Skip to main content
Top
Published in: BMC Oral Health 1/2023

Open Access 01-12-2023 | Arterial Occlusive Disease | Research

A systematic review of the impact of Porphyromonas gingivalis on foam cell formation: Implications for the role of periodontitis in atherosclerosis

Authors: Saeed Afzoon, Mohammad Amin Amiri, Mostafa Mohebbi, Shahram Hamedani, Nima Farshidfar

Published in: BMC Oral Health | Issue 1/2023

Login to get access

Abstract

Background

The current literature suggests the significant role of foam cells in the initiation of atherosclerosis through the formation of a necrotic core in atherosclerotic plaques. Moreover, an important periodontal pathogen called Porphyromonas gingivalis (P. gingivalis) is indicated to play a significant role in this regard. Thus, the aim of this systematic review was to comprehensively study the pathways by which P. gingivalis as a prominent bacterial species in periodontal disease, can induce foam cells that would initiate the process of atherosclerosis formation.

Methods

An electronic search was undertaken in three databases (Pubmed, Scopus, and Web of Science) to identify the studies published from January 2000 until March 2023. The risk of bias in each study was also assessed using the QUIN risk of bias assessment tool.

Results

After the completion of the screening process, 11 in-vitro studies met the inclusion criteria and were included for further assessments. Nine of these studies represented a medium risk of bias, while the other two had a high risk of bias. All of the studies have reported that P. gingivalis can significantly induce foam cell formation by infecting the macrophages and induction of oxidized low-density lipoprotein (oxLDL) uptake. This process is activated through various mediators and pathways. The most important factors in this regard are the lipopolysaccharide of P. gingivalis and its outer membrane vesicles, as well as the changes in the expression rate of transmembrane lipid transportation channels, including transient receptor potential channel of the vanilloid subfamily 4 (TRPV4), lysosomal integral protein 2 (LIMP2), CD36, etc. The identified molecular pathways involved in this process include but are not limited to NF-κB, ERK1/2, p65.

