improving their properties. The literature has shown that incorporating nanoparticles in dental materials in different specialties could have a positive effect on reinforcing the mechanical properties of those materials; however, there was no consensus on the effectiveness of using nanoparticles in enhancing the mechanical properties of dental materials, due to the variety of the properties of nanoparticles itself and their effect on the mechanical properties. This article attempted to analytically review all the studies that assessed the effect of different types of inorganic nanoparticles on the most commonly used dental materials in dental specialties such as polymethyl methacrylate, glass ionomer cement, resin composite, resin adhesive, orthodontic adhesive, and endodontic sealer. The results had shown that those inorganic nanoparticles demonstrated positive potential in improving those mechanical properties in most of the dental materials studied. That potential was attributed to the ultra-small sizes and unique physical and chemical qualities that those inorganic nanoparticles possess, together with the significant surface area to volume ratio. It was concluded from this comprehensive analysis that while a definitive recommendation cannot be provided due to the variety of nanoparticle types, shapes, and incorporated dental material, the consensus suggests using nanoparticles in low concentrations less than 1% by weight along with a silane coupling agent to minimize agglomeration issues and benefit from their properties.
Literature
1.
go back to reference Pokrowiecki R, Pałka K, Mielczarek A. Nanomaterials in dentistry: a cornerstone or a black box? Nanomedicine. 2018;13(6):639–67.PubMedCrossRef Pokrowiecki R, Pałka K, Mielczarek A. Nanomaterials in dentistry: a cornerstone or a black box? Nanomedicine. 2018;13(6):639–67.PubMedCrossRef
2.
go back to reference Goldberg M, Kulkarni AB, Young M, Boskey A. Dentin: structure, composition and mineralization: the role of dentin ECM in dentin formation and mineralization. Front Biosci. 2011;3:711.CrossRef Goldberg M, Kulkarni AB, Young M, Boskey A. Dentin: structure, composition and mineralization: the role of dentin ECM in dentin formation and mineralization. Front Biosci. 2011;3:711.CrossRef
3.
go back to reference Elkassas D, Arafa A. The innovative applications of therapeutic nanostructures in dentistry. Nanomed Nanotechnol Biol Med. 2017;13(4):1543–62.CrossRef Elkassas D, Arafa A. The innovative applications of therapeutic nanostructures in dentistry. Nanomed Nanotechnol Biol Med. 2017;13(4):1543–62.CrossRef
4.
go back to reference Schmalz G, Hickel R, van Landuyt KL, Reichl F-X. Nanoparticles in dentistry. Dent Mater. 2017;33(11):1298–314.PubMedCrossRef Schmalz G, Hickel R, van Landuyt KL, Reichl F-X. Nanoparticles in dentistry. Dent Mater. 2017;33(11):1298–314.PubMedCrossRef
5.
go back to reference I.T. 10993-22., Biological evaluation of medical devices—part 22: guidance on nanomaterials. International Organization for Standardization., (2016). I.T. 10993-22., Biological evaluation of medical devices—part 22: guidance on nanomaterials. International Organization for Standardization., (2016).
6.
go back to reference R. P., Nanoelectronics: single file. Nat Nanotechnol (2006). R. P., Nanoelectronics: single file. Nat Nanotechnol (2006).
8.
go back to reference Vollath D. Nanoparticles-nanocomposites–nanomaterials: an introduction for beginners. John Wiley & Sons; 2013. Vollath D. Nanoparticles-nanocomposites–nanomaterials: an introduction for beginners. John Wiley & Sons; 2013.
9.
go back to reference Hu SD. Synthesis and assembly. In: Siegel R, Hu E, Roco MC, editors. Nanostructure Science and Technology. 1st ed. Boston: Kluwer Academic Publishers; 1999. pp. 15–33.CrossRef Hu SD. Synthesis and assembly. In: Siegel R, Hu E, Roco MC, editors. Nanostructure Science and Technology. 1st ed. Boston: Kluwer Academic Publishers; 1999. pp. 15–33.CrossRef
11.
go back to reference Saafan A, Zaazou MH, Sallam MK, Mosallam O, El HA, Danaf. Assessment of photodynamic therapy and nanoparticles effects on caries models. Open Access Macedonian Journal of Medical Sciences. 2018;6(7):1289.PubMedPubMedCentralCrossRef Saafan A, Zaazou MH, Sallam MK, Mosallam O, El HA, Danaf. Assessment of photodynamic therapy and nanoparticles effects on caries models. Open Access Macedonian Journal of Medical Sciences. 2018;6(7):1289.PubMedPubMedCentralCrossRef
12.
go back to reference Ana-Paula-Rodrigues F-C, Magalhães L, Moreira C-R, Denise-Ramos-Silveira Alves A, Estrela C, Estrela M-S, Carrião A-F, Bakuzis L-G, Lopes. Silver nanoparticles in resin luting cements: Antibacterial and physiochemical properties. J Clin Experimental Dentistry. 2016;8(4):e415. Ana-Paula-Rodrigues F-C, Magalhães L, Moreira C-R, Denise-Ramos-Silveira Alves A, Estrela C, Estrela M-S, Carrião A-F, Bakuzis L-G, Lopes. Silver nanoparticles in resin luting cements: Antibacterial and physiochemical properties. J Clin Experimental Dentistry. 2016;8(4):e415.
13.
go back to reference Cao WZ. Novel resin-based dental material with anti-biofilm activity and improved mechanical property by incorporating hydrophilic cationic copolymer functionalized nanodiamond. J Mater Sci Mater Med. 2018;29:162.PubMedCrossRef Cao WZ. Novel resin-based dental material with anti-biofilm activity and improved mechanical property by incorporating hydrophilic cationic copolymer functionalized nanodiamond. J Mater Sci Mater Med. 2018;29:162.PubMedCrossRef
14.
go back to reference Amin F, Rahman S, Khurshid Z, Zafar MS, Sefat F, Kumar N. Effect of nanostructures on the properties of glass ionomer dental restoratives/cements: a comprehensive narrative review. Materials. 2021;14(21):6260.PubMedPubMedCentralCrossRef Amin F, Rahman S, Khurshid Z, Zafar MS, Sefat F, Kumar N. Effect of nanostructures on the properties of glass ionomer dental restoratives/cements: a comprehensive narrative review. Materials. 2021;14(21):6260.PubMedPubMedCentralCrossRef
15.
go back to reference Pietrokovski YN. Antibacterial effect of composite resin foundation material incorporating quaternary ammonium polyethyleneimine nanoparticles. J Prosthet Dent. 2016;116:603–9.PubMedCrossRef Pietrokovski YN. Antibacterial effect of composite resin foundation material incorporating quaternary ammonium polyethyleneimine nanoparticles. J Prosthet Dent. 2016;116:603–9.PubMedCrossRef
16.
go back to reference Cheng LZ. One-year water-ageing of calcium phosphate composite containing nano-silver and quaternary ammonium to inhibit biofilms. Int J Oral Sci. 2016;8:172–81.PubMedPubMedCentralCrossRef Cheng LZ. One-year water-ageing of calcium phosphate composite containing nano-silver and quaternary ammonium to inhibit biofilms. Int J Oral Sci. 2016;8:172–81.PubMedPubMedCentralCrossRef
17.
go back to reference Yue SW. Novel dental adhesive resin with crack self-healing, antimicrobial and remineralization properties. J Dent. 2018;75:48–57.PubMedCrossRef Yue SW. Novel dental adhesive resin with crack self-healing, antimicrobial and remineralization properties. J Dent. 2018;75:48–57.PubMedCrossRef
18.
go back to reference Wassel MOK. Antibacterial activity against Streptococcus mutans and inhibition of bacterial induced enamel demineralization of propolis, miswak, and chitosan nanoparticles based dental varnishes. J Adv Res. 2017;8:387–92.PubMedPubMedCentralCrossRef Wassel MOK. Antibacterial activity against Streptococcus mutans and inhibition of bacterial induced enamel demineralization of propolis, miswak, and chitosan nanoparticles based dental varnishes. J Adv Res. 2017;8:387–92.PubMedPubMedCentralCrossRef
19.
go back to reference Covarrubias CT. Synthesis of hybrid copper-chitosan nanoparticles with antibacterial activity against cariogenic Streptococcus mutans. Dent Mater J. 2018;37:379–84.PubMedCrossRef Covarrubias CT. Synthesis of hybrid copper-chitosan nanoparticles with antibacterial activity against cariogenic Streptococcus mutans. Dent Mater J. 2018;37:379–84.PubMedCrossRef
20.
go back to reference Raszewski Z, Brząkalski D, Jałbrzykowski M, Pakuła D, Frydrych M, Przekop RE. Novel multifunctional spherosilicate-based Coupling agents for Improved Bond Strength and Quality in Restorative Dentistry. Materials. 2022;15(10):3451.PubMedPubMedCentralCrossRef Raszewski Z, Brząkalski D, Jałbrzykowski M, Pakuła D, Frydrych M, Przekop RE. Novel multifunctional spherosilicate-based Coupling agents for Improved Bond Strength and Quality in Restorative Dentistry. Materials. 2022;15(10):3451.PubMedPubMedCentralCrossRef
21.
go back to reference Thomas S, Somasekharan L. Polyhedral Oligomeric Silsesquioxane (POSS) Polymer Nanocomposites: From Synthesis to Applications, Elsevier2021. Thomas S, Somasekharan L. Polyhedral Oligomeric Silsesquioxane (POSS) Polymer Nanocomposites: From Synthesis to Applications, Elsevier2021.
