Skip to main content
Top
Published in: European Review of Aging and Physical Activity 1/2017

Open Access 01-12-2017 | Short report

Influence of a home-based exercise program on the urine pH in elderly female subjects: a secondary analysis of a randomized controlled trial

Authors: Yuichiro Nishida, Keitaro Tanaka, Megumi Hara, Noriko Hirao, Hiroaki Tanaka, Takuro Tobina, Masaharu Ikeda, Hiroshi Yamato, Masanori Ohta

Published in: European Review of Aging and Physical Activity | Issue 1/2017

Login to get access

Abstract

Background

A low urine pH is a characteristic metabolic feature of metabolic syndrome and type 2 diabetes. The purpose of the current study was to investigate the effects of a 12-week home-based bench step exercise on the urine pH status of elderly female subjects.

Methods

The current study is a secondary analysis of a randomized controlled trial (RCT) in which 59 postmenopausal female subjects were randomized to either the exercise group (n = 29) or the control group (n = 30). The subjects in the exercise group were instructed to perform home-based exercises using a bench step at the anaerobic threshold (AT), with a goal of performing ≥140 min/week at home for 12 weeks. The subjects in the control group were instructed to not change their normal lifestyle. Urine was collected after overnight fasting, and the urine pH was measured using a urinary test strip. The inter-group-differences at baseline and the pre-post changes within groups were assessed using the Mann-Whitney U test and Wilcoxon’s signed-rank test, respectively. Additionally, the difference in the post-intervention urine pH levels of the two groups, adjusted for the pre-intervention values (the estimated effect size) and the precision (95% confidence intervals) were investigated using an analysis of covariance.

Results

The pre-post comparison of the urine pH data using Wilcoxon’s signed-rank test showed a significant increase in the urine pH levels of the exercise group (p < 0.05); there was no significant change in the urine pH levels of the control group. However, the estimated effect size (0.15) was small and the confidence interval straddled 0 (−0.25–0.55).

Conclusions

Based on the results of the current secondary analysis of an RCT, we could not clearly conclude that exercise has a beneficial effect on the urine pH. Further well-designed RCTs should be conducted to determine whether aerobic exercise is truly able to ameliorate urine acidification.