Conclusion

Based on the results of this study, it can be concluded that P. gingivalis can effectively promote foam cell formation through various pathogenic elements and this bacterial species can affect the expression rate of various genes and the function of specific receptors in the cellular and lysosomal membranes. However, due to the moderate to high level of risk of bias among the studies, further studies are required in this regard.
Literature
1.
3.
go back to reference Srimaneepong V, Heboyan A, Zafar MS, Khurshid Z, Marya A, Fernandes GVO, et al. Fixed prosthetic restorations and periodontal health: a narrative review. J Funct Biomater. 2022;13:15.PubMedPubMedCentralCrossRef Srimaneepong V, Heboyan A, Zafar MS, Khurshid Z, Marya A, Fernandes GVO, et al. Fixed prosthetic restorations and periodontal health: a narrative review. J Funct Biomater. 2022;13:15.PubMedPubMedCentralCrossRef
4.
go back to reference Yadalam PK, Sivasankari T, Rengaraj S, Mugri MH, Sayed M, Khan SS, et al. Gene interaction network analysis reveals IFI44L as a drug target in rheumatoid arthritis and periodontitis. Molecules. 2022;27:2749.PubMedPubMedCentralCrossRef Yadalam PK, Sivasankari T, Rengaraj S, Mugri MH, Sayed M, Khan SS, et al. Gene interaction network analysis reveals IFI44L as a drug target in rheumatoid arthritis and periodontitis. Molecules. 2022;27:2749.PubMedPubMedCentralCrossRef
5.
go back to reference Barzegar PEF, Ranjbar R, Yazdanian M, Tahmasebi E, Alam M, Abbasi K et al. The current natural/chemical materials and innovative technologies in periodontal diseases therapy and regeneration: a narrative review. Mater Today Commun. 2022;:104099. Barzegar PEF, Ranjbar R, Yazdanian M, Tahmasebi E, Alam M, Abbasi K et al. The current natural/chemical materials and innovative technologies in periodontal diseases therapy and regeneration: a narrative review. Mater Today Commun. 2022;:104099.
6.
go back to reference Nazir MA. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int J Health Sci (Qassim). 2017;11:72–80.PubMed Nazir MA. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int J Health Sci (Qassim). 2017;11:72–80.PubMed
9.
go back to reference Tahmasebi E, Keshvad A, Alam M, Abbasi K, Rahimi S, Nouri F, et al. Current infections of the Orofacial Region: treatment, diagnosis, and Epidemiology. Life. 2023;13:269.PubMedPubMedCentralCrossRef Tahmasebi E, Keshvad A, Alam M, Abbasi K, Rahimi S, Nouri F, et al. Current infections of the Orofacial Region: treatment, diagnosis, and Epidemiology. Life. 2023;13:269.PubMedPubMedCentralCrossRef
10.
go back to reference Mohanty R, Asopa SJ, Joseph MD, Singh B, Rajguru JP, Saidath K, et al. Red complex: polymicrobial conglomerate in oral flora: a review. J Fam Med Prim care. 2019;8:3480–6.CrossRef Mohanty R, Asopa SJ, Joseph MD, Singh B, Rajguru JP, Saidath K, et al. Red complex: polymicrobial conglomerate in oral flora: a review. J Fam Med Prim care. 2019;8:3480–6.CrossRef
11.
go back to reference Mosaddad SA, Hussain A, Tebyaniyan H. Green Alternatives as Antimicrobial Agents in Mitigating Periodontal Diseases: a narrative review. Microorganisms. 2023;11:1269.PubMedPubMedCentralCrossRef Mosaddad SA, Hussain A, Tebyaniyan H. Green Alternatives as Antimicrobial Agents in Mitigating Periodontal Diseases: a narrative review. Microorganisms. 2023;11:1269.PubMedPubMedCentralCrossRef
12.
go back to reference Zhang B, Elmabsout AA, Khalaf H, Basic VT, Jayaprakash K, Kruse R, et al. The periodontal pathogen Porphyromonas gingivalis changes the gene expression in vascular smooth muscle cells involving the TGFbeta/Notch signalling pathway and increased cell proliferation. BMC Genomics. 2013;14:1–12.CrossRef Zhang B, Elmabsout AA, Khalaf H, Basic VT, Jayaprakash K, Kruse R, et al. The periodontal pathogen Porphyromonas gingivalis changes the gene expression in vascular smooth muscle cells involving the TGFbeta/Notch signalling pathway and increased cell proliferation. BMC Genomics. 2013;14:1–12.CrossRef
13.