22.
go back to reference I.T. 80004-1., nanotechnologies – vocabulary – part 1: core terms. International Organization for Standardization., (2010). I.T. 80004-1., nanotechnologies – vocabulary – part 1: core terms. International Organization for Standardization., (2010).
23.
go back to reference Sood K, Kaur J, Singh H, Arya SK, Khatri M. Comparative toxicity evaluation of graphene oxide (GO) and zinc oxide (ZnO) nanoparticles on Drosophila melanogaster. Toxicol Rep. 2019;6:768–81.PubMedPubMedCentralCrossRef Sood K, Kaur J, Singh H, Arya SK, Khatri M. Comparative toxicity evaluation of graphene oxide (GO) and zinc oxide (ZnO) nanoparticles on Drosophila melanogaster. Toxicol Rep. 2019;6:768–81.PubMedPubMedCentralCrossRef
24.
go back to reference Melo MA, Guedes SF, Xu HH, Rodrigues LK. Nanotechnology-based restorative materials for dental caries management. Trends Biotechnol. 2013;31(8):459–67.PubMedCrossRef Melo MA, Guedes SF, Xu HH, Rodrigues LK. Nanotechnology-based restorative materials for dental caries management. Trends Biotechnol. 2013;31(8):459–67.PubMedCrossRef
26.
go back to reference Gaiser DH, Bunk S, White O, Muller SN. Understanding nano-anatomy of healthy and carious human teeth: a prerequisite for ¨ nanodentistry. Biointerphases. 2012;7(4):1–4. Gaiser DH, Bunk S, White O, Muller SN. Understanding nano-anatomy of healthy and carious human teeth: a prerequisite for ¨ nanodentistry. Biointerphases. 2012;7(4):1–4.
27.
go back to reference Besinis DPT, Tredwin A, Handy CJ. Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits. ACS Nano. 2015;9(3):2255–89.PubMedCrossRef Besinis DPT, Tredwin A, Handy CJ. Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits. ACS Nano. 2015;9(3):2255–89.PubMedCrossRef
28.
go back to reference Bapat CT, Joshi RA, Bapat CP, Choudhury PR, Pandey H, Gorain M, Kesharwani B. An overview of application of silver nanoparticles for biomaterials in dentistry. Mater Sci Eng C Mater Biol Appl. 2018;1(91):881–98.CrossRef Bapat CT, Joshi RA, Bapat CP, Choudhury PR, Pandey H, Gorain M, Kesharwani B. An overview of application of silver nanoparticles for biomaterials in dentistry. Mater Sci Eng C Mater Biol Appl. 2018;1(91):881–98.CrossRef
29.
go back to reference Fernandez SA, Fonseca CC, Stanisic MS, Araújo D, Azevedo DB, Portela V, Tasic RD. Applications of silver nanoparticles in Dentistry: advances and Technological Innovation. Int J Mol Sci. 2021;22(5):2485.PubMedPubMedCentralCrossRef Fernandez SA, Fonseca CC, Stanisic MS, Araújo D, Azevedo DB, Portela V, Tasic RD. Applications of silver nanoparticles in Dentistry: advances and Technological Innovation. Int J Mol Sci. 2021;22(5):2485.PubMedPubMedCentralCrossRef
30.
go back to reference Kasraei S, Sami L, Hendi S, AliKhani M-Y, Rezaei-Soufi L, Khamverdi Z. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restor Dentistry Endodontics. 2014;39(2):109–14.CrossRef Kasraei S, Sami L, Hendi S, AliKhani M-Y, Rezaei-Soufi L, Khamverdi Z. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restor Dentistry Endodontics. 2014;39(2):109–14.CrossRef
31.
go back to reference Fernandes GL, Delbem ACB, Do Amaral JG, Gorup LF, Fernandes RA, de Souza Neto FN, Souza JAS, Monteiro DR, Hunt AMA, Camargo ER. Nanosynthesis of silver-calcium glycerophosphate: promising association against oral pathogens. Antibiotics. 2018;7(3):52.PubMedPubMedCentralCrossRef Fernandes GL, Delbem ACB, Do Amaral JG, Gorup LF, Fernandes RA, de Souza Neto FN, Souza JAS, Monteiro DR, Hunt AMA, Camargo ER. Nanosynthesis of silver-calcium glycerophosphate: promising association against oral pathogens. Antibiotics. 2018;7(3):52.PubMedPubMedCentralCrossRef
32.
go back to reference Cao W, Zhang Y, Wang X, Chen Y, Li Q, Xing X, Xiao Y, Peng X, Ye Z. Development of a novel resin-based dental material with dual biocidal modes and sustained release of ag + ions based on photocurable core-shell AgBr/cationic polymer nanocomposites. J Mater Science: Mater Med. 2017;28(7):103. Cao W, Zhang Y, Wang X, Chen Y, Li Q, Xing X, Xiao Y, Peng X, Ye Z. Development of a novel resin-based dental material with dual biocidal modes and sustained release of ag + ions based on photocurable core-shell AgBr/cationic polymer nanocomposites. J Mater Science: Mater Med. 2017;28(7):103.
33.
go back to reference Xie XW. Novel dental adhesive with triple benefits of calcium phosphate recharge, protein-repellent and antibacterial functions. Dent Mater. 2017;33:553–63.PubMedCrossRef Xie XW. Novel dental adhesive with triple benefits of calcium phosphate recharge, protein-repellent and antibacterial functions. Dent Mater. 2017;33:553–63.PubMedCrossRef
34.
go back to reference Gutierrez MFM. The role of copper nanoparticles in an etch-and-rinse adhesive on antimicrobial activity, mechanical properties and the durability of resin-dentine interfaces. J Dent. 2017;61:12–20.PubMedCrossRef Gutierrez MFM. The role of copper nanoparticles in an etch-and-rinse adhesive on antimicrobial activity, mechanical properties and the durability of resin-dentine interfaces. J Dent. 2017;61:12–20.PubMedCrossRef
35.
go back to reference Alberto Perez-Diaz MB. Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect. Mater Sci Eng C Mater Biol Appl. 2015;55:360–6.CrossRef Alberto Perez-Diaz MB. Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect. Mater Sci Eng C Mater Biol Appl. 2015;55:360–6.CrossRef
36.
go back to reference Liu YN. P.C., Topical ferumoxytol nanoparticles disrupt biofilms and prevent tooth decay in vivo via intrinsic catalytic activity., Nat Commun 9 (2018). Liu YN. P.C., Topical ferumoxytol nanoparticles disrupt biofilms and prevent tooth decay in vivo via intrinsic catalytic activity., Nat Commun 9 (2018).
37.
go back to reference Elgamily HME-S, Contemp. Clin Dent. 2018;9:457–62. Elgamily HME-S, Contemp. Clin Dent. 2018;9:457–62.
38.
go back to reference Esteban Florez FLH. Antibacterial dental adhesive resins containing nitrogen-doped titanium dioxide nanoparticles. Mater Sci Eng C Mater Biol Appl. 2018;93:931–43.PubMedCrossRef Esteban Florez FLH. Antibacterial dental adhesive resins containing nitrogen-doped titanium dioxide nanoparticles. Mater Sci Eng C Mater Biol Appl. 2018;93:931–43.PubMedCrossRef
39.
go back to reference Dutra-Correa M, Leite AA, de Cara SP, Diniz IM, Marques MM, Suffredini IB, Fernandes MS, Toma SH, Araki K, Medeiros IS. Antibacterial effects and cytotoxicity of an adhesive containing low concentration of silver nanoparticles. J Dent. 2018;77:66–71.PubMedCrossRef Dutra-Correa M, Leite AA, de Cara SP, Diniz IM, Marques MM, Suffredini IB, Fernandes MS, Toma SH, Araki K, Medeiros IS. Antibacterial effects and cytotoxicity of an adhesive containing low concentration of silver nanoparticles. J Dent. 2018;77:66–71.PubMedCrossRef
40.
