Skip to main content
Top
Published in: BMC Oral Health 1/2023

Open Access 01-12-2023 | Research

Influence of growth structures and fixed appliances on automated cephalometric landmark recognition with a customized convolutional neural network

Authors: Teodora Popova, Thomas Stocker, Yeganeh Khazaei, Yoana Malenova, Andrea Wichelhaus, Hisham Sabbagh

Published in: BMC Oral Health | Issue 1/2023

Login to get access

Abstract

Background

One of the main uses of artificial intelligence in the field of orthodontics is automated cephalometric analysis. Aim of the present study was to evaluate whether developmental stages of a dentition, fixed orthodontic appliances or other dental appliances may affect detection of cephalometric landmarks.

Methods

For the purposes of this study a Convolutional Neural Network (CNN) for automated detection of cephalometric landmarks was developed. The model was trained on 430 cephalometric radiographs and its performance was then tested on 460 new radiographs. The accuracy of landmark detection in patients with permanent dentition was compared with that in patients with mixed dentition. Furthermore, the influence of fixed orthodontic appliances and orthodontic brackets and/or bands was investigated only in patients with permanent dentition. A t-test was performed to evaluate the mean radial errors (MREs) against the corresponding SDs for each landmark in the two categories, of which the significance was set at p < 0.05.

Results

The study showed significant differences in the recognition accuracy of the Ap-Inferior point and the Is-Superior point between patients with permanent dentition and mixed dentition, and no significant differences in the recognition process between patients without fixed orthodontic appliances and patients with orthodontic brackets and/or bands and other fixed orthodontic appliances.