go back to reference Koo TH, Jun HO, Bae S-K, Kim S-R, Moon C-P, Jeong S-K, et al. Porphyromonas gingivalis, periodontal pathogen, lipopolysaccharide induces angiogenesis via extracellular signal-regulated kinase 1/2 activation in human vascular endothelial cells. Arch Pharm Res. 2007;30:34–42.PubMedCrossRef Koo TH, Jun HO, Bae S-K, Kim S-R, Moon C-P, Jeong S-K, et al. Porphyromonas gingivalis, periodontal pathogen, lipopolysaccharide induces angiogenesis via extracellular signal-regulated kinase 1/2 activation in human vascular endothelial cells. Arch Pharm Res. 2007;30:34–42.PubMedCrossRef
14.
go back to reference Matarese G, Isola G, Anastasi GP, Favaloro A, Milardi D, Vermiglio G, et al. Immunohistochemical analysis of TGF-β1 and VEGF in gingival and periodontal tissues: a role of these biomarkers in the pathogenesis of scleroderma and periodontal disease. Int J Mol Med. 2012;30:502–8.PubMedCrossRef Matarese G, Isola G, Anastasi GP, Favaloro A, Milardi D, Vermiglio G, et al. Immunohistochemical analysis of TGF-β1 and VEGF in gingival and periodontal tissues: a role of these biomarkers in the pathogenesis of scleroderma and periodontal disease. Int J Mol Med. 2012;30:502–8.PubMedCrossRef
15.
go back to reference Xu W, Zhou W, Wang H, Liang S. Roles of Porphyromonas gingivalis and its virulence factors in periodontitis. Adv Protein Chem Struct Biol. 2020;120:45–84.PubMedPubMedCentralCrossRef Xu W, Zhou W, Wang H, Liang S. Roles of Porphyromonas gingivalis and its virulence factors in periodontitis. Adv Protein Chem Struct Biol. 2020;120:45–84.PubMedPubMedCentralCrossRef
16.
go back to reference Falcao A, Bullón P. A review of the influence of periodontal treatment in systemic diseases. Periodontol 2000. 2019;79:117–28.PubMedCrossRef Falcao A, Bullón P. A review of the influence of periodontal treatment in systemic diseases. Periodontol 2000. 2019;79:117–28.PubMedCrossRef
17.
go back to reference Wang Q, Zhou X, Huang D. Role for Porphyromonas gingivalis in the progression of atherosclerosis. Med Hypotheses. 2009;72:71–3.PubMedCrossRef Wang Q, Zhou X, Huang D. Role for Porphyromonas gingivalis in the progression of atherosclerosis. Med Hypotheses. 2009;72:71–3.PubMedCrossRef
21.
go back to reference Palasubramaniam J, Wang X, Peter K. Myocardial infarction-from atherosclerosis to thrombosis. Arterioscler Thromb Vasc Biol. 2019;39:e176–85.PubMedCrossRef Palasubramaniam J, Wang X, Peter K. Myocardial infarction-from atherosclerosis to thrombosis. Arterioscler Thromb Vasc Biol. 2019;39:e176–85.PubMedCrossRef
22.
go back to reference Hoogeveen RC, Morrison A, Boerwinkle E, Miles JS, Rhodes CE, Sharrett AR, et al. Plasma MCP-1 level and risk for peripheral arterial disease and incident coronary heart disease: atherosclerosis risk in Communities study. Atherosclerosis. 2005;183:301–7.PubMedCrossRef Hoogeveen RC, Morrison A, Boerwinkle E, Miles JS, Rhodes CE, Sharrett AR, et al. Plasma MCP-1 level and risk for peripheral arterial disease and incident coronary heart disease: atherosclerosis risk in Communities study. Atherosclerosis. 2005;183:301–7.PubMedCrossRef
23.
go back to reference Yu X-H, Fu Y-C, Zhang D-W, Yin K, Tang C-K. Foam cells in atherosclerosis. Clin Chim Acta. 2013;424:245–52.PubMedCrossRef Yu X-H, Fu Y-C, Zhang D-W, Yin K, Tang C-K. Foam cells in atherosclerosis. Clin Chim Acta. 2013;424:245–52.PubMedCrossRef
24.
25.
go back to reference Gerszten RE, Tager AM. The monocyte in atherosclerosis–should I stay or should I go now? N Engl J Med. 2012;366:1734–6.PubMedCrossRef Gerszten RE, Tager AM. The monocyte in atherosclerosis–should I stay or should I go now? N Engl J Med. 2012;366:1734–6.PubMedCrossRef
26.
go back to reference Wintergerst ES, Jelk J, Rahner C, Asmis R. Apoptosis induced by oxidized low density lipoprotein in human monocyte-derived macrophages involves CD36 and activation of caspase-3. Eur J Biochem. 2000;267:6050–9.PubMedCrossRef Wintergerst ES, Jelk J, Rahner C, Asmis R. Apoptosis induced by oxidized low density lipoprotein in human monocyte-derived macrophages involves CD36 and activation of caspase-3. Eur J Biochem. 2000;267:6050–9.PubMedCrossRef
28.
go back to reference Javadifar A, Rastgoo S, Banach M, Jamialahmadi T, Johnston TP, Sahebkar A. Foam cells as therapeutic targets in atherosclerosis with a focus on the Regulatory Roles of non-coding RNAs. Int J Mol Sci. 2021;22. Javadifar A, Rastgoo S, Banach M, Jamialahmadi T, Johnston TP, Sahebkar A. Foam cells as therapeutic targets in atherosclerosis with a focus on the Regulatory Roles of non-coding RNAs. Int J Mol Sci. 2021;22.