go back to reference Garcia PPNS, Cardia MFB, Francisconi RS, Dovigo LN, Spolidório DMP, de Souza AN, Rastelli AC, Botta. Antibacterial activity of glass ionomer cement modified by zinc oxide nanoparticles. Microsc Res Tech. 2017;80(5):456–61.PubMedCrossRef Garcia PPNS, Cardia MFB, Francisconi RS, Dovigo LN, Spolidório DMP, de Souza AN, Rastelli AC, Botta. Antibacterial activity of glass ionomer cement modified by zinc oxide nanoparticles. Microsc Res Tech. 2017;80(5):456–61.PubMedCrossRef
41.
go back to reference Paiva L, Fidalgo T, Da Costa L, Maia L, Balan L, Anselme K, Ploux L, Thiré R. Antibacterial properties and compressive strength of new one-step preparation silver nanoparticles in glass ionomer cements (NanoAg-GIC). J Dent. 2018;69:102–9.PubMedCrossRef Paiva L, Fidalgo T, Da Costa L, Maia L, Balan L, Anselme K, Ploux L, Thiré R. Antibacterial properties and compressive strength of new one-step preparation silver nanoparticles in glass ionomer cements (NanoAg-GIC). J Dent. 2018;69:102–9.PubMedCrossRef
42.
go back to reference Rodrigues RW, Viana MC, Souza MM, Gonçalves TR, Tanaka F, Bueno-Silva CJ, Seabra B. Biogenic synthesis and antimicrobial activity of silica-coated silver nanoparticles for esthetic dental applications. J Dent. 2020;96:103327.PubMedCrossRef Rodrigues RW, Viana MC, Souza MM, Gonçalves TR, Tanaka F, Bueno-Silva CJ, Seabra B. Biogenic synthesis and antimicrobial activity of silica-coated silver nanoparticles for esthetic dental applications. J Dent. 2020;96:103327.PubMedCrossRef
43.
go back to reference Tuncdemir MT, Gulbahce N. Addition of antibacterial agent effect on color stability of composites after immersion of different beverages. J Esthetic Restor Dentistry. 2019;31(5):508–13.CrossRef Tuncdemir MT, Gulbahce N. Addition of antibacterial agent effect on color stability of composites after immersion of different beverages. J Esthetic Restor Dentistry. 2019;31(5):508–13.CrossRef
44.
go back to reference Brandão NL, Portela MB, Maia LC, Antônio A, Silva VLM. E.M.d. Silva, Model resin composites incorporating ZnO-NP: activity against S. mutans and physicochemical properties characterization, J Appl Oral Sci 26 (2018). Brandão NL, Portela MB, Maia LC, Antônio A, Silva VLM. E.M.d. Silva, Model resin composites incorporating ZnO-NP: activity against S. mutans and physicochemical properties characterization, J Appl Oral Sci 26 (2018).
45.
go back to reference da Silva LH, Feitosa SA, Valera MC, de Araujo MA, Tango RN. Effect of the addition of silanated silica on the mechanical properties of microwave heat-cured acrylic resin. Gerodontology. 2012;29(2):e1019–23.PubMedCrossRef da Silva LH, Feitosa SA, Valera MC, de Araujo MA, Tango RN. Effect of the addition of silanated silica on the mechanical properties of microwave heat-cured acrylic resin. Gerodontology. 2012;29(2):e1019–23.PubMedCrossRef
46.
go back to reference Balos S, Pilic B, Markovic D, Pavlicevic J, Luzanin O. Poly (methyl-methacrylate) nanocomposites with low silica addition. J Prosthet Dent. 2014;111(4):327–34.PubMedCrossRef Balos S, Pilic B, Markovic D, Pavlicevic J, Luzanin O. Poly (methyl-methacrylate) nanocomposites with low silica addition. J Prosthet Dent. 2014;111(4):327–34.PubMedCrossRef
47.
go back to reference Cevik P, Yildirim-Bicer AZ. The effect of silica and prepolymer nanoparticles on the mechanical properties of denture base acrylic resin. J Prosthodont. 2018;27(8):763–70.PubMedCrossRef Cevik P, Yildirim-Bicer AZ. The effect of silica and prepolymer nanoparticles on the mechanical properties of denture base acrylic resin. J Prosthodont. 2018;27(8):763–70.PubMedCrossRef
48.
go back to reference Rashahmadi S, Hasanzadeh R, Mosalman S. Improving the mechanical properties of poly methyl methacrylate nanocomposites for dentistry applications reinforced with different nanoparticles. Polym-Plast Technol Eng. 2017;56(16):1730–40.CrossRef Rashahmadi S, Hasanzadeh R, Mosalman S. Improving the mechanical properties of poly methyl methacrylate nanocomposites for dentistry applications reinforced with different nanoparticles. Polym-Plast Technol Eng. 2017;56(16):1730–40.CrossRef
49.
go back to reference Karci M, Demir N, Yazman S. Evaluation of flexural strength of different denture base materials reinforced with different nanoparticles. J Prosthodont. 2019;28(5):572–9.PubMedCrossRef Karci M, Demir N, Yazman S. Evaluation of flexural strength of different denture base materials reinforced with different nanoparticles. J Prosthodont. 2019;28(5):572–9.PubMedCrossRef
50.
go back to reference Gad MM, Abualsaud R, Al-Thobity AM, Baba NZ, Al‐Harbi FA. Influence of addition of different nanoparticles on the surface properties of poly (methylmethacrylate) denture base material. J Prosthodont. 2020;29(5):422–8.PubMedCrossRef Gad MM, Abualsaud R, Al-Thobity AM, Baba NZ, Al‐Harbi FA. Influence of addition of different nanoparticles on the surface properties of poly (methylmethacrylate) denture base material. J Prosthodont. 2020;29(5):422–8.PubMedCrossRef
51.
go back to reference Zhang X-Y, Zhang X-J, Huang Z-L, Zhu B-S, Chen R-R. Hybrid effects of zirconia nanoparticles with aluminum borate whiskers on mechanical properties of denture base resin PMMA. Dent Mater J. 2014;33(1):141–6.PubMedCrossRef Zhang X-Y, Zhang X-J, Huang Z-L, Zhu B-S, Chen R-R. Hybrid effects of zirconia nanoparticles with aluminum borate whiskers on mechanical properties of denture base resin PMMA. Dent Mater J. 2014;33(1):141–6.PubMedCrossRef
52.
go back to reference Gad MM, Rahoma A, Al-Thobity AM, ArRejaie AS. Influence of incorporation of ZrO2 nanoparticles on the repair strength of polymethyl methacrylate denture bases. Int J Nanomed. 2016;11:5633.CrossRef Gad MM, Rahoma A, Al-Thobity AM, ArRejaie AS. Influence of incorporation of ZrO2 nanoparticles on the repair strength of polymethyl methacrylate denture bases. Int J Nanomed. 2016;11:5633.CrossRef
53.
go back to reference Alhavaz A, Rezaei Dastjerdi M, Ghasemi A, Ghasemi A, Alizadeh Sahraei A. Effect of untreated zirconium oxide nanofiller on the flexural strength and surface hardness of autopolymerized interim fixed restoration resins. J Esthetic Restor Dentistry. 2017;29(4):264–9.CrossRef Alhavaz A, Rezaei Dastjerdi M, Ghasemi A, Ghasemi A, Alizadeh Sahraei A. Effect of untreated zirconium oxide nanofiller on the flexural strength and surface hardness of autopolymerized interim fixed restoration resins. J Esthetic Restor Dentistry. 2017;29(4):264–9.CrossRef
54.
go back to reference Ergun G, Sahin Z, Ataol AS. The effects of adding various ratios of zirconium oxide nanoparticles to poly (methyl methacrylate) on physical and mechanical properties. J Oral Sci. 2018;60(2):304–15.PubMedCrossRef Ergun G, Sahin Z, Ataol AS. The effects of adding various ratios of zirconium oxide nanoparticles to poly (methyl methacrylate) on physical and mechanical properties. J Oral Sci. 2018;60(2):304–15.PubMedCrossRef
55.
go back to reference Gad MM, Abualsaud R, Rahoma A, Al-Thobity AM, Al-Abidi KS, Akhtar S. Effect of zirconium oxide nanoparticles addition on the optical and tensile properties of polymethyl methacrylate denture base material. Int J Nanomed. 2018;13:283.CrossRef Gad MM, Abualsaud R, Rahoma A, Al-Thobity AM, Al-Abidi KS, Akhtar S. Effect of zirconium oxide nanoparticles addition on the optical and tensile properties of polymethyl methacrylate denture base material. Int J Nanomed. 2018;13:283.CrossRef
56.
go back to reference Elmadani A, Radović I, Tomić NZ, Petrović M, Stojanović DB, Heinemann RJ, Radojević V. Hybrid denture acrylic composites with nanozirconia and electrospun polystyrene fibers. PLoS ONE. 2019;14(12):e0226528.PubMedPubMedCentralCrossRef Elmadani A, Radović I, Tomić NZ, Petrović M, Stojanović DB, Heinemann RJ, Radojević V. Hybrid denture acrylic composites with nanozirconia and electrospun polystyrene fibers. PLoS ONE. 2019;14(12):e0226528.PubMedPubMedCentralCrossRef
57.