Trial registration

The study was retrospectively registered in the University Hospital Medical Information Network (UMIN) as “Effect of step exercise on aerobic fitness and progression of atherosclerosis in the elderly” under the registration number UMIN 000026743 (the date of registration: March 28, 2017).
Literature
2.
go back to reference Cameron MA, Maalouf NM, Adams-Huet B, Moe OW, Sakhaee K. Urine composition in type 2 diabetes: predisposition to uric acid nephrolithiasis. J Am Soc Nephrol. 2006;17:1422–8.CrossRefPubMed Cameron MA, Maalouf NM, Adams-Huet B, Moe OW, Sakhaee K. Urine composition in type 2 diabetes: predisposition to uric acid nephrolithiasis. J Am Soc Nephrol. 2006;17:1422–8.CrossRefPubMed
3.
go back to reference Maalouf NM, Cameron MA, Moe OW, Adams-Huet B, Sakhaee K. Low urine pH: a novel feature of the metabolic syndrome. Clin J Am Soc Nephrol. 2007;2:883–8.CrossRefPubMed Maalouf NM, Cameron MA, Moe OW, Adams-Huet B, Sakhaee K. Low urine pH: a novel feature of the metabolic syndrome. Clin J Am Soc Nephrol. 2007;2:883–8.CrossRefPubMed
4.
go back to reference Otsuki M, Kitamura T, Goya K, Saito H, Mukai M, Kasayama S, Shimomura I, Koga M. Association of urine acidification with visceral obesity and the metabolic syndrome. Endocr J. 2011;58:363–7.CrossRefPubMed Otsuki M, Kitamura T, Goya K, Saito H, Mukai M, Kasayama S, Shimomura I, Koga M. Association of urine acidification with visceral obesity and the metabolic syndrome. Endocr J. 2011;58:363–7.CrossRefPubMed
5.
go back to reference Daudon M, Traxer O, Conort P, Lacour B, Jungers P. Type 2 diabetes increases the risk for uric acid stones. J Am Soc Nephrol. 2006;17:2026–33.CrossRefPubMed Daudon M, Traxer O, Conort P, Lacour B, Jungers P. Type 2 diabetes increases the risk for uric acid stones. J Am Soc Nephrol. 2006;17:2026–33.CrossRefPubMed
6.
go back to reference Souto G, Donapetry C, Calvino J, Adeva MM. Metabolic acidosis-induced insulin resistance and cardiovascular risk. Metab Syndr Relat Disord. 2011;9:247–53.CrossRefPubMedPubMedCentral Souto G, Donapetry C, Calvino J, Adeva MM. Metabolic acidosis-induced insulin resistance and cardiovascular risk. Metab Syndr Relat Disord. 2011;9:247–53.CrossRefPubMedPubMedCentral
7.
go back to reference DeFronzo RA, Beckles AD. Glucose intolerance following chronic metabolic acidosis in man. Am J Physiol. 1979;236:E328–34.PubMed DeFronzo RA, Beckles AD. Glucose intolerance following chronic metabolic acidosis in man. Am J Physiol. 1979;236:E328–34.PubMed
9.
go back to reference Aoi W, Marunaka Y. Importance of pH homeostasis in metabolic health and diseases: crucial role of membrane proton transport. Biomed Res Int. 2014;2014:598986.CrossRefPubMedPubMedCentral Aoi W, Marunaka Y. Importance of pH homeostasis in metabolic health and diseases: crucial role of membrane proton transport. Biomed Res Int. 2014;2014:598986.CrossRefPubMedPubMedCentral
10.
go back to reference Hayata H, Miyazaki H, Niisato N, Yokoyama N, Marunaka Y. Lowered extracellular pH is involved in the pathogenesis of skeletal muscle insulin resistance. Biochem Biophys Res Commun. 2014;445:170–4.CrossRefPubMed Hayata H, Miyazaki H, Niisato N, Yokoyama N, Marunaka Y. Lowered extracellular pH is involved in the pathogenesis of skeletal muscle insulin resistance. Biochem Biophys Res Commun. 2014;445:170–4.CrossRefPubMed
11.
go back to reference Ohlson LO, Larsson B, Bjorntorp P, Eriksson H, Svardsudd K, Welin L, Tibblin G, Wilhelmsen L. Risk factors for type 2 (non-insulin-dependent) diabetes mellitus. Thirteen and one-half years of follow-up of the participants in a study of Swedish men born in 1913. Diabetologia. 1988;31:798–805.CrossRefPubMed Ohlson LO, Larsson B, Bjorntorp P, Eriksson H, Svardsudd K, Welin L, Tibblin G, Wilhelmsen L. Risk factors for type 2 (non-insulin-dependent) diabetes mellitus. Thirteen and one-half years of follow-up of the participants in a study of Swedish men born in 1913. Diabetologia. 1988;31:798–805.CrossRefPubMed
12.
