Skip to main content
Top
Published in: Current Osteoporosis Reports 3/2013

01-09-2013 | Nutrition and Lifestyle in Osteoporosis (S Ferrari, Section Editor)

Influence of Hormonal Appetite and Energy Regulators on Bone

Authors: Ee Cheng Khor, Natalie Kah Yun Wee, Paul A Baldock

Published in: Current Osteoporosis Reports | Issue 3/2013

Login to get access

Abstract

Nutritional status is an essential component in determining whole body energy homeostasis. The balance between energy/food intake and metabolism is governed by a range of hormones secreted from various parts of the body. Their subsequent dissemination via the blood results in a wide range of biological responses including satiety, hunger, and glucose uptake. The roles of these systemic hormones also extend to bone regulation with animal and clinical studies establishing a relationship between these regulatory pathways. This review covers the gastrointestinal hormones, ghrelin, PYY, GIP, GLP-1, and GLP-2, and the adipokines, leptin, and adiponectin and their roles in regulating bone homeostasis. Their known actions are reviewed, with an emphasis upon recent advances in understanding. Taken together, this review outlines an expanding appreciation of the interactions between bone mass and the nutritional control of whole body energy balance by gut and adipose tissue.
Literature
1.
go back to reference Clowes JA, Hannon RA, Yap TS, Hoyle NR, Blumsohn A, Eastell R. Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone. 2002;30(6):886–90.PubMedCrossRef Clowes JA, Hannon RA, Yap TS, Hoyle NR, Blumsohn A, Eastell R. Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone. 2002;30(6):886–90.PubMedCrossRef
7.
go back to reference Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–60. doi:10.1038/45230.PubMedCrossRef Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–60. doi:10.​1038/​45230.PubMedCrossRef
8.
go back to reference Inui A, Asakawa A, Bowers CY, Mantovani G, Laviano A, Meguid MM, et al. Ghrelin, appetite, and gastric motility: the emerging role of the stomach as an endocrine organ. FASEB J Off Publ Fed Am Soc Exp Biol. 2004;18(3):439–56. doi:10.1096/fj.03-0641rev. Inui A, Asakawa A, Bowers CY, Mantovani G, Laviano A, Meguid MM, et al. Ghrelin, appetite, and gastric motility: the emerging role of the stomach as an endocrine organ. FASEB J Off Publ Fed Am Soc Exp Biol. 2004;18(3):439–56. doi:10.​1096/​fj.​03-0641rev.
9.
go back to reference Williams DL, Cummings DE, Grill HJ, Kaplan JM. Meal-related ghrelin suppression requires postgastric feedback. Endocrinology. 2003;144(7):2765–7.PubMedCrossRef Williams DL, Cummings DE, Grill HJ, Kaplan JM. Meal-related ghrelin suppression requires postgastric feedback. Endocrinology. 2003;144(7):2765–7.PubMedCrossRef
11.
go back to reference Sun Y, Ahmed S, Smith RG. Deletion of ghrelin impairs neither growth nor appetite. Mol Cell Biol. 2003;23(22):7973–81.PubMedCrossRef Sun Y, Ahmed S, Smith RG. Deletion of ghrelin impairs neither growth nor appetite. Mol Cell Biol. 2003;23(22):7973–81.PubMedCrossRef
12.
go back to reference Sun Y, Wang P, Zheng H, Smith RG. Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc Natl Acad Sci U S A. 2004;101(13):4679–84. doi:10.1073/pnas.0305930101.PubMedCrossRef Sun Y, Wang P, Zheng H, Smith RG. Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc Natl Acad Sci U S A. 2004;101(13):4679–84. doi:10.​1073/​pnas.​0305930101.PubMedCrossRef