go back to reference Sodagar A, Kassaee MZ, Akhavan A, Javadi N, Arab S, Kharazifard MJ. Effect of silver nano particles on flexural strength of acrylic resins. J Prosthodontic Res. 2012;56(2):120–4.CrossRef Sodagar A, Kassaee MZ, Akhavan A, Javadi N, Arab S, Kharazifard MJ. Effect of silver nano particles on flexural strength of acrylic resins. J Prosthodontic Res. 2012;56(2):120–4.CrossRef
58.
go back to reference Munikamaiah RL, Jain SK, Pal KS, Gaikwad A. Evaluation of Flexural Strength of Polymethyl Methacrylate modified with silver Colloidal Nanoparticles subjected to two different curing cycles: an in vitro study. J Contemp Dent Pract. 2018;19(3):262–8.PubMedCrossRef Munikamaiah RL, Jain SK, Pal KS, Gaikwad A. Evaluation of Flexural Strength of Polymethyl Methacrylate modified with silver Colloidal Nanoparticles subjected to two different curing cycles: an in vitro study. J Contemp Dent Pract. 2018;19(3):262–8.PubMedCrossRef
59.
go back to reference Bacali C, Baldea I, Moldovan M, Carpa R, Olteanu DE, Filip GA, Nastase V, Lascu L, Badea M, Constantiniuc M. Flexural strength, biocompatibility, and antimicrobial activity of a polymethyl methacrylate denture resin enhanced with graphene and silver nanoparticles. Clin Oral Invest. 2020;24:2713–25.CrossRef Bacali C, Baldea I, Moldovan M, Carpa R, Olteanu DE, Filip GA, Nastase V, Lascu L, Badea M, Constantiniuc M. Flexural strength, biocompatibility, and antimicrobial activity of a polymethyl methacrylate denture resin enhanced with graphene and silver nanoparticles. Clin Oral Invest. 2020;24:2713–25.CrossRef
60.
go back to reference Kumar A, Kumar R, Vamshikiran K, Deepthi G, Kumar N, Akhilesh M. Evaluation of Impact Strength of Dental Acrylic Resins by Incorporation of TiO 2 nanoparticles using two different Processing techniques. J Contemp Dent Pract. 2019;20(10):1184–9.CrossRef Kumar A, Kumar R, Vamshikiran K, Deepthi G, Kumar N, Akhilesh M. Evaluation of Impact Strength of Dental Acrylic Resins by Incorporation of TiO 2 nanoparticles using two different Processing techniques. J Contemp Dent Pract. 2019;20(10):1184–9.CrossRef
61.
go back to reference Protopapa P, Kontonasaki E, Bikiaris D, Paraskevopoulos KM, Koidis P. Reinforcement of a PMMA resin for fixed interim prostheses with nanodiamonds. Dent Mater J. 2011;30(2):222–31.PubMedCrossRef Protopapa P, Kontonasaki E, Bikiaris D, Paraskevopoulos KM, Koidis P. Reinforcement of a PMMA resin for fixed interim prostheses with nanodiamonds. Dent Mater J. 2011;30(2):222–31.PubMedCrossRef
62.
go back to reference Kamonkhantikul K, Arksornnukit M, Takahashi H. Antifungal, optical, and mechanical properties of polymethylmethacrylate material incorporated with silanized zinc oxide nanoparticles. Int J Nanomed. 2017;12:2353.CrossRef Kamonkhantikul K, Arksornnukit M, Takahashi H. Antifungal, optical, and mechanical properties of polymethylmethacrylate material incorporated with silanized zinc oxide nanoparticles. Int J Nanomed. 2017;12:2353.CrossRef
63.
go back to reference Tijana A, Valentina V, Nataša T, Miloš H-M, Suzana GA, Milica B, Yoshiyuki H, Hironori S, Ivanič A, Rebeka R. Mechanical properties of new denture base material modified with gold nanoparticles. J Prosthodontic Res. 2021;65(2):155–61.CrossRef Tijana A, Valentina V, Nataša T, Miloš H-M, Suzana GA, Milica B, Yoshiyuki H, Hironori S, Ivanič A, Rebeka R. Mechanical properties of new denture base material modified with gold nanoparticles. J Prosthodontic Res. 2021;65(2):155–61.CrossRef
64.
go back to reference El-Negoly SA, El-Fallal AA, El-Sherbiny IM. A new modification for improving shear bond strength and other mechanical properties of conventional glass-ionomer restorative materials. J Adhes Dent. 2014;16(1):41–7.PubMed El-Negoly SA, El-Fallal AA, El-Sherbiny IM. A new modification for improving shear bond strength and other mechanical properties of conventional glass-ionomer restorative materials. J Adhes Dent. 2014;16(1):41–7.PubMed
65.
go back to reference Garcia-Contreras R, Scougall-Vilchis RJ, Contreras-Bulnes R, Sakagami H, Morales-Luckie RA, Nakajima H. Mechanical, antibacterial and bond strength properties of nano-titanium-enriched glass ionomer cement. J Appl Oral Sci. 2015;23:321–8.PubMedPubMedCentralCrossRef Garcia-Contreras R, Scougall-Vilchis RJ, Contreras-Bulnes R, Sakagami H, Morales-Luckie RA, Nakajima H. Mechanical, antibacterial and bond strength properties of nano-titanium-enriched glass ionomer cement. J Appl Oral Sci. 2015;23:321–8.PubMedPubMedCentralCrossRef
66.
go back to reference Ibrahim MA, Meera Priyadarshini B, Neo J, Fawzy AS. Characterization of chitosan/TiO2 nano-powder modified glass‐ionomer cement for restorative dental applications. J Esthetic Restor Dentistry. 2017;29(2):146–56.CrossRef Ibrahim MA, Meera Priyadarshini B, Neo J, Fawzy AS. Characterization of chitosan/TiO2 nano-powder modified glass‐ionomer cement for restorative dental applications. J Esthetic Restor Dentistry. 2017;29(2):146–56.CrossRef
67.
go back to reference Hamid N, Telgi RL, Tirth A, Tandon V, Chandra S, Chaturvedi RK. Titanium Dioxide nanoparticles and cetylpyridinium chloride enriched glass-ionomer restorative cement: a comparative study assessing compressive strength and antibacterial activity. J Clin Pediatr Dentistry. 2019;43(1):42–5.CrossRef Hamid N, Telgi RL, Tirth A, Tandon V, Chandra S, Chaturvedi RK. Titanium Dioxide nanoparticles and cetylpyridinium chloride enriched glass-ionomer restorative cement: a comparative study assessing compressive strength and antibacterial activity. J Clin Pediatr Dentistry. 2019;43(1):42–5.CrossRef
68.
go back to reference Gjorgievska E, Van Tendeloo G, Nicholson JW, Coleman NJ, Slipper IJ, Booth S. The incorporation of nanoparticles into conventional glass-ionomer dental restorative cements. Microsc Microanal. 2015;21(2):392–406.PubMedCrossRef Gjorgievska E, Van Tendeloo G, Nicholson JW, Coleman NJ, Slipper IJ, Booth S. The incorporation of nanoparticles into conventional glass-ionomer dental restorative cements. Microsc Microanal. 2015;21(2):392–406.PubMedCrossRef
69.
go back to reference Gjorgievska E, Nicholson JW, Gabrić D, Guclu ZA, Miletić I, Coleman NJ. Assessment of the impact of the addition of nanoparticles on the properties of Glass–Ionomer cements. Materials. 2020;13(2):276.PubMedPubMedCentralCrossRef Gjorgievska E, Nicholson JW, Gabrić D, Guclu ZA, Miletić I, Coleman NJ. Assessment of the impact of the addition of nanoparticles on the properties of Glass–Ionomer cements. Materials. 2020;13(2):276.PubMedPubMedCentralCrossRef
70.
go back to reference Jowkar Z, Jowkar M, Shafiei F. Mechanical and dentin bond strength properties of the nanosilver enriched glass ionomer cement. J Clin Experimental Dentistry. 2019;11(3):e275. Jowkar Z, Jowkar M, Shafiei F. Mechanical and dentin bond strength properties of the nanosilver enriched glass ionomer cement. J Clin Experimental Dentistry. 2019;11(3):e275.