30.
go back to reference Hussain M, Stover CM, Dupont A. P. gingivalis in Periodontal Disease and atherosclerosis - scenes of action for antimicrobial peptides and complement. Front Immunol. 2015;6:45.PubMedPubMedCentralCrossRef Hussain M, Stover CM, Dupont A. P. gingivalis in Periodontal Disease and atherosclerosis - scenes of action for antimicrobial peptides and complement. Front Immunol. 2015;6:45.PubMedPubMedCentralCrossRef
31.
go back to reference Li C, Yu R, Ding Y. Association between Porphyromonas Gingivalis and systemic diseases: focus on T cells-mediated adaptive immunity. Front Cell Infect Microbiol. 2022;12:1026457.PubMedPubMedCentralCrossRef Li C, Yu R, Ding Y. Association between Porphyromonas Gingivalis and systemic diseases: focus on T cells-mediated adaptive immunity. Front Cell Infect Microbiol. 2022;12:1026457.PubMedPubMedCentralCrossRef
32.
go back to reference Lönn J, Ljunggren S, Klarström-Engström K, Demirel I, Bengtsson T, Karlsson H. Lipoprotein modifications by gingipains of Porphyromonas gingivalis. J Periodontal Res. 2018;53:403–13.PubMedPubMedCentralCrossRef Lönn J, Ljunggren S, Klarström-Engström K, Demirel I, Bengtsson T, Karlsson H. Lipoprotein modifications by gingipains of Porphyromonas gingivalis. J Periodontal Res. 2018;53:403–13.PubMedPubMedCentralCrossRef
33.
go back to reference Kurita-Ochiai T, Yamamoto M. Periodontal pathogens and atherosclerosis: implications of inflammation and oxidative modification of LDL. Biomed Res Int. 2014;2014:595981.PubMedPubMedCentralCrossRef Kurita-Ochiai T, Yamamoto M. Periodontal pathogens and atherosclerosis: implications of inflammation and oxidative modification of LDL. Biomed Res Int. 2014;2014:595981.PubMedPubMedCentralCrossRef
34.
go back to reference Mougeot J-LC, Stevens CB, Paster BJ, Brennan MT, Lockhart PB, Mougeot FKB. Porphyromonas gingivalis is the most abundant species detected in coronary and femoral arteries. J Oral Microbiol. 2017;9:1281562.PubMedPubMedCentralCrossRef Mougeot J-LC, Stevens CB, Paster BJ, Brennan MT, Lockhart PB, Mougeot FKB. Porphyromonas gingivalis is the most abundant species detected in coronary and femoral arteries. J Oral Microbiol. 2017;9:1281562.PubMedPubMedCentralCrossRef
35.
go back to reference Qi M, Miyakawa H, Kuramitsu HK. Porphyromonas gingivalis induces murine macrophage foam cell formation. Microb Pathog. 2003;35:259–67.PubMedCrossRef Qi M, Miyakawa H, Kuramitsu HK. Porphyromonas gingivalis induces murine macrophage foam cell formation. Microb Pathog. 2003;35:259–67.PubMedCrossRef
36.
go back to reference Miyakawa H, Honma K, Qi M, Kuramitsu HK. Interaction of Porphyromonas gingivalis with low-density lipoproteins: implications for a role for periodontitis in atherosclerosis. J Periodontal Res. 2004;39:1–9.PubMedCrossRef Miyakawa H, Honma K, Qi M, Kuramitsu HK. Interaction of Porphyromonas gingivalis with low-density lipoproteins: implications for a role for periodontitis in atherosclerosis. J Periodontal Res. 2004;39:1–9.PubMedCrossRef
37.
go back to reference Giacona MB, Papapanou PN, Lamster IB, Rong LL, D’Agati VD, Schmidt AM, et al. Porphyromonas gingivalis induces its uptake by human macrophages and promotes foam cell formation in vitro. FEMS Microbiol Lett. 2004;241:95–101.PubMedCrossRef Giacona MB, Papapanou PN, Lamster IB, Rong LL, D’Agati VD, Schmidt AM, et al. Porphyromonas gingivalis induces its uptake by human macrophages and promotes foam cell formation in vitro. FEMS Microbiol Lett. 2004;241:95–101.PubMedCrossRef
38.
go back to reference Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372. Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372.
39.
go back to reference Farshidfar N, Amiri MA, Firoozi P, Hamedani S, Ajami S, Tayebi L. The adjunctive effect of autologous platelet concentrates on orthodontic tooth movement: a systematic review and meta-analysis of current randomized controlled trials. Int Orthod. 2022;20:100596.PubMedCrossRef Farshidfar N, Amiri MA, Firoozi P, Hamedani S, Ajami S, Tayebi L. The adjunctive effect of autologous platelet concentrates on orthodontic tooth movement: a systematic review and meta-analysis of current randomized controlled trials. Int Orthod. 2022;20:100596.PubMedCrossRef
