Skip to main content
Top
Published in: Journal of Translational Medicine 1/2015

Open Access 01-12-2015 | Research

Induction of tumor inhibitory anti-angiogenic response through immunization with interferon Gamma primed placental endothelial cells: ValloVax™

Authors: Thomas E Ichim, Shuang Li, Hong Ma, Yuliya V Yurova, Julia S Szymanski, Amit N Patel, Santosh Kesari, Wei-Ping Min, Samuel C Wagner

Published in: Journal of Translational Medicine | Issue 1/2015

Login to get access

Abstract

Background

While the concept of angiogenesis blockade as a therapeutic intervention for cancer has been repeatedly demonstrated, the full promise of this approach has yet to be realized. Specifically, drugs such as VEGF-blocking antibodies or kinase inhibitors suffer from the drawbacks of resistance development, as well as off-target toxicities. Previous studies have demonstrated feasibility of specifically inducing immunity towards tumor endothelium without consequences of systemic autoimmunity in both animal models and clinical settings.

Method

Placenta-derived endothelial cells were isolated and pretreated with interferon gamma to enhance immunogenicity. Syngeneic mice received subcutaneous administration of B16 melanoma, 4 T1 mammary carcinoma, and Lewis Lung Carcinoma (LLC), followed by administration of control saline, control placental endothelial cells, and interferon gamma primed endothelial cells (ValloVax™). Tumor volume was quantified. An LLC metastasis model was also established and treated under similar conditions. Furthermore, a safety analysis in non-tumor bearing mice bracketing the proposed clinical dose was conducted.

Results

ValloVax™ immunization led to significant reduction of tumor growth and metastasis as compared to administration of non-treated placental endothelial cells. Mitotic inactivation by formalin fixation or irradiation preserved tumor inhibitory activity. Twenty-eight day evaluation of healthy male and female mice immunized with ValloVax™ resulted in no abnormalities or organ toxicities.