71.
go back to reference Chen J, Zhao Q, Peng J, Yang X, Yu D, Zhao W. Antibacterial and mechanical properties of reduced graphene-silver nanoparticle nanocomposite modified glass ionomer cements. J Dent. 2020;96:103332.PubMedCrossRef Chen J, Zhao Q, Peng J, Yang X, Yu D, Zhao W. Antibacterial and mechanical properties of reduced graphene-silver nanoparticle nanocomposite modified glass ionomer cements. J Dent. 2020;96:103332.PubMedCrossRef
72.
go back to reference Barandehfard F, Rad MK, Hosseinnia A, Khoshroo K, Tahriri M, Jazayeri H, Moharamzadeh K, Tayebi L. The addition of synthesized hydroxyapatite and fluorapatite nanoparticles to a glass-ionomer cement for dental restoration and its effects on mechanical properties. Ceram Int. 2016;42(15):17866–75.CrossRef Barandehfard F, Rad MK, Hosseinnia A, Khoshroo K, Tahriri M, Jazayeri H, Moharamzadeh K, Tayebi L. The addition of synthesized hydroxyapatite and fluorapatite nanoparticles to a glass-ionomer cement for dental restoration and its effects on mechanical properties. Ceram Int. 2016;42(15):17866–75.CrossRef
73.
go back to reference Alatawi RA, Elsayed NH, Mohamed WS. Influence of hydroxyapatite nanoparticles on the properties of glass ionomer cement. J Mater Res Technol. 2019;8(1):344–9.CrossRef Alatawi RA, Elsayed NH, Mohamed WS. Influence of hydroxyapatite nanoparticles on the properties of glass ionomer cement. J Mater Res Technol. 2019;8(1):344–9.CrossRef
74.
go back to reference Sajjad A, Bakar WZW, Mohamad D, Kannan TP. Characterization and enhancement of physico-mechanical properties of glass ionomer cement by incorporating a novel nano zirconia silica hydroxyapatite composite synthesized via sol-gel. AIMS Mater Sci. 2019;6(5):730–47.CrossRef Sajjad A, Bakar WZW, Mohamad D, Kannan TP. Characterization and enhancement of physico-mechanical properties of glass ionomer cement by incorporating a novel nano zirconia silica hydroxyapatite composite synthesized via sol-gel. AIMS Mater Sci. 2019;6(5):730–47.CrossRef
75.
go back to reference Sayyedan F, Fathi M, Edris H, Doostmohammadi A, Mortazavi V, Hanifi A. Effect of forsterite nanoparticles on mechanical properties of glass ionomer cements. Ceram Int. 2014;40(7):10743–8.CrossRef Sayyedan F, Fathi M, Edris H, Doostmohammadi A, Mortazavi V, Hanifi A. Effect of forsterite nanoparticles on mechanical properties of glass ionomer cements. Ceram Int. 2014;40(7):10743–8.CrossRef
76.
77.
go back to reference Xia Y, Zhang F, Xie H, Gu N. Nanoparticle-reinforced resin-based dental composites. J Dent. 2008;36(6):450–5.PubMedCrossRef Xia Y, Zhang F, Xie H, Gu N. Nanoparticle-reinforced resin-based dental composites. J Dent. 2008;36(6):450–5.PubMedCrossRef
78.
go back to reference Al Jafary M, Hashem MI, Al Khadhari MA, Alshammmery SA, Assery MK. Effect of nanoparticles on Physico-Mechanical properties of Flowable Dental Composite resins. Sci Adv Mater. 2019;11(7):986–93.CrossRef Al Jafary M, Hashem MI, Al Khadhari MA, Alshammmery SA, Assery MK. Effect of nanoparticles on Physico-Mechanical properties of Flowable Dental Composite resins. Sci Adv Mater. 2019;11(7):986–93.CrossRef
79.
go back to reference Hojati AH, Hamze S, Ahmadian Babaki F, Rajab-Nia F, Rezvani R, Kaviani MB, Atai M. Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dent Mater. 2013;29:495–505.CrossRef Hojati AH, Hamze S, Ahmadian Babaki F, Rajab-Nia F, Rezvani R, Kaviani MB, Atai M. Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dent Mater. 2013;29:495–505.CrossRef
80.
go back to reference Swetha VC, Uloopi DL, RojaRamya KS, Chandrasekhar KS. Antibacterial and mechanical properties of pit and fissure sealants containing zinc oxide and calcium fluoride nanoparticles. Contemp Clin Dent. 2019;10(3):477.PubMedPubMedCentralCrossRef Swetha VC, Uloopi DL, RojaRamya KS, Chandrasekhar KS. Antibacterial and mechanical properties of pit and fissure sealants containing zinc oxide and calcium fluoride nanoparticles. Contemp Clin Dent. 2019;10(3):477.PubMedPubMedCentralCrossRef
81.
go back to reference Baloš PB, Petronijević S, Marković B, Mirković D, Šarčev S. Improving mechanical properties of flowable dental composite resin by adding silica nanoparticles. Vojnosanit Pregl. 2013;70(5):477–83.PubMedCrossRef Baloš PB, Petronijević S, Marković B, Mirković D, Šarčev S. Improving mechanical properties of flowable dental composite resin by adding silica nanoparticles. Vojnosanit Pregl. 2013;70(5):477–83.PubMedCrossRef
82.
go back to reference Barot T, Rawtani D, Kulkarni P. Physicochemical and biological assessment of silver nanoparticles immobilized Halloysite nanotubes-based resin composite for dental applications. Heliyon. 2020;6(3):e03601.PubMedPubMedCentralCrossRef Barot T, Rawtani D, Kulkarni P. Physicochemical and biological assessment of silver nanoparticles immobilized Halloysite nanotubes-based resin composite for dental applications. Heliyon. 2020;6(3):e03601.PubMedPubMedCentralCrossRef
83.
go back to reference Gutiérrez MP, Matos MF, Szesz TP, Souza A, Bermudez S, Reis J, Loguercio A, Farago AD. Mechanical and microbiological properties and drug release modeling of an etch-and-rinse adhesive containing copper nanoparticles. Dent Mater. 2017;1(33):309–20.CrossRef Gutiérrez MP, Matos MF, Szesz TP, Souza A, Bermudez S, Reis J, Loguercio A, Farago AD. Mechanical and microbiological properties and drug release modeling of an etch-and-rinse adhesive containing copper nanoparticles. Dent Mater. 2017;1(33):309–20.CrossRef
84.
go back to reference Gutiérrez A-AL, Méndez-Bauer MF, Bermudez L, Dávila-Sánchez J, Buvinic A, Hernández-Moya S, Reis N, Loguercio A, Farago AD, Martin PV. Biological, mechanical and adhesive properties of universal adhesives containing zinc and copper nanoparticles. J Dent. 2019;1(82):45–55.CrossRef Gutiérrez A-AL, Méndez-Bauer MF, Bermudez L, Dávila-Sánchez J, Buvinic A, Hernández-Moya S, Reis N, Loguercio A, Farago AD, Martin PV. Biological, mechanical and adhesive properties of universal adhesives containing zinc and copper nanoparticles. J Dent. 2019;1(82):45–55.CrossRef
85.
go back to reference Torres-Rosas R, Torres-Gómez N, García-Contreras R, Scougall-Vilchis RJ, Domínguez-Díaz LR. Argueta-Figueroa, Copper nanoparticles as nanofillers in an adhesive resin system: an in vitro study. Dent Med Probl. 2020;57(3):239–46.PubMedCrossRef Torres-Rosas R, Torres-Gómez N, García-Contreras R, Scougall-Vilchis RJ, Domínguez-Díaz LR. Argueta-Figueroa, Copper nanoparticles as nanofillers in an adhesive resin system: an in vitro study. Dent Med Probl. 2020;57(3):239–46.PubMedCrossRef
86.
go back to reference Sadat-Shojai M, Atai M, Nodehi A, Khanlar LN. Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: synthesis and application. Dent Mater. 2010;26(5):471–82.PubMedCrossRef Sadat-Shojai M, Atai M, Nodehi A, Khanlar LN. Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: synthesis and application. Dent Mater. 2010;26(5):471–82.PubMedCrossRef
87.
go back to reference Zhang CL, Imazato K, Antonucci S, Lin JM, Lin-Gibson NJ, Bai S, Xu Y. Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentine bond properties. J Dent. 2013;41(5):464–74.PubMedPubMedCentralCrossRef Zhang CL, Imazato K, Antonucci S, Lin JM, Lin-Gibson NJ, Bai S, Xu Y. Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentine bond properties. J Dent. 2013;41(5):464–74.PubMedPubMedCentralCrossRef
88.
go back to reference Argueta-Figueroa S-VR, Morales-Luckie L, Olea-Mejía RA. An evaluation of the antibacterial properties and shear bond strength of copper nanoparticles as a nanofiller in orthodontic adhesive. Aust Orthod J. 2015;31(1):42–8.PubMed Argueta-Figueroa S-VR, Morales-Luckie L, Olea-Mejía RA. An evaluation of the antibacterial properties and shear bond strength of copper nanoparticles as a nanofiller in orthodontic adhesive. Aust Orthod J. 2015;31(1):42–8.PubMed
89.
go back to reference Felemban NH, Ebrahim MI. The influence of adding modified zirconium oxide-titanium dioxide nano-particles on mechanical properties of orthodontic adhesive: an in vitro study. BMC Oral Health. 2017;17:1–8.CrossRef Felemban NH, Ebrahim MI. The influence of adding modified zirconium oxide-titanium dioxide nano-particles on mechanical properties of orthodontic adhesive: an in vitro study. BMC Oral Health. 2017;17:1–8.CrossRef
90.