13.
14.
go back to reference •• van der Velde M, van der Eerden BC, Sun Y, Almering JM, van der Lely AJ, Delhanty PJ, et al. An age-dependent interaction with leptin unmasks ghrelin's bone-protective effects. Endocrinology. 2012;153(8):3593–602. doi:10.1210/en.2012-1277. This paper examines the skeletal effects that each ghrelin and leptin has and is one of the first studies that explains the interplay that these 2 hormones have on bone in vivo.PubMedCrossRef •• van der Velde M, van der Eerden BC, Sun Y, Almering JM, van der Lely AJ, Delhanty PJ, et al. An age-dependent interaction with leptin unmasks ghrelin's bone-protective effects. Endocrinology. 2012;153(8):3593–602. doi:10.​1210/​en.​2012-1277. This paper examines the skeletal effects that each ghrelin and leptin has and is one of the first studies that explains the interplay that these 2 hormones have on bone in vivo.PubMedCrossRef
16.
go back to reference Guerardel A, Tanko LB, Boutin P, Christiansen C, Froguel P. Obesity susceptibility CART gene polymorphism contributes to bone remodeling in postmenopausal women. Osteoporos Int: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2006;17(1):156–7. doi:10.1007/s00198-005-2022-1 Guerardel A, Tanko LB, Boutin P, Christiansen C, Froguel P. Obesity susceptibility CART gene polymorphism contributes to bone remodeling in postmenopausal women. Osteoporos Int: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2006;17(1):156–7. doi:10.​1007/​s00198-005-2022-1
22.
go back to reference Cigdem Arica P, Kocael A, Tabak O, Taskin M, Zengin K, Uzun H. Plasma ghrelin, leptin, and orexin-A levels and insulin resistance after laparoscopic gastric band applications in morbidly obese patients. Minerva Medica. 2013;104(3):309–16.PubMed Cigdem Arica P, Kocael A, Tabak O, Taskin M, Zengin K, Uzun H. Plasma ghrelin, leptin, and orexin-A levels and insulin resistance after laparoscopic gastric band applications in morbidly obese patients. Minerva Medica. 2013;104(3):309–16.PubMed
23.
go back to reference •• Brzozowska MM, Sainsbury A, Eisman JA, Baldock PA, Center JR. Bariatric surgery, bone loss, obesity and possible mechanisms. Obes Rev. 2013;14(1):52–67. doi:10.1111/j.1467-789X.2012.01050.x. This review assesses the interactions between bariatric surgery, bone loss, and obesity. Obesity and bone loss has been widely overlooked; evidence suggests that continued bone loss is present in postbariatric surgery. This review extensively examines the current literature and suggests possible mechanisms that may be occurring.PubMedCrossRef •• Brzozowska MM, Sainsbury A, Eisman JA, Baldock PA, Center JR. Bariatric surgery, bone loss, obesity and possible mechanisms. Obes Rev. 2013;14(1):52–67. doi:10.​1111/​j.​1467-789X.​2012.​01050.​x. This review assesses the interactions between bariatric surgery, bone loss, and obesity. Obesity and bone loss has been widely overlooked; evidence suggests that continued bone loss is present in postbariatric surgery. This review extensively examines the current literature and suggests possible mechanisms that may be occurring.PubMedCrossRef
24.
go back to reference Shapses SA, Riedt CS. Bone, body weight, and weight reduction: what are the concerns? J Nutrition. 2006;136(6):1453–6. Shapses SA, Riedt CS. Bone, body weight, and weight reduction: what are the concerns? J Nutrition. 2006;136(6):1453–6.
27.