Conclusions

The results indicated that growth structures and developmental stages of a dentition had an impact on the performance of the customized CNN model by dental cephalometric landmarks. Fixed orthodontic appliances such as brackets, bands, and other fixed orthodontic appliances, had no significant effect on the performance of the CNN model.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ludlow JB, Gubler M, Cevidanes L, Mol A. Precision of cephalometric landmark identification: cone-beam computed tomography vs conventional cephalometric views. Am J Orthod Dentofacial Orthop. 2009;136(3):312 e1-10.PubMedCrossRef Ludlow JB, Gubler M, Cevidanes L, Mol A. Precision of cephalometric landmark identification: cone-beam computed tomography vs conventional cephalometric views. Am J Orthod Dentofacial Orthop. 2009;136(3):312 e1-10.PubMedCrossRef
2.
go back to reference Houston WJ, Maher RE, McElroy D, Sherriff M. Sources of error in measurements from cephalometric radiographs. Eur J Orthod. 1986;8(3):149–51.PubMedCrossRef Houston WJ, Maher RE, McElroy D, Sherriff M. Sources of error in measurements from cephalometric radiographs. Eur J Orthod. 1986;8(3):149–51.PubMedCrossRef
3.
4.
go back to reference Tng TTH, Chan TCK, Hägg U, Cooke MS. Validity of cephalometric landmarks. An experimental study on human skulls. Eur J Orthod. 1994;16(2):110–20.PubMedCrossRef Tng TTH, Chan TCK, Hägg U, Cooke MS. Validity of cephalometric landmarks. An experimental study on human skulls. Eur J Orthod. 1994;16(2):110–20.PubMedCrossRef
5.
go back to reference Albarakati SF, Kula KS, Ghoneima AA. The reliability and reproducibility of cephalometric measurements: a comparison of conventional and digital methods. Dentomaxillofac Radiol. 2012;41(1):11–7.PubMedPubMedCentralCrossRef Albarakati SF, Kula KS, Ghoneima AA. The reliability and reproducibility of cephalometric measurements: a comparison of conventional and digital methods. Dentomaxillofac Radiol. 2012;41(1):11–7.PubMedPubMedCentralCrossRef
6.
go back to reference Uysal T, Baysal A, Yagci A. Evaluation of speed, repeatability, and reproducibility of digital radiography with manual versus computer-assisted cephalometric analyses. Eur J Orthod. 2009;31(5):523–8.PubMedCrossRef Uysal T, Baysal A, Yagci A. Evaluation of speed, repeatability, and reproducibility of digital radiography with manual versus computer-assisted cephalometric analyses. Eur J Orthod. 2009;31(5):523–8.PubMedCrossRef
7.
go back to reference Lévy-Mandel AD, Venetsanopoulos AN, Tsotsos JK. Knowledge-based landmarking of cephalograms. Comput Biomed Res. 1986;19(3):282–309.PubMedCrossRef Lévy-Mandel AD, Venetsanopoulos AN, Tsotsos JK. Knowledge-based landmarking of cephalograms. Comput Biomed Res. 1986;19(3):282–309.PubMedCrossRef
8.
go back to reference Chen R, Ma Y, Chen N, Lee D, Wang W, editors. Cephalometric landmark detection by attentivefeature pyramid fusion and regression-voting. Shenzhen: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part III. 2019;873–881. https://doi.org/10.1007/978-3-030-32248-9_97. Chen R, Ma Y, Chen N, Lee D, Wang W, editors. Cephalometric landmark detection by attentivefeature pyramid fusion and regression-voting.  Shenzhen: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part III. 2019;873–881. https://​doi.​org/​10.​1007/​978-3-030-32248-9_​97.
10.
go back to reference Lee JH, Yu HJ, Kim MJ, Kim JW, Choi J. Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks. BMC Oral Health. 2020;20(1):270.PubMedPubMedCentralCrossRef Lee JH, Yu HJ, Kim MJ, Kim JW, Choi J. Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks. BMC Oral Health. 2020;20(1):270.PubMedPubMedCentralCrossRef
11.
go back to reference Noothout JMH, De Vos BD, Wolterink JM, Postma EM, Smeets PAM, Takx RAP, et al. Deep learning-based regression and classification for automatic landmark localization in medical images. IEEE Trans Med Imaging. 2020;39(12):4011–22.PubMedCrossRef Noothout JMH, De Vos BD, Wolterink JM, Postma EM, Smeets PAM, Takx RAP, et al. Deep learning-based regression and classification for automatic landmark localization in medical images. IEEE Trans Med Imaging. 2020;39(12):4011–22.PubMedCrossRef
12.
go back to reference Qian J, Luo W, Cheng M, Tao Y, Lin J, Lin H. CephaNN: a multi-head attention network for cephalometric landmark detection. IEEE Access. 2020;8:112633–41.CrossRef Qian J, Luo W, Cheng M, Tao Y, Lin J, Lin H. CephaNN: a multi-head attention network for cephalometric landmark detection. IEEE Access. 2020;8:112633–41.CrossRef
13.
go back to reference Oh K, Oh IS, Le VNT, Lee DW. Deep anatomical context feature learning for cephalometric landmark detection. IEEE J Biomed Health Inform. 2021;25(3):806–17.PubMedCrossRef Oh K, Oh IS, Le VNT, Lee DW. Deep anatomical context feature learning for cephalometric landmark detection. IEEE J Biomed Health Inform. 2021;25(3):806–17.PubMedCrossRef