go back to reference Viapiana R, Flumignan D, Guerreiro-Tanomaru J, Camilleri J, Tanomaru‐Filho M. Physicochemical and mechanical properties of zirconium oxide and niobium oxide modified P ortland cement‐based experimental endodontic sealers. Int Endod J. 2014;47(5):437–48.PubMedCrossRef Viapiana R, Flumignan D, Guerreiro-Tanomaru J, Camilleri J, Tanomaru‐Filho M. Physicochemical and mechanical properties of zirconium oxide and niobium oxide modified P ortland cement‐based experimental endodontic sealers. Int Endod J. 2014;47(5):437–48.PubMedCrossRef
91.
go back to reference Barros SM, Rodrigues J, Alves MA, Lopes FR, Pina-Vaz MA, Siqueira I Jr. Antibacterial, physicochemical and mechanical properties of endodontic sealers ammonium polyethylenimine nanoparticles., Int Endod J. 47(8) (2014) 725 – 34. Barros SM, Rodrigues J, Alves MA, Lopes FR, Pina-Vaz MA, Siqueira I Jr. Antibacterial, physicochemical and mechanical properties of endodontic sealers ammonium polyethylenimine nanoparticles., Int Endod J. 47(8) (2014) 725 – 34.
92.
go back to reference Topouzi M, Kontonasaki E, Bikiaris D, Papadopoulou L, Paraskevopoulos KM, Koidis P. Reinforcement of a PMMA resin for interim fixed prostheses with silica nanoparticles. J Mech Behav Biomed Mater. 2017;69:213–22.PubMedCrossRef Topouzi M, Kontonasaki E, Bikiaris D, Papadopoulou L, Paraskevopoulos KM, Koidis P. Reinforcement of a PMMA resin for interim fixed prostheses with silica nanoparticles. J Mech Behav Biomed Mater. 2017;69:213–22.PubMedCrossRef
93.
go back to reference Balos S, Balos T, Sidjanin L, Markovic D, Pilic B, Pavlicevic J. Study of PMMA biopolymer properties treated by microwave energy. Mater Plast. 2011;48(2):127–31. Balos S, Balos T, Sidjanin L, Markovic D, Pilic B, Pavlicevic J. Study of PMMA biopolymer properties treated by microwave energy. Mater Plast. 2011;48(2):127–31.
94.
go back to reference Alla RK, Sajjan S, Alluri VR, Ginjupalli K, Upadhya N. Influence of fiber reinforcement on the properties of denture base resins, (2013). Alla RK, Sajjan S, Alluri VR, Ginjupalli K, Upadhya N. Influence of fiber reinforcement on the properties of denture base resins, (2013).
95.
go back to reference Bellamy K, Limbert G, Waters MG, Middleton J. An elastomeric material for facial prostheses: synthesis, experimental and numerical testing aspects. Biomaterials. 2003;24(27):5061–6.PubMedCrossRef Bellamy K, Limbert G, Waters MG, Middleton J. An elastomeric material for facial prostheses: synthesis, experimental and numerical testing aspects. Biomaterials. 2003;24(27):5061–6.PubMedCrossRef
96.
go back to reference Qu R, Chen X, Hu J, Fu Y, Peng J, Li Y, Chen J, Li P, Liu L, Cao J. Ghrelin protects against contact dermatitis and psoriasiform skin inflammation by antagonizing TNF-α/NF-κB signaling pathways. Sci Rep. 2019;9(1):1–14.CrossRef Qu R, Chen X, Hu J, Fu Y, Peng J, Li Y, Chen J, Li P, Liu L, Cao J. Ghrelin protects against contact dermatitis and psoriasiform skin inflammation by antagonizing TNF-α/NF-κB signaling pathways. Sci Rep. 2019;9(1):1–14.CrossRef
97.
go back to reference Murakami N, Wakabayashi N, Matsushima R, Kishida A, Igarashi Y. Effect of high-pressure polymerization on mechanical properties of PMMA denture base resin. J Mech Behav Biomed Mater. 2013;20:98–104.PubMedCrossRef Murakami N, Wakabayashi N, Matsushima R, Kishida A, Igarashi Y. Effect of high-pressure polymerization on mechanical properties of PMMA denture base resin. J Mech Behav Biomed Mater. 2013;20:98–104.PubMedCrossRef
98.
go back to reference Soygun K, Bolayir G, Boztug A. Mechanical and thermal properties of polyamide versus reinforced PMMA denture base materials. J Adv Prosthodont. 2013;5(2):153–60.PubMedPubMedCentralCrossRef Soygun K, Bolayir G, Boztug A. Mechanical and thermal properties of polyamide versus reinforced PMMA denture base materials. J Adv Prosthodont. 2013;5(2):153–60.PubMedPubMedCentralCrossRef
99.
go back to reference Shuai C, Feng P, Yang B, Cao Y, Min A, Peng S. Effect of nano-zirconia on the mechanical and biological properties of calcium silicate scaffolds. Int J Appl Ceram Technol. 2015;12(6):1148–56.CrossRef Shuai C, Feng P, Yang B, Cao Y, Min A, Peng S. Effect of nano-zirconia on the mechanical and biological properties of calcium silicate scaffolds. Int J Appl Ceram Technol. 2015;12(6):1148–56.CrossRef
100.
go back to reference Maji P, Choudhary R, Majhi M. Structural, optical and dielectric properties of ZrO2 reinforced polymeric nanocomposite films of polymethylmethacrylate (PMMA). Optik. 2016;127(11):4848–53.CrossRef Maji P, Choudhary R, Majhi M. Structural, optical and dielectric properties of ZrO2 reinforced polymeric nanocomposite films of polymethylmethacrylate (PMMA). Optik. 2016;127(11):4848–53.CrossRef
101.
go back to reference Reyes-Acosta M, Torres-Huerta AM, Dominguez-Crespo MA, Flores-Vela AI, Dorantes-Rosales HJ. Ramírez-Meneses, influence of ZrO2 nanoparticles and thermal treatment on the properties of PMMA/ZrO2 hybrid coatings. J Alloys Compd. 2015;643:150–S158.CrossRef Reyes-Acosta M, Torres-Huerta AM, Dominguez-Crespo MA, Flores-Vela AI, Dorantes-Rosales HJ. Ramírez-Meneses, influence of ZrO2 nanoparticles and thermal treatment on the properties of PMMA/ZrO2 hybrid coatings. J Alloys Compd. 2015;643:150–S158.CrossRef
102.
go back to reference Gad M, ArRejaie AS, Abdel-Halim MS, Rahoma A. The reinforcement effect of nano-zirconia on the transverse strength of repaired acrylic denture base, International journal of dentistry 2016 (2016). Gad M, ArRejaie AS, Abdel-Halim MS, Rahoma A. The reinforcement effect of nano-zirconia on the transverse strength of repaired acrylic denture base, International journal of dentistry 2016 (2016).
103.
go back to reference Köroğlu A, Şahin O, Kürkçüoğlu I, Dede DÖ, Özdemir T, Hazer B. Silver nanoparticle incorporation effect on mechanical and thermal properties of denture base acrylic resins. J Appl Oral Sci. 2016;24:590–6.PubMedPubMedCentralCrossRef Köroğlu A, Şahin O, Kürkçüoğlu I, Dede DÖ, Özdemir T, Hazer B. Silver nanoparticle incorporation effect on mechanical and thermal properties of denture base acrylic resins. J Appl Oral Sci. 2016;24:590–6.PubMedPubMedCentralCrossRef
104.
go back to reference Kassaee M, Akhavan A, Sheikh N, Sodagar A. Antibacterial effects of a new dental acrylic resin containing silver nanoparticles. J Appl Polym Sci. 2008;110(3):1699–703.CrossRef Kassaee M, Akhavan A, Sheikh N, Sodagar A. Antibacterial effects of a new dental acrylic resin containing silver nanoparticles. J Appl Polym Sci. 2008;110(3):1699–703.CrossRef
105.
go back to reference She W. Basic study of denture base resin with nano-silver antibacterial agent. Dent Mater J. 2004;27:176–80. She W. Basic study of denture base resin with nano-silver antibacterial agent. Dent Mater J. 2004;27:176–80.
106.
go back to reference Powers J, Sakaguchi L. Craig’s restorative dental materials, Philadelphia, 2006. Powers J, Sakaguchi L. Craig’s restorative dental materials, Philadelphia, 2006.
107.