go back to reference •• Wong IPL, Driessler F, Khor EC, Shi Y-C, Hörmer B, Nguyen AD, et al. Peptide YY regulates bone remodeling in mice: a link between gut and skeletal biology. PLoS One. 2012;7(7):e40038. doi:10.1371/journal.pone.0040038. This study showed that PYY regulates bone remodelling via the osteoblastic Y1 receptor using knockout and transgenic mice.PubMedCrossRef •• Wong IPL, Driessler F, Khor EC, Shi Y-C, Hörmer B, Nguyen AD, et al. Peptide YY regulates bone remodeling in mice: a link between gut and skeletal biology. PLoS One. 2012;7(7):e40038. doi:10.​1371/​journal.​pone.​0040038. This study showed that PYY regulates bone remodelling via the osteoblastic Y1 receptor using knockout and transgenic mice.PubMedCrossRef
29.
go back to reference Yuzuriha H, Inui A, Asakawa A, Ueno N, Kasuga M, Meguid MM, et al. Gastrointestinal hormones (anorexigenic peptide YY and orexigenic ghrelin) influence neural tube development. FASEB J. 2007;21(9):2108–12. doi:10.1096/fj.06-7621com.PubMedCrossRef Yuzuriha H, Inui A, Asakawa A, Ueno N, Kasuga M, Meguid MM, et al. Gastrointestinal hormones (anorexigenic peptide YY and orexigenic ghrelin) influence neural tube development. FASEB J. 2007;21(9):2108–12. doi:10.​1096/​fj.​06-7621com.PubMedCrossRef
31.
go back to reference Misra M, Miller KK, Tsai P, Gallagher K, Lin A, Lee N, et al. Elevated peptide YY levels in adolescent girls with anorexia nervosa. J Clin Endocrinol Metabol. 2006;91(3):1027–33. doi:10.1210/jc.2005-1878.CrossRef Misra M, Miller KK, Tsai P, Gallagher K, Lin A, Lee N, et al. Elevated peptide YY levels in adolescent girls with anorexia nervosa. J Clin Endocrinol Metabol. 2006;91(3):1027–33. doi:10.​1210/​jc.​2005-1878.CrossRef
32.
go back to reference Howgate DJ, Graham SM, Leonidou A, Korres N, Tsiridis E, Tsapakis E. Bone metabolism in anorexia nervosa: molecular pathways and current treatment modalities. Osteoporo Int. 2013;24(2):407–21. doi:10.1007/s00198-012-2095-6.CrossRef Howgate DJ, Graham SM, Leonidou A, Korres N, Tsiridis E, Tsapakis E. Bone metabolism in anorexia nervosa: molecular pathways and current treatment modalities. Osteoporo Int. 2013;24(2):407–21. doi:10.​1007/​s00198-012-2095-6.CrossRef
34.
35.
37.
go back to reference Misra M, Prabhakaran R, Miller KK, Goldstein MA, Mickley D, Clauss L, et al. Prognostic indicators of changes in bone density measures in adolescent girls with anorexia nervosa-II. J Clin Endocrinol Metabol. 2008;93(4):1292–7. doi:10.1210/jc.2007-2419.CrossRef Misra M, Prabhakaran R, Miller KK, Goldstein MA, Mickley D, Clauss L, et al. Prognostic indicators of changes in bone density measures in adolescent girls with anorexia nervosa-II. J Clin Endocrinol Metabol. 2008;93(4):1292–7. doi:10.​1210/​jc.​2007-2419.CrossRef
41.
go back to reference Tsukiyama K, Yamada Y, Yamada C, Harada N, Kawasaki Y, Ogura M, et al. Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol Endocrinol. 2006;20(7):1644–51. doi:10.1210/me.2005-0187.PubMedCrossRef Tsukiyama K, Yamada Y, Yamada C, Harada N, Kawasaki Y, Ogura M, et al. Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol Endocrinol. 2006;20(7):1644–51. doi:10.​1210/​me.​2005-0187.PubMedCrossRef
44.
go back to reference Gaudin-Audrain C, Irwin N, Mansur S, Flatt PR, Thorens B, Basle M, et al. Glucose-dependent insulinotropic polypeptide receptor deficiency leads to modifications of trabecular bone volume and quality in mice. Bone. 2013;53(1):221–30. doi:10.1016/j.bone.2012.11.039.PubMedCrossRef Gaudin-Audrain C, Irwin N, Mansur S, Flatt PR, Thorens B, Basle M, et al. Glucose-dependent insulinotropic polypeptide receptor deficiency leads to modifications of trabecular bone volume and quality in mice. Bone. 2013;53(1):221–30. doi:10.​1016/​j.​bone.​2012.​11.​039.PubMedCrossRef