15.
go back to reference Kunz F, Stellzig-Eisenhauer A, Zeman F, Boldt J. Artificial intelligence in orthodontics. J Orofac Orthop/ Fortschritte der Kieferorthopädie. 2020;81(1):52–68.PubMedCrossRef Kunz F, Stellzig-Eisenhauer A, Zeman F, Boldt J. Artificial intelligence in orthodontics. J Orofac Orthop/ Fortschritte der Kieferorthopädie. 2020;81(1):52–68.PubMedCrossRef
16.
go back to reference Park JH, Hwang HW, Moon JH, Yu Y, Kim H, Her SB, et al. Automated identification of cephalometric landmarks: Part 1-Comparisons between the latest deep-learning methods YOLOV3 and SSD. Angle Orthod. 2019;89(6):903–9.PubMedPubMedCentralCrossRef Park JH, Hwang HW, Moon JH, Yu Y, Kim H, Her SB, et al. Automated identification of cephalometric landmarks: Part 1-Comparisons between the latest deep-learning methods YOLOV3 and SSD. Angle Orthod. 2019;89(6):903–9.PubMedPubMedCentralCrossRef
17.
go back to reference Song Y, Qiao X, Iwamoto Y, Chen YW. Automatic cephalometric landmark detection on x-ray images using a deep-learning method. Appl Sci. 2020;10(7):2547.CrossRef Song Y, Qiao X, Iwamoto Y, Chen YW. Automatic cephalometric landmark detection on x-ray images using a deep-learning method. Appl Sci. 2020;10(7):2547.CrossRef
18.
go back to reference Lindner C, Wang CW, Huang CT, Li CH, Chang SW, Cootes TF. Fully automatic system for accurate localisation and analysis of cephalometric landmarks in lateral cephalograms. Sci Rep. 2016;6:33581.PubMedPubMedCentralCrossRef Lindner C, Wang CW, Huang CT, Li CH, Chang SW, Cootes TF. Fully automatic system for accurate localisation and analysis of cephalometric landmarks in lateral cephalograms. Sci Rep. 2016;6:33581.PubMedPubMedCentralCrossRef
19.
go back to reference Kolsanov AV, Popov NV, Ayupova IO, Tsitsiashvili AM, Gaidel AV, Dobratulin KS. Cephalometric analysis of lateral skull X-ray images using soft computing components in the search for key points. Stomatologiia. 2021;100(4):63–7.PubMedCrossRef Kolsanov AV, Popov NV, Ayupova IO, Tsitsiashvili AM, Gaidel AV, Dobratulin KS. Cephalometric analysis of lateral skull X-ray images using soft computing components in the search for key points. Stomatologiia. 2021;100(4):63–7.PubMedCrossRef
20.
go back to reference Yu HJ, Cho SR, Kim MJ, Kim WH, Kim JW, Choi J. Automated skeletal classification with lateral cephalometry based on artificial intelligence. J Dent Res. 2020;99(3):249–56.PubMedCrossRef Yu HJ, Cho SR, Kim MJ, Kim WH, Kim JW, Choi J. Automated skeletal classification with lateral cephalometry based on artificial intelligence. J Dent Res. 2020;99(3):249–56.PubMedCrossRef
21.
go back to reference Cardillo J, Sid-Ahmed MA. An image processing system for locating craniofacial landmarks. IEEE Trans Med Imaging. 1994;13(2):275–89.PubMedCrossRef Cardillo J, Sid-Ahmed MA. An image processing system for locating craniofacial landmarks. IEEE Trans Med Imaging. 1994;13(2):275–89.PubMedCrossRef
22.
go back to reference Arik SO, Ibragimov B, Xing L. Fully automated quantitative cephalometry using convolutional neural networks. J Med Imaging (Bellingham, Wash). 2017;4(1):014501.CrossRef Arik SO, Ibragimov B, Xing L. Fully automated quantitative cephalometry using convolutional neural networks. J Med Imaging (Bellingham, Wash). 2017;4(1):014501.CrossRef
23.
go back to reference Lindner C, Cootes T. Fully automatic cephalometric evaluation using random forest regression-voting. ISBI 2015. 2015. Lindner C, Cootes T. Fully automatic cephalometric evaluation using random forest regression-voting. ISBI 2015. 2015.
24.
go back to reference Li H, Xu Y, Lei Y, Wang Q, Gao X. Automatic classification for sagittal craniofacial patterns based on different convolutional neural networks. Diagnostics (Basel, Switzerland). 2022;12(6):1359.PubMed Li H, Xu Y, Lei Y, Wang Q, Gao X. Automatic classification for sagittal craniofacial patterns based on different convolutional neural networks. Diagnostics (Basel, Switzerland). 2022;12(6):1359.PubMed
25.
go back to reference Bulatova G, Kusnoto B, Grace V, Tsay TP, Avenetti DM, Sanchez FJC. Assessment of automatic cephalometric landmark identification using artificial intelligence. Orthod Craniofac Res. 2021;24(Suppl 2):37–42.PubMedCrossRef Bulatova G, Kusnoto B, Grace V, Tsay TP, Avenetti DM, Sanchez FJC. Assessment of automatic cephalometric landmark identification using artificial intelligence. Orthod Craniofac Res. 2021;24(Suppl 2):37–42.PubMedCrossRef
26.
go back to reference Hwang HW, Park JH, Moon JH, Yu Y, Kim H, Her SB, et al. Automated identification of cephalometric landmarks: Part 2- Might it be better than human? Angle Orthod. 2020;90(1):69–76.PubMedCrossRef Hwang HW, Park JH, Moon JH, Yu Y, Kim H, Her SB, et al. Automated identification of cephalometric landmarks: Part 2- Might it be better than human? Angle Orthod. 2020;90(1):69–76.PubMedCrossRef