108.
go back to reference Moshaverinia A, Ansari S, Moshaverinia M, Roohpour N, Darr JA, Rehman I. Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater. 2008;4(2):432–40.PubMedCrossRef Moshaverinia A, Ansari S, Moshaverinia M, Roohpour N, Darr JA, Rehman I. Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater. 2008;4(2):432–40.PubMedCrossRef
109.
go back to reference Arita K, Yamamoto A, Shinonaga Y, Harada K, Abe Y, Nakagawa K, Sugiyama S. Hydroxyapatite particle characteristics influence the enhancement of the mechanical and chemical properties of conventional restorative glassionomer cement. Dent Mater J. 2011;30(5):672–83.PubMedCrossRef Arita K, Yamamoto A, Shinonaga Y, Harada K, Abe Y, Nakagawa K, Sugiyama S. Hydroxyapatite particle characteristics influence the enhancement of the mechanical and chemical properties of conventional restorative glassionomer cement. Dent Mater J. 2011;30(5):672–83.PubMedCrossRef
110.
go back to reference Li F, Li Z, Liu G, He H. Long-term antibacterial properties and bond strength of experimental nano silver-containing orthodontic cements. J Wuhan Univ Technology-Mater Sci Ed. 2013;28(4):849–55.CrossRef Li F, Li Z, Liu G, He H. Long-term antibacterial properties and bond strength of experimental nano silver-containing orthodontic cements. J Wuhan Univ Technology-Mater Sci Ed. 2013;28(4):849–55.CrossRef
111.
go back to reference Lin J, Zhu J, Gu X, Wen W, Li Q, Fischer-Brandies H, Wang H, Mehl C. Effects of incorporation of nano-fluorapatite or nano-fluorohydroxyapatite on a resin-modified glass ionomer cement. Acta Biomater. 2011;7(3):1346–53.PubMedCrossRef Lin J, Zhu J, Gu X, Wen W, Li Q, Fischer-Brandies H, Wang H, Mehl C. Effects of incorporation of nano-fluorapatite or nano-fluorohydroxyapatite on a resin-modified glass ionomer cement. Acta Biomater. 2011;7(3):1346–53.PubMedCrossRef
112.
go back to reference Shiekh RA, Ab Rahman I, Luddin N. Modification of glass ionomer cement by incorporating hydroxyapatite-silica nano-powder composite: Sol–gel synthesis and characterization. Ceram Int. 2014;40(2):3165–70.CrossRef Shiekh RA, Ab Rahman I, Luddin N. Modification of glass ionomer cement by incorporating hydroxyapatite-silica nano-powder composite: Sol–gel synthesis and characterization. Ceram Int. 2014;40(2):3165–70.CrossRef
113.
go back to reference Rahman IA, MASUDI SAM, Luddin N, Shiekh RA. One-pot synthesis of hydroxyapatite–silica nanopowder composite for hardness enhancement of glass ionomer cement (GIC). Bull Mater Sci. 2014;37:213–9.CrossRef Rahman IA, MASUDI SAM, Luddin N, Shiekh RA. One-pot synthesis of hydroxyapatite–silica nanopowder composite for hardness enhancement of glass ionomer cement (GIC). Bull Mater Sci. 2014;37:213–9.CrossRef
114.
go back to reference Gu Y, Yap A, Cheang P, Koh Y, Khor K. Development of zirconia-glass ionomer cement composites. J Non-cryst Solids. 2005;351(6–7):508–14.CrossRef Gu Y, Yap A, Cheang P, Koh Y, Khor K. Development of zirconia-glass ionomer cement composites. J Non-cryst Solids. 2005;351(6–7):508–14.CrossRef
115.
go back to reference Rajabzadeh G, Salehi S, Nemati A, Tavakoli R, Hashjin MS. Enhancing glass ionomer cement features by using the HA/YSZ nanocomposite: a feed forward neural network modelling. J Mech Behav Biomed Mater. 2014;29:317–27.PubMedCrossRef Rajabzadeh G, Salehi S, Nemati A, Tavakoli R, Hashjin MS. Enhancing glass ionomer cement features by using the HA/YSZ nanocomposite: a feed forward neural network modelling. J Mech Behav Biomed Mater. 2014;29:317–27.PubMedCrossRef
116.
go back to reference Fathi M, Kharaziha M. Two-step sintering of dense, nanostructural forsterite. Mater Lett. 2009;63(17):1455–8.CrossRef Fathi M, Kharaziha M. Two-step sintering of dense, nanostructural forsterite. Mater Lett. 2009;63(17):1455–8.CrossRef
117.
go back to reference Naguib GH, Nassar HM, Hamed MT. Antimicrobial properties of dental cements modified with zein-coated magnesium oxide nanoparticles. Bioactive Mater. 2021;8:8, 49–56.CrossRef Naguib GH, Nassar HM, Hamed MT. Antimicrobial properties of dental cements modified with zein-coated magnesium oxide nanoparticles. Bioactive Mater. 2021;8:8, 49–56.CrossRef
118.
go back to reference Naguib HA, Al-Hazmi G, Kurakula F, Al-Dharrabh M, Alkhalidi A. Zein based magnesium oxide nanowires: Effect of anionic charge on size, release and stability. Digest J Nanomaterials Biostructures. 2017;12:741–9. Naguib HA, Al-Hazmi G, Kurakula F, Al-Dharrabh M, Alkhalidi A. Zein based magnesium oxide nanowires: Effect of anionic charge on size, release and stability. Digest J Nanomaterials Biostructures. 2017;12:741–9.
119.
go back to reference Naguib HK, Hassan GH, Al Hazmi AH, Al Dharrab F, Alkhalidi A. Zein based magnesium oxide nanoparticles: Assessment of antimicrobial activity for dental implications. Pak J Pharm Sci. 2018;31:245–50.PubMed Naguib HK, Hassan GH, Al Hazmi AH, Al Dharrab F, Alkhalidi A. Zein based magnesium oxide nanoparticles: Assessment of antimicrobial activity for dental implications. Pak J Pharm Sci. 2018;31:245–50.PubMed
120.
go back to reference Naguib NM, Mirdad G, Mirdad L, Merdad F, Alturki Y, Bakhsh B, Turkistani T A and, Hamed M. Surface characteristics of composite resin enhanced by new antibacterial nanofillers. Int J Curr Adv Res 2018:7;10(D);15965-9 7(0(D)) (2018) 15965–9. Naguib NM, Mirdad G, Mirdad L, Merdad F, Alturki Y, Bakhsh B, Turkistani T A and, Hamed M. Surface characteristics of composite resin enhanced by new antibacterial nanofillers. Int J Curr Adv Res 2018:7;10(D);15965-9 7(0(D)) (2018) 15965–9.
121.
go back to reference Algarni H, AlShahrani I, Ibrahim EH, Eid RA, Kilany M, Ghramh HA, Abdellahi MO, Shaaban ER, Reben M, Yousef ES. Synthesis, mechanical, in vitro and in vivo bioactivity and preliminary biocompatibility studies of bioglasses. Sci Adv Mater. 2019;11(10):1458–66.CrossRef Algarni H, AlShahrani I, Ibrahim EH, Eid RA, Kilany M, Ghramh HA, Abdellahi MO, Shaaban ER, Reben M, Yousef ES. Synthesis, mechanical, in vitro and in vivo bioactivity and preliminary biocompatibility studies of bioglasses. Sci Adv Mater. 2019;11(10):1458–66.CrossRef
122.
go back to reference Demarco CM, Cenci FF, Moraes MS, Opdam RR. Longevity of posterior composite restorations: not only a matter of materials. Dent Mater. 2012;28:87–101.PubMedCrossRef Demarco CM, Cenci FF, Moraes MS, Opdam RR. Longevity of posterior composite restorations: not only a matter of materials. Dent Mater. 2012;28:87–101.PubMedCrossRef
123.
go back to reference Knobloch LA, Kerby RE, Seghi R, Berlin JS, Clelland N. Fracture toughness of packable and conventional composite materials. J Prosthet Dent. 2002;88(3):307–13.PubMedCrossRef Knobloch LA, Kerby RE, Seghi R, Berlin JS, Clelland N. Fracture toughness of packable and conventional composite materials. J Prosthet Dent. 2002;88(3):307–13.PubMedCrossRef
124.
go back to reference Zohaib K, Muhammad Z, Saad Q, Sana S, Mustafa N, Ammar A. Advances in nanotechnology for restorative dentistry. Mater Eng. 2015;8:717–31. Zohaib K, Muhammad Z, Saad Q, Sana S, Mustafa N, Ammar A. Advances in nanotechnology for restorative dentistry. Mater Eng. 2015;8:717–31.