Conclusion

Given the established rationale behind the potential therapeutic benefit of inhibiting tumor angiogenesis as a treatment for cancer, immunization against a variety of endothelial cell antigens may produce the best clinical response, enhancing efficacy and reducing the likelihood of the development of treatment resistance. These data support the clinical evaluation of irradiated ValloVax™ as an anti-angiogenic cancer vaccine.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kmieciak M, Payne KK, Idowu MO, Grimes MM, Graham L, Ascierto ML, et al. Tumor escape and progression of HER-2/neu negative breast cancer under immune pressure. J Transl Med. 2011;9:35.CrossRefPubMedCentralPubMed Kmieciak M, Payne KK, Idowu MO, Grimes MM, Graham L, Ascierto ML, et al. Tumor escape and progression of HER-2/neu negative breast cancer under immune pressure. J Transl Med. 2011;9:35.CrossRefPubMedCentralPubMed
2.
go back to reference Beatty GL, Paterson Y. IFN-gamma can promote tumor evasion of the immune system in vivo by down-regulating cellular levels of an endogenous tumor antigen. J Immunol. 2000;165(10):5502–8.CrossRefPubMed Beatty GL, Paterson Y. IFN-gamma can promote tumor evasion of the immune system in vivo by down-regulating cellular levels of an endogenous tumor antigen. J Immunol. 2000;165(10):5502–8.CrossRefPubMed
3.
go back to reference Kmieciak M, Knutson KL, Dumur CI, Manjili MH. HER-2/neu antigen loss and relapse of mammary carcinoma are actively induced by T cell-mediated anti-tumor immune responses. Eur J Immunol. 2007;37(3):675–85.CrossRefPubMedCentralPubMed Kmieciak M, Knutson KL, Dumur CI, Manjili MH. HER-2/neu antigen loss and relapse of mammary carcinoma are actively induced by T cell-mediated anti-tumor immune responses. Eur J Immunol. 2007;37(3):675–85.CrossRefPubMedCentralPubMed
4.
go back to reference Chang CC, Campoli M, Restifo NP, Wang X, Ferrone S. Immune selection of hot-spot beta 2-microglobulin gene mutations, HLA-A2 allospecificity loss, and antigen-processing machinery component down-regulation in melanoma cells derived from recurrent metastases following immunotherapy. J Immunol. 2005;174(3):1462–71.CrossRefPubMedCentralPubMed Chang CC, Campoli M, Restifo NP, Wang X, Ferrone S. Immune selection of hot-spot beta 2-microglobulin gene mutations, HLA-A2 allospecificity loss, and antigen-processing machinery component down-regulation in melanoma cells derived from recurrent metastases following immunotherapy. J Immunol. 2005;174(3):1462–71.CrossRefPubMedCentralPubMed
5.
go back to reference Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol. 2000;74:181–273.CrossRefPubMed Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol. 2000;74:181–273.CrossRefPubMed
6.
go back to reference Hicklin DJ, Wang Z, Arienti F, Rivoltini L, Parmiani G, Ferrone S. beta2-Microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma. J Clin Invest. 1998;101(12):2720–9.CrossRefPubMedCentralPubMed Hicklin DJ, Wang Z, Arienti F, Rivoltini L, Parmiani G, Ferrone S. beta2-Microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma. J Clin Invest. 1998;101(12):2720–9.CrossRefPubMedCentralPubMed
7.
go back to reference Lampson LA, Fisher CA, Whelan JP. Striking paucity of HLA-A, B, C and beta 2-microglobulin on human neuroblastoma cell lines. J Immunol. 1983;130(5):2471–8.PubMed Lampson LA, Fisher CA, Whelan JP. Striking paucity of HLA-A, B, C and beta 2-microglobulin on human neuroblastoma cell lines. J Immunol. 1983;130(5):2471–8.PubMed
8.
go back to reference Yan WH. HLA-G expression in cancers: potential role in diagnosis, prognosis and therapy. Endocr Metab Immune Disord Drug Targets. 2011;11(1):76–89.CrossRefPubMed Yan WH. HLA-G expression in cancers: potential role in diagnosis, prognosis and therapy. Endocr Metab Immune Disord Drug Targets. 2011;11(1):76–89.CrossRefPubMed