45.
go back to reference Nuche-Berenguer B, Moreno P, Esbrit P, Dapia S, Caeiro JR, Cancelas J, et al. Effect of GLP-1 treatment on bone turnover in normal, type 2 diabetic, and insulin-resistant states. Calcif Tissue Int. 2009;84(6):453–61. doi:10.1007/s00223-009-9220-3.PubMedCrossRef Nuche-Berenguer B, Moreno P, Esbrit P, Dapia S, Caeiro JR, Cancelas J, et al. Effect of GLP-1 treatment on bone turnover in normal, type 2 diabetic, and insulin-resistant states. Calcif Tissue Int. 2009;84(6):453–61. doi:10.​1007/​s00223-009-9220-3.PubMedCrossRef
46.
go back to reference • Pacheco-Pantoja EL, Ranganath LR, Gallagher JA, Wilson PJ, Fraser WD. Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol. 2011;11:12. doi:10.1186/1472-6793-11-12. This paper outlines the response of cell lines to GLP-2 and explains that osteoblastic maturation may be a factor in explaining the different responses observed.PubMedCrossRef • Pacheco-Pantoja EL, Ranganath LR, Gallagher JA, Wilson PJ, Fraser WD. Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol. 2011;11:12. doi:10.​1186/​1472-6793-11-12. This paper outlines the response of cell lines to GLP-2 and explains that osteoblastic maturation may be a factor in explaining the different responses observed.PubMedCrossRef
48.
go back to reference Henriksen DB, Alexandersen P, Byrjalsen I, Hartmann B, Bone HG, Christiansen C, et al. Reduction of nocturnal rise in bone resorption by subcutaneous GLP-2. Bone. 2004;34(1):140–7.PubMedCrossRef Henriksen DB, Alexandersen P, Byrjalsen I, Hartmann B, Bone HG, Christiansen C, et al. Reduction of nocturnal rise in bone resorption by subcutaneous GLP-2. Bone. 2004;34(1):140–7.PubMedCrossRef
50.
go back to reference Henriksen DB, Alexandersen P, Hartmann B, Adrian CL, Byrjalsen I, Bone HG, et al. Four-month treatment with GLP-2 significantly increases hip BMD: a randomized, placebo-controlled, dose-ranging study in postmenopausal women with low BMD. Bone. 2009;45(5):833–42. doi:10.1016/j.bone.2009.07.008.PubMedCrossRef Henriksen DB, Alexandersen P, Hartmann B, Adrian CL, Byrjalsen I, Bone HG, et al. Four-month treatment with GLP-2 significantly increases hip BMD: a randomized, placebo-controlled, dose-ranging study in postmenopausal women with low BMD. Bone. 2009;45(5):833–42. doi:10.​1016/​j.​bone.​2009.​07.​008.PubMedCrossRef
52.
go back to reference Askov-Hansen C, Jeppesen PB, Lund P, Hartmann B, Holst JJ, Henriksen DB. Effect of glucagon-like peptide-2 exposure on bone resorption: effectiveness of high concentration versus prolonged exposure. Regul Pept. 2012;181C:4–8. doi:10.1016/j.regpep.2012.11.002. Askov-Hansen C, Jeppesen PB, Lund P, Hartmann B, Holst JJ, Henriksen DB. Effect of glucagon-like peptide-2 exposure on bone resorption: effectiveness of high concentration versus prolonged exposure. Regul Pept. 2012;181C:4–8. doi:10.​1016/​j.​regpep.​2012.​11.​002.
54.
go back to reference Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db Mice. Cell. 1996;84(3):491–5. doi:10.1016/S0092-8674(00)81294-5.PubMedCrossRef Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db Mice. Cell. 1996;84(3):491–5. doi:10.​1016/​S0092-8674(00)81294-5.PubMedCrossRef