40.
go back to reference Sheth VH, Shah NP, Jain R, Bhanushali N, Bhatnagar V. Development and validation of a risk-of-bias tool for assessing in vitro studies conducted in dentistry: the QUIN. J Prosthet Dent. 2022. Sheth VH, Shah NP, Jain R, Bhanushali N, Bhatnagar V. Development and validation of a risk-of-bias tool for assessing in vitro studies conducted in dentistry: the QUIN. J Prosthet Dent. 2022.
41.
go back to reference Yang Y, He X, Xia S, Liu F, Luo L. Porphyromonas gingivalis facilitated the foam cell formation via lysosomal integral membrane protein 2 (LIMP2). J Periodontal Res. 2021;56:265–74.PubMedCrossRef Yang Y, He X, Xia S, Liu F, Luo L. Porphyromonas gingivalis facilitated the foam cell formation via lysosomal integral membrane protein 2 (LIMP2). J Periodontal Res. 2021;56:265–74.PubMedCrossRef
42.
go back to reference Shaik-Dasthagirisaheb YB, Huang N, Baer MT, Gibson FC III. Role of M y D 88‐dependent and M y D 88‐independent signaling in P orphyromonas gingivalis‐elicited macrophage foam cell formation. Mol Oral Microbiol. 2013;28:28–39.PubMedCrossRef Shaik-Dasthagirisaheb YB, Huang N, Baer MT, Gibson FC III. Role of M y D 88‐dependent and M y D 88‐independent signaling in P orphyromonas gingivalis‐elicited macrophage foam cell formation. Mol Oral Microbiol. 2013;28:28–39.PubMedCrossRef
43.
go back to reference Shaik-Dasthagirisaheb YB, Mekasha S, He X, Gibson FC 3rd, Ingalls RR. Signaling events in pathogen-induced macrophage foam cell formation. Pathog Dis. 2016;74. Shaik-Dasthagirisaheb YB, Mekasha S, He X, Gibson FC 3rd, Ingalls RR. Signaling events in pathogen-induced macrophage foam cell formation. Pathog Dis. 2016;74.
44.
go back to reference Gupta N, Goswami R, Alharbi MO, Biswas D, Rahaman SO. TRPV4 is a regulator in P. gingivalis lipopolysaccharide-induced exacerbation of macrophage foam cell formation. Physiol Rep. 2019;7:e14069.PubMedPubMedCentralCrossRef Gupta N, Goswami R, Alharbi MO, Biswas D, Rahaman SO. TRPV4 is a regulator in P. gingivalis lipopolysaccharide-induced exacerbation of macrophage foam cell formation. Physiol Rep. 2019;7:e14069.PubMedPubMedCentralCrossRef
45.
go back to reference Kuramitsu HK, Kang I, Qi M. Interactions of Porphyromonas gingivalis with host cells: implications for cardiovascular diseases. J Periodontol. 2003;74:85–9.PubMedCrossRef Kuramitsu HK, Kang I, Qi M. Interactions of Porphyromonas gingivalis with host cells: implications for cardiovascular diseases. J Periodontol. 2003;74:85–9.PubMedCrossRef
46.
go back to reference Liang D-Y, Liu F, Chen J-X, He X-L, Zhou Y-L, Ge B-X, et al. Porphyromonas gingivalis infected macrophages upregulate CD36 expression via ERK/NF-κB pathway. Cell Signal. 2016;28:1292–303.PubMedCrossRef Liang D-Y, Liu F, Chen J-X, He X-L, Zhou Y-L, Ge B-X, et al. Porphyromonas gingivalis infected macrophages upregulate CD36 expression via ERK/NF-κB pathway. Cell Signal. 2016;28:1292–303.PubMedCrossRef
47.
go back to reference Li X-Y, Wang C, Xiang X-R, Chen F-C, Yang C-M, Wu J. Porphyromonas gingivalis lipopolysaccharide increases lipid accumulation by affecting CD36 and ATP-binding cassette transporter A1 in macrophages. Oncol Rep. 2013;30:1329–36.PubMedCrossRef Li X-Y, Wang C, Xiang X-R, Chen F-C, Yang C-M, Wu J. Porphyromonas gingivalis lipopolysaccharide increases lipid accumulation by affecting CD36 and ATP-binding cassette transporter A1 in macrophages. Oncol Rep. 2013;30:1329–36.PubMedCrossRef
48.
go back to reference Kim H-J, Cha GS, Kim H-J, Kwon E-Y, Lee J-Y, Choi J, et al. Porphyromonas gingivalis accelerates atherosclerosis through oxidation of high-density lipoprotein. J Periodontal Implant Sci. 2018;48:60–8.PubMedPubMedCentralCrossRef Kim H-J, Cha GS, Kim H-J, Kwon E-Y, Lee J-Y, Choi J, et al. Porphyromonas gingivalis accelerates atherosclerosis through oxidation of high-density lipoprotein. J Periodontal Implant Sci. 2018;48:60–8.PubMedPubMedCentralCrossRef
49.