9.
go back to reference Seliger B. B7-H abnormalities in melanoma and clinical relevance. Methods Mol Biol. 2014;1102:367–80.CrossRefPubMed Seliger B. B7-H abnormalities in melanoma and clinical relevance. Methods Mol Biol. 2014;1102:367–80.CrossRefPubMed
10.
go back to reference Rutkowski MR, Stephen TL, Conejo-Garcia JR. Anti-tumor immunity: myeloid leukocytes control the immune landscape. Cell Immunol. 2012;278(1–2):21–6.CrossRefPubMedCentralPubMed Rutkowski MR, Stephen TL, Conejo-Garcia JR. Anti-tumor immunity: myeloid leukocytes control the immune landscape. Cell Immunol. 2012;278(1–2):21–6.CrossRefPubMedCentralPubMed
11.
12.
go back to reference Folkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol. 1992;3(2):65–71.PubMed Folkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol. 1992;3(2):65–71.PubMed
13.
go back to reference Motz GT, Santoro SP, Wang LP, Garrabrant T, Lastra RR, Hagemann IS, et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med. 2014;20(6):607–15.CrossRefPubMedCentralPubMed Motz GT, Santoro SP, Wang LP, Garrabrant T, Lastra RR, Hagemann IS, et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med. 2014;20(6):607–15.CrossRefPubMedCentralPubMed
14.
go back to reference Facciponte JG, Ugel S, De Sanctis F, Li C, Wang L, Nair G, et al. Tumor endothelial marker 1-specific DNA vaccination targets tumor vasculature. J Clin Invest. 2014;124(4):1497–511.CrossRefPubMedCentralPubMed Facciponte JG, Ugel S, De Sanctis F, Li C, Wang L, Nair G, et al. Tumor endothelial marker 1-specific DNA vaccination targets tumor vasculature. J Clin Invest. 2014;124(4):1497–511.CrossRefPubMedCentralPubMed
15.
go back to reference Meng MB, Jiang XD, Deng L, Na FF, He JZ, Xue JX, et al. Enhanced radioresponse with a novel recombinant human endostatin protein via tumor vasculature remodeling: experimental and clinical evidence. Radiother Oncol. 2013;106(1):130–7.CrossRefPubMed Meng MB, Jiang XD, Deng L, Na FF, He JZ, Xue JX, et al. Enhanced radioresponse with a novel recombinant human endostatin protein via tumor vasculature remodeling: experimental and clinical evidence. Radiother Oncol. 2013;106(1):130–7.CrossRefPubMed
16.
go back to reference Czarnota GJ, Karshafian R, Burns PN, Wong S, Al Mahrouki A, Lee JW, et al. Tumor radiation response enhancement by acoustical stimulation of the vasculature. Proc Natl Acad Sci U S A. 2012;109(30):E2033–41.CrossRefPubMedCentralPubMed Czarnota GJ, Karshafian R, Burns PN, Wong S, Al Mahrouki A, Lee JW, et al. Tumor radiation response enhancement by acoustical stimulation of the vasculature. Proc Natl Acad Sci U S A. 2012;109(30):E2033–41.CrossRefPubMedCentralPubMed
17.
go back to reference Peng F, Xu Z, Wang J, Chen Y, Li Q, Zuo Y, et al. Recombinant human endostatin normalizes tumor vasculature and enhances radiation response in xenografted human nasopharyngeal carcinoma models. PLoS One. 2012;7(4):e34646.CrossRefPubMedCentralPubMed Peng F, Xu Z, Wang J, Chen Y, Li Q, Zuo Y, et al. Recombinant human endostatin normalizes tumor vasculature and enhances radiation response in xenografted human nasopharyngeal carcinoma models. PLoS One. 2012;7(4):e34646.CrossRefPubMedCentralPubMed
18.
go back to reference Zawaski JA, Gaber MW, Sabek OM, Wilson CM, Duntsch CD, Merchant TE. Effects of irradiation on brain vasculature using an in situ tumor model. Int J Radiat Oncol Biol Phys. 2012;82(3):1075–82.CrossRefPubMedCentralPubMed Zawaski JA, Gaber MW, Sabek OM, Wilson CM, Duntsch CD, Merchant TE. Effects of irradiation on brain vasculature using an in situ tumor model. Int J Radiat Oncol Biol Phys. 2012;82(3):1075–82.CrossRefPubMedCentralPubMed
19.