55.
go back to reference Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.PubMedCrossRef Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.PubMedCrossRef
56.
go back to reference Baldock PA, Sainsbury A, Allison S, Lin EJ, Couzens M, Boey D, et al. Hypothalamic control of bone formation: distinct actions of leptin and y2 receptor pathways. J Bone Miner Res. 2005;20(10):1851–7. doi:10.1359/JBMR.050523.PubMedCrossRef Baldock PA, Sainsbury A, Allison S, Lin EJ, Couzens M, Boey D, et al. Hypothalamic control of bone formation: distinct actions of leptin and y2 receptor pathways. J Bone Miner Res. 2005;20(10):1851–7. doi:10.​1359/​JBMR.​050523.PubMedCrossRef
57.
go back to reference Baldock PA, Allison S, McDonald MM, Sainsbury A, Enriquez RF, Little DG, et al. Hypothalamic regulation of cortical bone mass: opposing activity of Y2 receptor and leptin pathways. J Bone Miner Res. 2006;21(10):1600–7. doi:10.1359/jbmr.060705.PubMedCrossRef Baldock PA, Allison S, McDonald MM, Sainsbury A, Enriquez RF, Little DG, et al. Hypothalamic regulation of cortical bone mass: opposing activity of Y2 receptor and leptin pathways. J Bone Miner Res. 2006;21(10):1600–7. doi:10.​1359/​jbmr.​060705.PubMedCrossRef
59.
go back to reference Lee NJ, Wong IP, Baldock PA, Herzog H. Leptin as an endocrine signal in bone. Curr Osteoporos Rep. 2008;6(2):62–6.PubMedCrossRef Lee NJ, Wong IP, Baldock PA, Herzog H. Leptin as an endocrine signal in bone. Curr Osteoporos Rep. 2008;6(2):62–6.PubMedCrossRef
60.
go back to reference Vaisse C, Halaas JL, Horvath CM, Darnell Jr JE, Stoffel M, Friedman JM. Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat Genet. 1996;14(1):95–7. doi:10.1038/ng0996-95.PubMedCrossRef Vaisse C, Halaas JL, Horvath CM, Darnell Jr JE, Stoffel M, Friedman JM. Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat Genet. 1996;14(1):95–7. doi:10.​1038/​ng0996-95.PubMedCrossRef
64.
go back to reference Kajimura D, Hinoi E, Ferron M, Kode A, Riley KJ, Zhou B, et al. Genetic determination of the cellular basis of the sympathetic regulation of bone mass accrual. J Exp Med. 2011;208(4):841–51. doi:10.1084/jem.20102608.PubMedCrossRef Kajimura D, Hinoi E, Ferron M, Kode A, Riley KJ, Zhou B, et al. Genetic determination of the cellular basis of the sympathetic regulation of bone mass accrual. J Exp Med. 2011;208(4):841–51. doi:10.​1084/​jem.​20102608.PubMedCrossRef
65.
go back to reference Wilding JP, Gilbey SG, Bailey CJ, Batt RA, Williams G, Ghatei MA, et al. Increased neuropeptide-Y messenger ribonucleic acid (mRNA) and decreased neurotensin mRNA in the hypothalamus of the obese (ob/ob) mouse. Endocrinology. 1993;132(5):1939–44. doi:10.1210/en.132.5.1939.PubMedCrossRef Wilding JP, Gilbey SG, Bailey CJ, Batt RA, Williams G, Ghatei MA, et al. Increased neuropeptide-Y messenger ribonucleic acid (mRNA) and decreased neurotensin mRNA in the hypothalamus of the obese (ob/ob) mouse. Endocrinology. 1993;132(5):1939–44. doi:10.​1210/​en.​132.​5.​1939.PubMedCrossRef
66.
go back to reference Stephens TW, Basinski M, Bristow PK, Bue-Valleskey JM, Burgett SG, Craft L, et al. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature. 1995;377(6549):530–2.PubMedCrossRef Stephens TW, Basinski M, Bristow PK, Bue-Valleskey JM, Burgett SG, Craft L, et al. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature. 1995;377(6549):530–2.PubMedCrossRef
67.