go back to reference Xu S, Liu B, Yin M, Koroleva M, Mastrangelo M, Ture S, et al. A novel TRPV4-specific agonist inhibits monocyte adhesion and atherosclerosis. Oncotarget. 2016;7:37622–35.PubMedPubMedCentralCrossRef Xu S, Liu B, Yin M, Koroleva M, Mastrangelo M, Ture S, et al. A novel TRPV4-specific agonist inhibits monocyte adhesion and atherosclerosis. Oncotarget. 2016;7:37622–35.PubMedPubMedCentralCrossRef
50.
go back to reference Shaik-Dasthagirisaheb YB, Huang N, Baer MT, Gibson FC 3. rd. role of MyD88-dependent and MyD88-independent signaling in Porphyromonas gingivalis-elicited macrophage foam cell formation. Mol Oral Microbiol. 2013;28:28–39. Shaik-Dasthagirisaheb YB, Huang N, Baer MT, Gibson FC 3. rd. role of MyD88-dependent and MyD88-independent signaling in Porphyromonas gingivalis-elicited macrophage foam cell formation. Mol Oral Microbiol. 2013;28:28–39.
51.
go back to reference Goswami R, Merth M, Sharma S, Alharbi MO, Aranda-Espinoza H, Zhu X, et al. TRPV4 calcium-permeable channel is a novel regulator of oxidized LDL-induced macrophage foam cell formation. Free Radic Biol Med. 2017;110:142–50.PubMedCrossRef Goswami R, Merth M, Sharma S, Alharbi MO, Aranda-Espinoza H, Zhu X, et al. TRPV4 calcium-permeable channel is a novel regulator of oxidized LDL-induced macrophage foam cell formation. Free Radic Biol Med. 2017;110:142–50.PubMedCrossRef
52.
go back to reference Moore KJ, Freeman MW. Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler Thromb Vasc Biol. 2006;26:1702–11.PubMedCrossRef Moore KJ, Freeman MW. Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler Thromb Vasc Biol. 2006;26:1702–11.PubMedCrossRef
53.
go back to reference Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell. 1998;93:241–52.PubMedCrossRef Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell. 1998;93:241–52.PubMedCrossRef
54.
go back to reference Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell. 1998;93:229–40.PubMedCrossRef Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell. 1998;93:229–40.PubMedCrossRef
55.
go back to reference Luo Y, Tanigawa K, Kawashima A, Ishido Y, Ishii N, Suzuki K. The function of peroxisome proliferator-activated receptors PPAR-γ and PPAR-δ in Mycobacterium leprae-induced foam cell formation in host macrophages. PLoS Negl Trop Dis. 2020;14:e0008850.PubMedPubMedCentralCrossRef Luo Y, Tanigawa K, Kawashima A, Ishido Y, Ishii N, Suzuki K. The function of peroxisome proliferator-activated receptors PPAR-γ and PPAR-δ in Mycobacterium leprae-induced foam cell formation in host macrophages. PLoS Negl Trop Dis. 2020;14:e0008850.PubMedPubMedCentralCrossRef
56.
go back to reference Zhang DX, Mendoza SA, Bubolz AH, Mizuno A, Ge Z-D, Li R et al. Transient receptor potential vanilloid type 4-deficient mice exhibit impaired endothelium-dependent relaxation induced by acetylcholine in vitro and in vivo. Hypertens (Dallas, Tex 1979). 2009;53:532–8. Zhang DX, Mendoza SA, Bubolz AH, Mizuno A, Ge Z-D, Li R et al. Transient receptor potential vanilloid type 4-deficient mice exhibit impaired endothelium-dependent relaxation induced by acetylcholine in vitro and in vivo. Hypertens (Dallas, Tex 1979). 2009;53:532–8.
57.
go back to reference Ye L, Kleiner S, Wu J, Sah R, Gupta RK, Banks AS, et al. TRPV4 is a regulator of adipose oxidative metabolism, inflammation, and energy homeostasis. Cell. 2012;151:96–110.PubMedPubMedCentralCrossRef Ye L, Kleiner S, Wu J, Sah R, Gupta RK, Banks AS, et al. TRPV4 is a regulator of adipose oxidative metabolism, inflammation, and energy homeostasis. Cell. 2012;151:96–110.PubMedPubMedCentralCrossRef
58.
go back to reference Du J, Wang X, Li J, Guo J, Liu L, Yan D, et al. Increasing TRPV4 expression restores flow-induced dilation impaired in mesenteric arteries with aging. Sci Rep. 2016;6:22780.PubMedPubMedCentralCrossRef Du J, Wang X, Li J, Guo J, Liu L, Yan D, et al. Increasing TRPV4 expression restores flow-induced dilation impaired in mesenteric arteries with aging. Sci Rep. 2016;6:22780.PubMedPubMedCentralCrossRef
59.
60.
go back to reference Jotwani R, Cutler CW. Fimbriated Porphyromonas gingivalis is more efficient than fimbria-deficient P. gingivalis in entering human dendritic cells in vitro and induces an inflammatory Th1 effector response. Infect Immun. 2004;72:1725–32.PubMedPubMedCentralCrossRef Jotwani R, Cutler CW. Fimbriated Porphyromonas gingivalis is more efficient than fimbria-deficient P. gingivalis in entering human dendritic cells in vitro and induces an inflammatory Th1 effector response. Infect Immun. 2004;72:1725–32.PubMedPubMedCentralCrossRef