go back to reference Truman JP, García-Barros M, Kaag M, Hambardzumyan D, Stancevic B, Chan M et al. Endothelial membrane remodeling is obligate for anti-angiogenic radiosensitization during tumor radiosurgery. PLoS One. 2010;19;5(8):e12310. Truman JP, García-Barros M, Kaag M, Hambardzumyan D, Stancevic B, Chan M et al. Endothelial membrane remodeling is obligate for anti-angiogenic radiosensitization during tumor radiosurgery. PLoS One. 2010;19;5(8):e12310.
20.
go back to reference Okaji Y, Tsuno NH, Tanaka M, Yoneyama S, Matsuhashi M, Kitayama J, et al. Pilot study of anti-angiogenic vaccine using fixed whole endothelium in patients with progressive malignancy after failure of conventional therapy. Eur J Cancer. 2008;44(3):383–90.CrossRefPubMed Okaji Y, Tsuno NH, Tanaka M, Yoneyama S, Matsuhashi M, Kitayama J, et al. Pilot study of anti-angiogenic vaccine using fixed whole endothelium in patients with progressive malignancy after failure of conventional therapy. Eur J Cancer. 2008;44(3):383–90.CrossRefPubMed
21.
go back to reference Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell. 1999;96(6):795–806.CrossRefPubMed Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell. 1999;96(6):795–806.CrossRefPubMed
22.
go back to reference Yadav SS, Narayan G. Role of ROBO4 signalling in developmental and pathological angiogenesis. Biomed Res Int. 2014;2014:683025.PubMedCentralPubMed Yadav SS, Narayan G. Role of ROBO4 signalling in developmental and pathological angiogenesis. Biomed Res Int. 2014;2014:683025.PubMedCentralPubMed
23.
go back to reference Zhuang X, Ahmed F, Zhang Y, Ferguson HJ, Steele JC, Steven NM, et al. Robo4 vaccines induce antibodies that retard tumor growth. Angiogenesis. 2014;18(1):83–95.CrossRefPubMed Zhuang X, Ahmed F, Zhang Y, Ferguson HJ, Steele JC, Steven NM, et al. Robo4 vaccines induce antibodies that retard tumor growth. Angiogenesis. 2014;18(1):83–95.CrossRefPubMed
24.
go back to reference Paprocka M, Krawczenko A, Dus D, Kantor A, Carreau A, Grillon C, et al. CD133 positive progenitor endothelial cell lines from human cord blood. Cytometry A. 2011;79(8):594–602.CrossRefPubMed Paprocka M, Krawczenko A, Dus D, Kantor A, Carreau A, Grillon C, et al. CD133 positive progenitor endothelial cell lines from human cord blood. Cytometry A. 2011;79(8):594–602.CrossRefPubMed
25.
go back to reference Chen C, Zeng L, Ding S, Xu K. Adult endothelial progenitor cells retain hematopoiesis potential. Transplant Proc. 2010;42(9):3745–9.CrossRefPubMed Chen C, Zeng L, Ding S, Xu K. Adult endothelial progenitor cells retain hematopoiesis potential. Transplant Proc. 2010;42(9):3745–9.CrossRefPubMed
26.
go back to reference Smadja DM, Bièche I, Helley D, Laurendeau I, Simonin G, Muller L, et al. Increased VEGFR2 expression during human late endothelial progenitor cells expansion enhances in vitro angiogenesis with up-regulation of integrin alpha(6). J Cell Mol Med. 2007;11(5):1149–61.CrossRefPubMed Smadja DM, Bièche I, Helley D, Laurendeau I, Simonin G, Muller L, et al. Increased VEGFR2 expression during human late endothelial progenitor cells expansion enhances in vitro angiogenesis with up-regulation of integrin alpha(6). J Cell Mol Med. 2007;11(5):1149–61.CrossRefPubMed
27.
go back to reference Rafii S, Avecilla S, Shmelkov S, Shido K, Tejada R, Moore MA, et al. Angiogenic factors reconstitute hematopoiesis by recruiting stem cells from bone marrow microenvironment. Ann N Y Acad Sci. 2003;996:49–60.CrossRefPubMed Rafii S, Avecilla S, Shmelkov S, Shido K, Tejada R, Moore MA, et al. Angiogenic factors reconstitute hematopoiesis by recruiting stem cells from bone marrow microenvironment. Ann N Y Acad Sci. 2003;996:49–60.CrossRefPubMed
28.
go back to reference Hattori K, Heissig B, Wu Y, Dias S, Tejada R, Ferris B, et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med. 2002;8(8):841–9.PubMedCentralPubMed Hattori K, Heissig B, Wu Y, Dias S, Tejada R, Ferris B, et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med. 2002;8(8):841–9.PubMedCentralPubMed