125.
go back to reference Liu F, Wang R, Shi Y, Jiang X, Sun B, Zhu M. Novel Ag nanocrystals based dental resin composites with enhanced mechanical and antibacterial properties. Progress in Natural Science: Materials International. 2013;23(6):573–8.CrossRef Liu F, Wang R, Shi Y, Jiang X, Sun B, Zhu M. Novel Ag nanocrystals based dental resin composites with enhanced mechanical and antibacterial properties. Progress in Natural Science: Materials International. 2013;23(6):573–8.CrossRef
126.
go back to reference Sun J, Forster AM, Johnson PM, Eidelman N, Quinn G, Schumacher G, Zhang X. W.-l. Wu, improving performance of dental resins by adding titanium dioxide nanoparticles. Dent Mater. 2011;27(10):972–82.PubMedCrossRef Sun J, Forster AM, Johnson PM, Eidelman N, Quinn G, Schumacher G, Zhang X. W.-l. Wu, improving performance of dental resins by adding titanium dioxide nanoparticles. Dent Mater. 2011;27(10):972–82.PubMedCrossRef
127.
go back to reference Harini P, Mohamed K, Padmanabhan T. Effect of Titanium dioxide nanoparticles on the flexural strength of polymethylmethacrylate: an in vitro study. Indian J Dent Res. 2014;25(4):459.PubMedCrossRef Harini P, Mohamed K, Padmanabhan T. Effect of Titanium dioxide nanoparticles on the flexural strength of polymethylmethacrylate: an in vitro study. Indian J Dent Res. 2014;25(4):459.PubMedCrossRef
128.
go back to reference Van Landuyt KL, Snauwaert J, De Munck J, Peumans M, Yoshida Y, Poitevin A, Coutinho E, Suzuki K, Lambrechts P, Van Meerbeek B. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials. 2007;28(26):3757–85.PubMedCrossRef Van Landuyt KL, Snauwaert J, De Munck J, Peumans M, Yoshida Y, Poitevin A, Coutinho E, Suzuki K, Lambrechts P, Van Meerbeek B. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials. 2007;28(26):3757–85.PubMedCrossRef
129.
go back to reference De Munck Jd, Van Landuyt K, Peumans M, Poitevin A, Lambrechts P, Braem M, Van Meerbeek B. A critical review of the durability of adhesion to tooth tissue: methods and results. J Dent Res. 2005;84(2):118–32.PubMedCrossRef De Munck Jd, Van Landuyt K, Peumans M, Poitevin A, Lambrechts P, Braem M, Van Meerbeek B. A critical review of the durability of adhesion to tooth tissue: methods and results. J Dent Res. 2005;84(2):118–32.PubMedCrossRef
130.
go back to reference Vaidyanathan T, Vaidyanathan J. Recent advances in the theory and mechanism of adhesive resin bonding to dentin: a critical review, Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 88(2) (2009) 558–578. Vaidyanathan T, Vaidyanathan J. Recent advances in the theory and mechanism of adhesive resin bonding to dentin: a critical review, Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 88(2) (2009) 558–578.
131.
go back to reference D.H. Pashley, E.J. Swift Jr, Dentin bonding, Journal of esthetic and restorative dentistry: official publication of the American Academy of Esthetic Dentistry...[et al.] 20(3) (2008) 153–154 D.H. Pashley, E.J. Swift Jr, Dentin bonding, Journal of esthetic and restorative dentistry: official publication of the American Academy of Esthetic Dentistry...[et al.] 20(3) (2008) 153–154
132.
go back to reference Mitra SB, Wu D, Holmes BN. An application of nanotechnology in advanced dental materials. J Am Dent Association. 2003;134(10):1382–90.CrossRef Mitra SB, Wu D, Holmes BN. An application of nanotechnology in advanced dental materials. J Am Dent Association. 2003;134(10):1382–90.CrossRef
133.
go back to reference Atai M, Solhi L, Nodehi A, Mirabedini SM, Kasraei S, Akbari K, Babanzadeh S. PMMA-grafted nanoclay as novel filler for dental adhesives. Dent Mater. 2009;25(3):339–47.PubMedCrossRef Atai M, Solhi L, Nodehi A, Mirabedini SM, Kasraei S, Akbari K, Babanzadeh S. PMMA-grafted nanoclay as novel filler for dental adhesives. Dent Mater. 2009;25(3):339–47.PubMedCrossRef
134.
go back to reference Marelli B, Le Nihouannen D, Hacking SA, Tran S, Li J, Murshed M, Doillon CJ, Ghezzi CE, Zhang YL, Nazhat SN. Newly identified interfibrillar collagen crosslinking suppresses cell proliferation and remodelling. Biomaterials. 2015;54:126–35.PubMedCrossRef Marelli B, Le Nihouannen D, Hacking SA, Tran S, Li J, Murshed M, Doillon CJ, Ghezzi CE, Zhang YL, Nazhat SN. Newly identified interfibrillar collagen crosslinking suppresses cell proliferation and remodelling. Biomaterials. 2015;54:126–35.PubMedCrossRef
135.
go back to reference Toledano SS, Cabello M, Watson I, Osorio T. A Zn-doped etch-and-rinse adhesive may improve the mechanical properties and the integrity at the bonded-dentin interface. Dent Mater. 2013;29(8):e142–52.PubMedCrossRef Toledano SS, Cabello M, Watson I, Osorio T. A Zn-doped etch-and-rinse adhesive may improve the mechanical properties and the integrity at the bonded-dentin interface. Dent Mater. 2013;29(8):e142–52.PubMedCrossRef
136.
go back to reference Bakhadher W, Halawany H, Talic N, Abraham N, Jacob V. Factors affecting the shear bond strength of orthodontic brackets–a review of in vitro studies. Acta Med. 2015;58(2):43–8. Bakhadher W, Halawany H, Talic N, Abraham N, Jacob V. Factors affecting the shear bond strength of orthodontic brackets–a review of in vitro studies. Acta Med. 2015;58(2):43–8.
137.
go back to reference Borzabadi-Farahani A, Borzabadi E, Lynch E. Nanoparticles in orthodontics, a review of antimicrobial and anti-caries applications. Acta Odontol Scand. 2014;72(6):413–7.PubMedCrossRef Borzabadi-Farahani A, Borzabadi E, Lynch E. Nanoparticles in orthodontics, a review of antimicrobial and anti-caries applications. Acta Odontol Scand. 2014;72(6):413–7.PubMedCrossRef
138.
go back to reference Ferracane J, Condon J. Post-cure heat treatments for composites: properties and fractography. Dent Mater. 1992;8(5):290–5.PubMedCrossRef Ferracane J, Condon J. Post-cure heat treatments for composites: properties and fractography. Dent Mater. 1992;8(5):290–5.PubMedCrossRef
139.
go back to reference Loza-Herrero M, Rueggeberg E, Caughman W, Schuster G, Lefebvre CA, Gardner E. Effect of heating delay on conversion and strength of a post-cured resin composite. J Dent Res. 1998;77(2):426–31.PubMedCrossRef Loza-Herrero M, Rueggeberg E, Caughman W, Schuster G, Lefebvre CA, Gardner E. Effect of heating delay on conversion and strength of a post-cured resin composite. J Dent Res. 1998;77(2):426–31.PubMedCrossRef
140.
go back to reference Aydin Sevinç B, Hanley L. Antibacterial activity of dental composites containing zinc oxide nanoparticles. J Biomedical Mater Res Part B: Appl Biomaterials. 2010;94(1):22–31.CrossRef Aydin Sevinç B, Hanley L. Antibacterial activity of dental composites containing zinc oxide nanoparticles. J Biomedical Mater Res Part B: Appl Biomaterials. 2010;94(1):22–31.CrossRef
141.
go back to reference Sodagar AM, Bahador A, Jalali A, Behzadi Y, Elhaminejad Z, Mirhashemi F. Effect of TiO2 nanoparticles incorporation on antibacterial properties and shear bond strength of dental composite used in Orthodontics. Dent Press J Orthod. 2017;22(5):67–74.CrossRef Sodagar AM, Bahador A, Jalali A, Behzadi Y, Elhaminejad Z, Mirhashemi F. Effect of TiO2 nanoparticles incorporation on antibacterial properties and shear bond strength of dental composite used in Orthodontics. Dent Press J Orthod. 2017;22(5):67–74.CrossRef
142.
go back to reference I. Council on Dental Materials, Equipment, American National Standards Institute/American Dental Association Specification No. 61 for zinc polycarboxylate cement. J Am Dent Association. 1980;101(4):669–71. I. Council on Dental Materials, Equipment, American National Standards Institute/American Dental Association Specification No. 61 for zinc polycarboxylate cement. J Am Dent Association. 1980;101(4):669–71.
143.
go back to reference I.O.f.S. ISO6876, Root Canal Sealing Materials., Dentistry. (2012). I.O.f.S. ISO6876, Root Canal Sealing Materials., Dentistry. (2012).
Metadata
Title
Influence of inorganic nanoparticles on dental materials’ mechanical properties. A narrative review
Authors
Ghada Naguib
Abdulrahman A. Maghrabi
Abdulghani I. Mira
Hisham A. Mously
Maher Hajjaj
Mohamed T. Hamed
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2023
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-023-03652-1

Other articles of this Issue 1/2023

BMC Oral Health 1/2023 Go to the issue