61.
go back to reference Weinberg A, Belton CM, Park Y, Lamont RJ. Role of fimbriae in Porphyromonas gingivalis invasion of gingival epithelial cells. Infect Immun. 1997;65:313–6.PubMedPubMedCentralCrossRef Weinberg A, Belton CM, Park Y, Lamont RJ. Role of fimbriae in Porphyromonas gingivalis invasion of gingival epithelial cells. Infect Immun. 1997;65:313–6.PubMedPubMedCentralCrossRef
62.
go back to reference Malek R, Fisher JG, Caleca A, Stinson M, van Oss CJ, Lee JY, et al. Inactivation of the Porphyromonas gingivalis fimA gene blocks periodontal damage in gnotobiotic rats. J Bacteriol. 1994;176:1052–9.PubMedPubMedCentralCrossRef Malek R, Fisher JG, Caleca A, Stinson M, van Oss CJ, Lee JY, et al. Inactivation of the Porphyromonas gingivalis fimA gene blocks periodontal damage in gnotobiotic rats. J Bacteriol. 1994;176:1052–9.PubMedPubMedCentralCrossRef
63.
go back to reference Hanazawa S, Murakami Y, Hirose K, Amano S, Ohmori Y, Higuchi H, et al. Bacteroides (Porphyromonas) gingivalis fimbriae activate mouse peritoneal macrophages and induce gene expression and production of interleukin-1. Infect Immun. 1991;59:1972–7.PubMedPubMedCentralCrossRef Hanazawa S, Murakami Y, Hirose K, Amano S, Ohmori Y, Higuchi H, et al. Bacteroides (Porphyromonas) gingivalis fimbriae activate mouse peritoneal macrophages and induce gene expression and production of interleukin-1. Infect Immun. 1991;59:1972–7.PubMedPubMedCentralCrossRef
64.
go back to reference Takeshita A, Murakami Y, Yamashita Y, Ishida M, Fujisawa S, Kitano S, et al. Porphyromonas gingivalis fimbriae use beta2 integrin (CD11/CD18) on mouse peritoneal macrophages as a cellular receptor, and the CD18 beta chain plays a functional role in fimbrial signaling. Infect Immun. 1998;66:4056–60.PubMedPubMedCentralCrossRef Takeshita A, Murakami Y, Yamashita Y, Ishida M, Fujisawa S, Kitano S, et al. Porphyromonas gingivalis fimbriae use beta2 integrin (CD11/CD18) on mouse peritoneal macrophages as a cellular receptor, and the CD18 beta chain plays a functional role in fimbrial signaling. Infect Immun. 1998;66:4056–60.PubMedPubMedCentralCrossRef
65.
go back to reference Hiramine H, Watanabe K, Hamada N, Umemoto T. Porphyromonas gingivalis 67-kDa fimbriae induced cytokine production and osteoclast differentiation utilizing TLR2. FEMS Microbiol Lett. 2003;229:49–55.PubMedCrossRef Hiramine H, Watanabe K, Hamada N, Umemoto T. Porphyromonas gingivalis 67-kDa fimbriae induced cytokine production and osteoclast differentiation utilizing TLR2. FEMS Microbiol Lett. 2003;229:49–55.PubMedCrossRef
66.
go back to reference Hajishengallis G, Martin M, Sojar HT, Sharma A, Schifferle RE, DeNardin E, et al. Dependence of bacterial protein adhesins on toll-like receptors for proinflammatory cytokine induction. Clin Diagn Lab Immunol. 2002;9:403–11.PubMedPubMedCentral Hajishengallis G, Martin M, Sojar HT, Sharma A, Schifferle RE, DeNardin E, et al. Dependence of bacterial protein adhesins on toll-like receptors for proinflammatory cytokine induction. Clin Diagn Lab Immunol. 2002;9:403–11.PubMedPubMedCentral
67.
68.
71.
go back to reference Fleetwood AJ, Lee MKS, Singleton W, Achuthan A, Lee M-C, O’Brien-Simpson NM, et al. Metabolic remodeling, inflammasome activation, and pyroptosis in macrophages stimulated by Porphyromonas gingivalis and its outer membrane vesicles. Front Cell Infect Microbiol. 2017;7:351.PubMedPubMedCentralCrossRef Fleetwood AJ, Lee MKS, Singleton W, Achuthan A, Lee M-C, O’Brien-Simpson NM, et al. Metabolic remodeling, inflammasome activation, and pyroptosis in macrophages stimulated by Porphyromonas gingivalis and its outer membrane vesicles. Front Cell Infect Microbiol. 2017;7:351.PubMedPubMedCentralCrossRef
72.
go back to reference Zhang J, Xie M, Huang X, Chen G, Yin Y, Lu X, et al. The effects of porphyromonas gingivalis on atherosclerosis-related cells. Front Immunol. 2021;12:766560.PubMedPubMedCentralCrossRef Zhang J, Xie M, Huang X, Chen G, Yin Y, Lu X, et al. The effects of porphyromonas gingivalis on atherosclerosis-related cells. Front Immunol. 2021;12:766560.PubMedPubMedCentralCrossRef