go back to reference Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R, Landaker EJ, Goldfine AB, Mun E, DeFronzo R, Finlayson J, Kahn CR, Mandarino LJ. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A. 2003;100:8466–71.CrossRefPubMedPubMedCentral Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R, Landaker EJ, Goldfine AB, Mun E, DeFronzo R, Finlayson J, Kahn CR, Mandarino LJ. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A. 2003;100:8466–71.CrossRefPubMedPubMedCentral
13.
go back to reference Nishida Y, Tanaka H, Tobina T, Murakami K, Shono N, Shindo M, Ogawa W, Yoshioka M, St-Amand J. Regulation of muscle genes by moderate exercise. Int J Sports Med. 2010;31:656–70.CrossRefPubMed Nishida Y, Tanaka H, Tobina T, Murakami K, Shono N, Shindo M, Ogawa W, Yoshioka M, St-Amand J. Regulation of muscle genes by moderate exercise. Int J Sports Med. 2010;31:656–70.CrossRefPubMed
14.
go back to reference Nishida Y, Tanaka K, Hara M, Hirao N, Tanaka H, Tobina T, Ikeda M, Yamato H, Ohta M. Effects of home-based bench step exercise on inflammatory cytokines and lipid profiles in elderly Japanese females: a randomized controlled trial. Arch Gerontol Geriatr. 2015;61:443–51.CrossRefPubMed Nishida Y, Tanaka K, Hara M, Hirao N, Tanaka H, Tobina T, Ikeda M, Yamato H, Ohta M. Effects of home-based bench step exercise on inflammatory cytokines and lipid profiles in elderly Japanese females: a randomized controlled trial. Arch Gerontol Geriatr. 2015;61:443–51.CrossRefPubMed
15.
go back to reference Nishida Y, Ide Y, Okada M, Otsuka T, Eguchi Y, Ozaki I, Tanaka K, Mizuta T. Effects of home-based exercise and branched-chain amino acid supplementation on aerobic capacity and glycemic control in patients with cirrhosis. Hepatol Res. 2017;47:E193–200.CrossRefPubMed Nishida Y, Ide Y, Okada M, Otsuka T, Eguchi Y, Ozaki I, Tanaka K, Mizuta T. Effects of home-based exercise and branched-chain amino acid supplementation on aerobic capacity and glycemic control in patients with cirrhosis. Hepatol Res. 2017;47:E193–200.CrossRefPubMed
16.
go back to reference Remer T, Manz F. Potential renal acid load of foods and its influence on urine pH. J Am Diet Assoc. 1995;95:791–7.CrossRefPubMed Remer T, Manz F. Potential renal acid load of foods and its influence on urine pH. J Am Diet Assoc. 1995;95:791–7.CrossRefPubMed
18.
go back to reference Ohta M, Hirao N, Mori Y, Doi Y, Takigami C, Eguchi M, Tanaka H, Ikeda M, Yamato H. Effects of step exercise on leptin resistance and oxidative stress in elderly females (in Japanese). Jpn J Cardiovasc Dis Prev. 2008;43:55–62. Ohta M, Hirao N, Mori Y, Doi Y, Takigami C, Eguchi M, Tanaka H, Ikeda M, Yamato H. Effects of step exercise on leptin resistance and oxidative stress in elderly females (in Japanese). Jpn J Cardiovasc Dis Prev. 2008;43:55–62.
19.
go back to reference Ayabe M, Yahiro T, Mori Y, Takayama K, Tobina T, Higuchi H, Ishii K, Sakuma I, Yoshitake Y, Miyazaki H, Kiyonaga A, Shindo M, Tanaka H. Simple assessment of lactate threshold by means of the bench stepping in older population. Int J Sport Health Sci. 2003;1:207–15.CrossRef Ayabe M, Yahiro T, Mori Y, Takayama K, Tobina T, Higuchi H, Ishii K, Sakuma I, Yoshitake Y, Miyazaki H, Kiyonaga A, Shindo M, Tanaka H. Simple assessment of lactate threshold by means of the bench stepping in older population. Int J Sport Health Sci. 2003;1:207–15.CrossRef
20.
go back to reference Wasserman K, Whipp BJ, Koyl SN, Beaver WL. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol. 1973;35:236–43.PubMed Wasserman K, Whipp BJ, Koyl SN, Beaver WL. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol. 1973;35:236–43.PubMed
21.
go back to reference Morishita Y, Nakane K, Fukatsu T, Nakashima N, Tsuji K, Soya Y, Yoneda K, Asano S, Kawamura Y. Kinetic assay of serum and urine for urea with use of urease and leucine dehydrogenase. Clin Chem. 1997;43:1932–6.PubMed Morishita Y, Nakane K, Fukatsu T, Nakashima N, Tsuji K, Soya Y, Yoneda K, Asano S, Kawamura Y. Kinetic assay of serum and urine for urea with use of urease and leucine dehydrogenase. Clin Chem. 1997;43:1932–6.PubMed
22.