27.
go back to reference Kim HJ, Kim KD, Kim DH. Deep convolutional neural network-based skeletal classification of cephalometric image compared with automated-tracing software. Sci Rep. 2022;12(1):11659.PubMedPubMedCentralCrossRef Kim HJ, Kim KD, Kim DH. Deep convolutional neural network-based skeletal classification of cephalometric image compared with automated-tracing software. Sci Rep. 2022;12(1):11659.PubMedPubMedCentralCrossRef
28.
go back to reference Le VNT, Kang J, Oh IS, Kim JG, Yang YM, Lee DW. Effectiveness of Human-Artificial Intelligence Collaboration in Cephalometric Landmark Detection. J Pers Med. 2022;12(3):387.PubMedPubMedCentralCrossRef Le VNT, Kang J, Oh IS, Kim JG, Yang YM, Lee DW. Effectiveness of Human-Artificial Intelligence Collaboration in Cephalometric Landmark Detection. J Pers Med. 2022;12(3):387.PubMedPubMedCentralCrossRef
29.
go back to reference Mahto RK, Kafle D, Giri A, Luintel S, Karki A. Evaluation of fully automated cephalometric measurements obtained from web-based artificial intelligence driven platform. BMC Oral Health. 2022;22(1):132.PubMedPubMedCentralCrossRef Mahto RK, Kafle D, Giri A, Luintel S, Karki A. Evaluation of fully automated cephalometric measurements obtained from web-based artificial intelligence driven platform. BMC Oral Health. 2022;22(1):132.PubMedPubMedCentralCrossRef
30.
go back to reference Mohan A, Sivakumar A, Nalabothu P. Evaluation of accuracy and reliability of OneCeph digital cephalometric analysis in comparison with manual cephalometric analysis—a cross-sectional study. BDJ Open. 2021;7(1):22.PubMedPubMedCentralCrossRef Mohan A, Sivakumar A, Nalabothu P. Evaluation of accuracy and reliability of OneCeph digital cephalometric analysis in comparison with manual cephalometric analysis—a cross-sectional study. BDJ Open. 2021;7(1):22.PubMedPubMedCentralCrossRef
31.
go back to reference Ristau B, Coreil M, Chapple A, Armbruster P, Ballard R. Comparison of AudaxCeph®’s fully automated cephalometric tracing technology to a semi-automated approach by human examiners. Int Orthod. 2022;20:100691.PubMedCrossRef Ristau B, Coreil M, Chapple A, Armbruster P, Ballard R. Comparison of AudaxCeph®’s fully automated cephalometric tracing technology to a semi-automated approach by human examiners. Int Orthod. 2022;20:100691.PubMedCrossRef
32.
go back to reference Kılınç DD, Kırcelli BH, Sadry S, Karaman A. Evaluation and comparison of smartphone application tracing, web based artificial intelligence tracing and conventional hand tracing methods. J Stomatol Oral Maxillofac Surg. 2022;123:e906–15.PubMedCrossRef Kılınç DD, Kırcelli BH, Sadry S, Karaman A. Evaluation and comparison of smartphone application tracing, web based artificial intelligence tracing and conventional hand tracing methods. J Stomatol Oral Maxillofac Surg. 2022;123:e906–15.PubMedCrossRef
33.
go back to reference Çoban G, Öztürk T, Hashimli N, Yağci A. Comparison between cephalometric measurements using digital manual and web-based artificial intelligence cephalometric tracing software. Dental Press J Orthod. 2022;27(4):e222112.PubMedPubMedCentralCrossRef Çoban G, Öztürk T, Hashimli N, Yağci A. Comparison between cephalometric measurements using digital manual and web-based artificial intelligence cephalometric tracing software. Dental Press J Orthod. 2022;27(4):e222112.PubMedPubMedCentralCrossRef
34.
go back to reference Subramanian AK, Chen Y, Almalki A, Sivamurthy G, Kafle D. Cephalometric analysis in orthodontics using artificial intelligence-a comprehensive review. Biomed Res Int. 2022;2022:1880113.PubMedPubMedCentralCrossRef Subramanian AK, Chen Y, Almalki A, Sivamurthy G, Kafle D. Cephalometric analysis in orthodontics using artificial intelligence-a comprehensive review. Biomed Res Int. 2022;2022:1880113.PubMedPubMedCentralCrossRef
35.
go back to reference Khanagar SB, Al-Ehaideb A, Vishwanathaiah S, Maganur PC, Patil S, Naik S, et al. Scope and performance of artificial intelligence technology in orthodontic diagnosis, treatment planning, and clinical decision-making - a systematic review. J Dent Sci. 2021;16(1):482–92.PubMedCrossRef Khanagar SB, Al-Ehaideb A, Vishwanathaiah S, Maganur PC, Patil S, Naik S, et al. Scope and performance of artificial intelligence technology in orthodontic diagnosis, treatment planning, and clinical decision-making - a systematic review. J Dent Sci. 2021;16(1):482–92.PubMedCrossRef
36.