go back to reference Baldock PA, Allison SJ, Lundberg P, Lee NJ, Slack K, Lin E-JD, et al. Novel role of Y1 receptors in the coordinated regulation of bone and energy homeostasis. J Biolog Chemis. 2007;282(26):19092–102. doi:10.1074/jbc.M700644200.CrossRef Baldock PA, Allison SJ, Lundberg P, Lee NJ, Slack K, Lin E-JD, et al. Novel role of Y1 receptors in the coordinated regulation of bone and energy homeostasis. J Biolog Chemis. 2007;282(26):19092–102. doi:10.​1074/​jbc.​M700644200.CrossRef
69.
go back to reference Baldock PA, Sainsbury A, Couzens M, Enriquez RF, Thomas GP, Gardiner EM, et al. Hypothalamic Y2 receptors regulate bone formation. J Clin Invest. 2002;109(7):915–21. doi:10.1172/JCI14588.PubMed Baldock PA, Sainsbury A, Couzens M, Enriquez RF, Thomas GP, Gardiner EM, et al. Hypothalamic Y2 receptors regulate bone formation. J Clin Invest. 2002;109(7):915–21. doi:10.​1172/​JCI14588.PubMed
70.
go back to reference •• Wong IPL, Nguyen AD, Khor EC, Enriquez RF, Eisman JA, Sainsbury A, et al. Neuropeptide Y is a critical modulator of Leptin's regulation of cortical bone. J Bone Miner Res. 2013;28(4):886–98. doi:10.1002/jbmr.1786. This study showed the contribution of NPY in the cortical bone phenotype of ob/ob mice.PubMedCrossRef •• Wong IPL, Nguyen AD, Khor EC, Enriquez RF, Eisman JA, Sainsbury A, et al. Neuropeptide Y is a critical modulator of Leptin's regulation of cortical bone. J Bone Miner Res. 2013;28(4):886–98. doi:10.​1002/​jbmr.​1786. This study showed the contribution of NPY in the cortical bone phenotype of ob/ob mice.PubMedCrossRef
71.
go back to reference Cornish J, Callon KE, Bava U, Lin C, Naot D, Hill BL, et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol. 2002;175(2):405–15.PubMedCrossRef Cornish J, Callon KE, Bava U, Lin C, Naot D, Hill BL, et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol. 2002;175(2):405–15.PubMedCrossRef
72.
go back to reference Lee YJ, Park JH, Ju SK, You KH, Ko JS, Kim HM. Leptin receptor isoform expression in rat osteoblasts and their functional analysis. FEBS Lett. 2002;528(1–3):43–7.PubMedCrossRef Lee YJ, Park JH, Ju SK, You KH, Ko JS, Kim HM. Leptin receptor isoform expression in rat osteoblasts and their functional analysis. FEBS Lett. 2002;528(1–3):43–7.PubMedCrossRef
74.
go back to reference Nakajima R, Inada H, Koike T, Yamano T. Effects of leptin to cultured growth plate chondrocytes. Horm Res. 2003;60(2):91–8.PubMedCrossRef Nakajima R, Inada H, Koike T, Yamano T. Effects of leptin to cultured growth plate chondrocytes. Horm Res. 2003;60(2):91–8.PubMedCrossRef
75.
78.
go back to reference •• Turner RT, Kalra SP, Wong CP, Philbrick KA, Lindenmaier LB, Boghossian S, et al. Peripheral leptin regulates bone formation. J Bone Miner Res. 2013;28(1):22–34. doi:10.1002/jbmr.1734. The role of peripheral leptin signalling in bone remodelling was revisited in this study.PubMedCrossRef •• Turner RT, Kalra SP, Wong CP, Philbrick KA, Lindenmaier LB, Boghossian S, et al. Peripheral leptin regulates bone formation. J Bone Miner Res. 2013;28(1):22–34. doi:10.​1002/​jbmr.​1734. The role of peripheral leptin signalling in bone remodelling was revisited in this study.PubMedCrossRef
80.