go back to reference Horio M, Orita Y. Comparison of Jaffe rate assay and enzymatic method for the measurement of creatinine clearance. Nihon Jinzo Gakkai Shi. 1996;38:296–9.PubMed Horio M, Orita Y. Comparison of Jaffe rate assay and enzymatic method for the measurement of creatinine clearance. Nihon Jinzo Gakkai Shi. 1996;38:296–9.PubMed
23.
go back to reference Ou M, Song Y, Li S, Liu G, Jia J, Zhang M, Zhang H, Yu C. LC-MS/MS Method for Serum Creatinine: Comparison with Enzymatic Method and Jaffe Method. PLoS One. 2015;10:e0133912.CrossRefPubMedPubMedCentral Ou M, Song Y, Li S, Liu G, Jia J, Zhang M, Zhang H, Yu C. LC-MS/MS Method for Serum Creatinine: Comparison with Enzymatic Method and Jaffe Method. PLoS One. 2015;10:e0133912.CrossRefPubMedPubMedCentral
24.
go back to reference Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.CrossRefPubMed Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.CrossRefPubMed
25.
go back to reference Kashiwagi A, Kasuga M, Araki E, Oka Y, Hanafusa T, Ito H, Tominaga M, Oikawa S, Noda M, Kawamura T, Sanke T, Namba M, Hashiramoto M, Sasahara T, Nishio Y, Kuwa K, Ueki K, Takei I, Umemoto M, Murakami M, Yamakado M, Yatomi Y, Ohashi H, Committee on the Standardization of Diabetes Mellitus-Related Laboratory Testing of Japan Diabetes S. International clinical harmonization of glycated hemoglobin in Japan: From Japan Diabetes Society to National Glycohemoglobin Standardization Program values. J Diabetes Investig. 2012;3:39–40.CrossRefPubMedPubMedCentral Kashiwagi A, Kasuga M, Araki E, Oka Y, Hanafusa T, Ito H, Tominaga M, Oikawa S, Noda M, Kawamura T, Sanke T, Namba M, Hashiramoto M, Sasahara T, Nishio Y, Kuwa K, Ueki K, Takei I, Umemoto M, Murakami M, Yamakado M, Yatomi Y, Ohashi H, Committee on the Standardization of Diabetes Mellitus-Related Laboratory Testing of Japan Diabetes S. International clinical harmonization of glycated hemoglobin in Japan: From Japan Diabetes Society to National Glycohemoglobin Standardization Program values. J Diabetes Investig. 2012;3:39–40.CrossRefPubMedPubMedCentral
26.
go back to reference Aoi W, Hosogi S, Niisato N, Yokoyama N, Hayata H, Miyazaki H, Kusuzaki K, Fukuda T, Fukui M, Nakamura N, Marunaka Y. Improvement of insulin resistance, blood pressure and interstitial pH in early developmental stage of insulin resistance in OLETF rats by intake of propolis extracts. Biochem Biophys Res Commun. 2013;432:650–3.CrossRefPubMed Aoi W, Hosogi S, Niisato N, Yokoyama N, Hayata H, Miyazaki H, Kusuzaki K, Fukuda T, Fukui M, Nakamura N, Marunaka Y. Improvement of insulin resistance, blood pressure and interstitial pH in early developmental stage of insulin resistance in OLETF rats by intake of propolis extracts. Biochem Biophys Res Commun. 2013;432:650–3.CrossRefPubMed
27.
28.
go back to reference Nishida Y, Tokuyama K, Nagasaka S, Higaki Y, Shirai Y, Kiyonaga A, Shindo M, Kusaka I, Nakamura T, Ishibashi S, Tanaka H. Effect of moderate exercise training on peripheral glucose effectiveness, insulin sensitivity, and endogenous glucose production in healthy humans estimated by a two-compartment-labeled minimal model. Diabetes. 2004;53:315–20.CrossRefPubMed Nishida Y, Tokuyama K, Nagasaka S, Higaki Y, Shirai Y, Kiyonaga A, Shindo M, Kusaka I, Nakamura T, Ishibashi S, Tanaka H. Effect of moderate exercise training on peripheral glucose effectiveness, insulin sensitivity, and endogenous glucose production in healthy humans estimated by a two-compartment-labeled minimal model. Diabetes. 2004;53:315–20.CrossRefPubMed
Metadata
Title
Influence of a home-based exercise program on the urine pH in elderly female subjects: a secondary analysis of a randomized controlled trial
Authors
Yuichiro Nishida
Keitaro Tanaka
Megumi Hara
Noriko Hirao
Hiroaki Tanaka
Takuro Tobina
Masaharu Ikeda
Hiroshi Yamato
Masanori Ohta
Publication date
01-12-2017
Publisher
BioMed Central
Published in
European Review of Aging and Physical Activity / Issue 1/2017
Print ISSN: 1813-7253
Electronic ISSN: 1861-6909
DOI
https://doi.org/10.1186/s11556-017-0176-4

Other articles of this Issue 1/2017

European Review of Aging and Physical Activity 1/2017 Go to the issue