73.
go back to reference Zardawi F, Gul S, Abdulkareem A, Sha A, Yates J. Association between periodontal disease and atherosclerotic cardiovascular diseases: revisited. Front Cardiovasc Med. 2021;7:625579.PubMedPubMedCentralCrossRef Zardawi F, Gul S, Abdulkareem A, Sha A, Yates J. Association between periodontal disease and atherosclerotic cardiovascular diseases: revisited. Front Cardiovasc Med. 2021;7:625579.PubMedPubMedCentralCrossRef
74.
go back to reference Isola G, Polizzi A, Iorio-Siciliano V, Alibrandi A, Ramaglia L, Leonardi R. Effectiveness of a nutraceutical agent in the non-surgical periodontal therapy: a randomized, controlled clinical trial. Clin Oral Investig. 2021;25:1035–45.PubMedCrossRef Isola G, Polizzi A, Iorio-Siciliano V, Alibrandi A, Ramaglia L, Leonardi R. Effectiveness of a nutraceutical agent in the non-surgical periodontal therapy: a randomized, controlled clinical trial. Clin Oral Investig. 2021;25:1035–45.PubMedCrossRef
75.
go back to reference Moghaddam A, Ranjbar R, Yazdanian M, Tahmasebi E, Alam M, Abbasi K et al. The current antimicrobial and antibiofilm activities of synthetic/herbal/biomaterials in dental application. Biomed Res Int. 2022;2022. Moghaddam A, Ranjbar R, Yazdanian M, Tahmasebi E, Alam M, Abbasi K et al. The current antimicrobial and antibiofilm activities of synthetic/herbal/biomaterials in dental application. Biomed Res Int. 2022;2022.
76.
go back to reference Motallaei MN, Yazdanian M, Tebyanian H, Tahmasebi E, Alam M, Abbasi K et al. The current strategies in controlling oral diseases by herbal and chemical materials. Evidence-Based Complement Altern Med. 2021;2021. Motallaei MN, Yazdanian M, Tebyanian H, Tahmasebi E, Alam M, Abbasi K et al. The current strategies in controlling oral diseases by herbal and chemical materials. Evidence-Based Complement Altern Med. 2021;2021.
77.
go back to reference Yazdanian M, Rostamzadeh P, Alam M, Abbasi K, Tahmasebi E, Tebyaniyan H, et al. Evaluation of antimicrobial and cytotoxic effects of Echinacea and Arctium extracts and Zataria essential oil. AMB Express. 2022;12:1–13.CrossRef Yazdanian M, Rostamzadeh P, Alam M, Abbasi K, Tahmasebi E, Tebyaniyan H, et al. Evaluation of antimicrobial and cytotoxic effects of Echinacea and Arctium extracts and Zataria essential oil. AMB Express. 2022;12:1–13.CrossRef
78.
go back to reference Karobari MI, Siddharthan S, Adil AH, Khan MM, Venugopal A, Rokaya D et al. Modifiable and non-modifiable risk factors affecting oral and periodontal health and quality of life in south asia. Open Dent J. 2022;16. Karobari MI, Siddharthan S, Adil AH, Khan MM, Venugopal A, Rokaya D et al. Modifiable and non-modifiable risk factors affecting oral and periodontal health and quality of life in south asia. Open Dent J. 2022;16.
79.
go back to reference Isola G, Santonocito S, Distefano A, Polizzi A, Vaccaro M, Raciti G, et al. Impact of periodontitis on gingival crevicular fluid miRNAs profiles associated with cardiovascular disease risk. J Periodontal Res. 2023;58:165–74.PubMedCrossRef Isola G, Santonocito S, Distefano A, Polizzi A, Vaccaro M, Raciti G, et al. Impact of periodontitis on gingival crevicular fluid miRNAs profiles associated with cardiovascular disease risk. J Periodontal Res. 2023;58:165–74.PubMedCrossRef
80.
go back to reference Gui Y, Zheng H, Cao RY. Foam cells in atherosclerosis: novel insights into its origins, consequences, and molecular mechanisms. Front Cardiovasc Med. 2022;:842. Gui Y, Zheng H, Cao RY. Foam cells in atherosclerosis: novel insights into its origins, consequences, and molecular mechanisms. Front Cardiovasc Med. 2022;:842.
Metadata
Title
A systematic review of the impact of Porphyromonas gingivalis on foam cell formation: Implications for the role of periodontitis in atherosclerosis
Authors
Saeed Afzoon
Mohammad Amin Amiri
Mostafa Mohebbi
Shahram Hamedani
Nima Farshidfar
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2023
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-023-03183-9

Other articles of this Issue 1/2023

BMC Oral Health 1/2023 Go to the issue