go back to reference Hamrick MW, Ding KH, Ponnala S, Ferrari SL, Isales CM. Caloric restriction decreases cortical bone mass but spares trabecular bone in the mouse skeleton: implications for the regulation of bone mass by body weight. J Bone Miner Res. 2008;23(6):870–8. doi:10.1359/jbmr.080213.PubMedCrossRef Hamrick MW, Ding KH, Ponnala S, Ferrari SL, Isales CM. Caloric restriction decreases cortical bone mass but spares trabecular bone in the mouse skeleton: implications for the regulation of bone mass by body weight. J Bone Miner Res. 2008;23(6):870–8. doi:10.​1359/​jbmr.​080213.PubMedCrossRef
82.
go back to reference Ahmadi F, Salari S, Maziar S, Esfahanian F, Khazaeipour Z, Ranjbarnovin N. Relationship between serum leptin levels and bone mineral density and bone metabolic markers in patients on hemodialysis. Saudi J Kidney Dis Transpl. 2013;24(1):41–7. Ahmadi F, Salari S, Maziar S, Esfahanian F, Khazaeipour Z, Ranjbarnovin N. Relationship between serum leptin levels and bone mineral density and bone metabolic markers in patients on hemodialysis. Saudi J Kidney Dis Transpl. 2013;24(1):41–7.
83.
go back to reference Zhao H-Z, Bi Y-F, Ma L-Y, Zhao L, Wang T-G, Zhang L-Z, et al. The effects of bisphenol A (BPA) exposure on fat mass and serum leptin concentrations have no impact on bone mineral densities in nonobese premenopausal women. Clin Biochemis. 2012;45(18):1602–6. doi:10.1016/j.clinbiochem.2012.08.024.CrossRef Zhao H-Z, Bi Y-F, Ma L-Y, Zhao L, Wang T-G, Zhang L-Z, et al. The effects of bisphenol A (BPA) exposure on fat mass and serum leptin concentrations have no impact on bone mineral densities in nonobese premenopausal women. Clin Biochemis. 2012;45(18):1602–6. doi:10.​1016/​j.​clinbiochem.​2012.​08.​024.CrossRef
84.
go back to reference Thomas T, Burguera B, Melton III LJ, Atkinson EJ, O'Fallon WM, Riggs BL, et al. Role of serum leptin, insulin, and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women. Bone. 2001;29(2):114–20.PubMedCrossRef Thomas T, Burguera B, Melton III LJ, Atkinson EJ, O'Fallon WM, Riggs BL, et al. Role of serum leptin, insulin, and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women. Bone. 2001;29(2):114–20.PubMedCrossRef
85.
87.
go back to reference Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biologic Chemis. 1996;271(18):10697–703.CrossRef Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biologic Chemis. 1996;271(18):10697–703.CrossRef
90.
go back to reference Shinoda Y, Yamaguchi M, Ogata N, Akune T, Kubota N, Yamauchi T, et al. Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J Cell Biochemis. 2006;99(1):196–208. doi:10.1002/jcb.20890.CrossRef Shinoda Y, Yamaguchi M, Ogata N, Akune T, Kubota N, Yamauchi T, et al. Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J Cell Biochemis. 2006;99(1):196–208. doi:10.​1002/​jcb.​20890.CrossRef
Metadata
Title
Influence of Hormonal Appetite and Energy Regulators on Bone
Authors
Ee Cheng Khor
Natalie Kah Yun Wee
Paul A Baldock
Publication date
01-09-2013
Publisher
Springer US
Published in
Current Osteoporosis Reports / Issue 3/2013
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-013-0157-0

Other articles of this Issue 3/2013

Current Osteoporosis Reports 3/2013 Go to the issue

Nutrition and Lifestyle in Osteoporosis (S Ferrari, Section Editor)

Impact of the Environment on the Skeleton: Is it Modulated by Genetic Factors?

Nutrition and Lifestyle in Osteoporosis (S Ferrari, Section Editor)

Vitamin B12, Folic Acid, and Bone

Evaluation and Management (M Kleerekoper, Section Editor)

Atypical Femoral fractures: A Review of the Literature

Evaluation and Management (M Kleerekoper, Section Editor)

Vitamin D and Skeletal Growth and Development