go back to reference Huqh MZU, Abdullah JY, Wong LS, Jamayet NB, Alam MK, Rashid QF, et al. clinical applications of artificial intelligence and machine learning in children with cleft lip and palate-a systematic review. Int J Environ Res Public Health. 2022;19(17):10860.PubMedPubMedCentralCrossRef Huqh MZU, Abdullah JY, Wong LS, Jamayet NB, Alam MK, Rashid QF, et al. clinical applications of artificial intelligence and machine learning in children with cleft lip and palate-a systematic review. Int J Environ Res Public Health. 2022;19(17):10860.PubMedPubMedCentralCrossRef
37.
go back to reference Schwendicke F, Chaurasia A, Arsiwala L, Lee JH, Elhennawy K, Jost-Brinkmann PG, et al. Deep learning for cephalometric landmark detection: systematic review and meta-analysis. Clin Oral Invest. 2021;25(7):4299–309.CrossRef Schwendicke F, Chaurasia A, Arsiwala L, Lee JH, Elhennawy K, Jost-Brinkmann PG, et al. Deep learning for cephalometric landmark detection: systematic review and meta-analysis. Clin Oral Invest. 2021;25(7):4299–309.CrossRef
38.
go back to reference Leonardi R, Giordano D, Maiorana F, Spampinato C. Automatic cephalometric analysis. Angle Orthod. 2008;78(1):145–51.PubMedCrossRef Leonardi R, Giordano D, Maiorana F, Spampinato C. Automatic cephalometric analysis. Angle Orthod. 2008;78(1):145–51.PubMedCrossRef
39.
go back to reference Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data. 2021;8(1):53.PubMedPubMedCentralCrossRef Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data. 2021;8(1):53.PubMedPubMedCentralCrossRef
40.
go back to reference Schwendicke F, Singh T, Lee JH, Gaudin R, Chaurasia A, Wiegand T, et al. Artificial intelligence in dental research: checklist for authors, reviewers, readers. J Dent. 2021;107:103610.PubMedCrossRef Schwendicke F, Singh T, Lee JH, Gaudin R, Chaurasia A, Wiegand T, et al. Artificial intelligence in dental research: checklist for authors, reviewers, readers. J Dent. 2021;107:103610.PubMedCrossRef
41.
go back to reference Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ (Clin Res Ed). 2015;351:h5527. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ (Clin Res Ed). 2015;351:h5527.
43.
go back to reference Martín Abadi PB, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Google Brain. TensorFlow: A System for Large-Scale Machine Learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16). November 2–4, 2016. Savannah, GA, USA; pp 265-283. ISBN: 978-1-931971-33-1. Martín Abadi PB, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Google Brain. TensorFlow: A System for Large-Scale Machine Learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16). November 2–4, 2016. Savannah, GA, USA; pp 265-283. ISBN: 978-1-931971-33-1.
44.
go back to reference Goodfellow I, Bengio Y, Courville A. Deep learning: MIT press; 2016; ISBN: 9780262035613. Goodfellow I, Bengio Y, Courville A. Deep learning: MIT press; 2016; ISBN: 9780262035613.
45.
go back to reference Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929–58. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929–58.
47.
go back to reference Proffit WR, Fields HW, Larson B, Sarver DM. Contemporary Orthodontics. 6th Edition ed: Elsevier Health Sciences, 2018; ISBN: 032354388X, 9780323543880. Proffit WR, Fields HW, Larson B, Sarver DM. Contemporary Orthodontics. 6th Edition ed: Elsevier Health Sciences, 2018; ISBN: 032354388X, 9780323543880.
48.
go back to reference Moon JH, Hwang HW, Yu Y, Kim MG, Donatelli RE, Lee SJ. How much deep learning is enough for automatic identification to be reliable? Angle Orthod. 2020;90(6):823–30.PubMedPubMedCentralCrossRef Moon JH, Hwang HW, Yu Y, Kim MG, Donatelli RE, Lee SJ. How much deep learning is enough for automatic identification to be reliable? Angle Orthod. 2020;90(6):823–30.PubMedPubMedCentralCrossRef
49.
go back to reference Wang CW, Huang CT, Hsieh MC, Li CH, Chang SW, Li WC, et al. Evaluation and comparison of anatomical landmark detection methods for cephalometric x-ray images: a grand challenge. IEEE Trans Med Imaging. 2015;34(9):1890–900.PubMedCrossRef Wang CW, Huang CT, Hsieh MC, Li CH, Chang SW, Li WC, et al. Evaluation and comparison of anatomical landmark detection methods for cephalometric x-ray images: a grand challenge. IEEE Trans Med Imaging. 2015;34(9):1890–900.PubMedCrossRef
50.
go back to reference Kendall A, Gal Y, editors. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017; 5580–5590. Kendall A, Gal Y, editors. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems.  2017; 5580–5590.
Metadata
Title
Influence of growth structures and fixed appliances on automated cephalometric landmark recognition with a customized convolutional neural network
Authors
Teodora Popova
Thomas Stocker
Yeganeh Khazaei
Yoana Malenova
Andrea Wichelhaus
Hisham Sabbagh
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2023
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-023-02984-2

Other articles of this Issue 1/2023

BMC Oral Health 1/2023 Go to the issue