29.
go back to reference Ziegler BL, Valtieri M, Porada GA, De Maria R, Müller R, Masella B, et al. KDR receptor: a key marker defining hematopoietic stem cells. Science. 1999;285(5433):1553–8.CrossRefPubMed Ziegler BL, Valtieri M, Porada GA, De Maria R, Müller R, Masella B, et al. KDR receptor: a key marker defining hematopoietic stem cells. Science. 1999;285(5433):1553–8.CrossRefPubMed
30.
go back to reference Yan HX, Cheng P, Wei HY, Shen GB, Fu LX, Ni J, et al. Active immunotherapy for mouse breast cancer with irradiated whole-cell vaccine expressing VEGFR2. Oncol Rep. 2013;29(4):1510–6.PubMed Yan HX, Cheng P, Wei HY, Shen GB, Fu LX, Ni J, et al. Active immunotherapy for mouse breast cancer with irradiated whole-cell vaccine expressing VEGFR2. Oncol Rep. 2013;29(4):1510–6.PubMed
31.
go back to reference Feng K, Zhao H, Chen J, Yao D, Jiang X, Zhou W, et al. Anti-angiogenesis effect on glioma of attenuated Salmonella typhimurium vaccine strain with flk-1 gene. J Huazhong Univ Sci Technolog Med Sci. 2004;24(4):389–91.CrossRefPubMed Feng K, Zhao H, Chen J, Yao D, Jiang X, Zhou W, et al. Anti-angiogenesis effect on glioma of attenuated Salmonella typhimurium vaccine strain with flk-1 gene. J Huazhong Univ Sci Technolog Med Sci. 2004;24(4):389–91.CrossRefPubMed
32.
go back to reference Wada S, Tsunoda T, Baba T, Primus FJ, Kuwano H, Shibuya M, et al. Rationale for antiangiogenic cancer therapy with vaccination using epitope peptides derived from human vascular endothelial growth factor receptor 2. Cancer Res. 2005;65(11):4939–46.CrossRefPubMed Wada S, Tsunoda T, Baba T, Primus FJ, Kuwano H, Shibuya M, et al. Rationale for antiangiogenic cancer therapy with vaccination using epitope peptides derived from human vascular endothelial growth factor receptor 2. Cancer Res. 2005;65(11):4939–46.CrossRefPubMed
33.
go back to reference Yan J, Jia R, Song H, Liu Y, Zhang L, Zhang W, et al. A promising new approach of VEGFR2-based DNA vaccine for tumor immunotherapy. Immunol Lett. 2009;126(1–2):60–6.CrossRefPubMed Yan J, Jia R, Song H, Liu Y, Zhang L, Zhang W, et al. A promising new approach of VEGFR2-based DNA vaccine for tumor immunotherapy. Immunol Lett. 2009;126(1–2):60–6.CrossRefPubMed
34.
go back to reference Ren S, Fengyu, Zuo S, Zhao M, Wang X, Wang X et al. Inhibition of tumor angiogenesis in lung cancer by T4 phage surface displaying mVEGFR2 vaccine. Vaccine. 2011;29(34):5802–11. Ren S, Fengyu, Zuo S, Zhao M, Wang X, Wang X et al. Inhibition of tumor angiogenesis in lung cancer by T4 phage surface displaying mVEGFR2 vaccine. Vaccine. 2011;29(34):5802–11.
35.
go back to reference Wei Y, Sun Y, Song C, Li H, Li Y, Zhang K, et al. Enhancement of DNA vaccine efficacy by targeting the xenogeneic human chorionic gonadotropin, survivin and vascular endothelial growth factor receptor 2 combined tumor antigen to the major histocompatibility complex class II pathway. J Gene Med. 2012;14(5):353–62.CrossRefPubMed Wei Y, Sun Y, Song C, Li H, Li Y, Zhang K, et al. Enhancement of DNA vaccine efficacy by targeting the xenogeneic human chorionic gonadotropin, survivin and vascular endothelial growth factor receptor 2 combined tumor antigen to the major histocompatibility complex class II pathway. J Gene Med. 2012;14(5):353–62.CrossRefPubMed
36.
go back to reference Suzuki H, Fukuhara M, Yamaura T, Mutoh S, Okabe N, Yaginuma H, et al. Multiple therapeutic peptide vaccines consisting of combined novel cancer testis antigens and anti-angiogenic peptides for patients with non-small cell lung cancer. J Transl Med. 2013;11:97.CrossRefPubMedCentralPubMed Suzuki H, Fukuhara M, Yamaura T, Mutoh S, Okabe N, Yaginuma H, et al. Multiple therapeutic peptide vaccines consisting of combined novel cancer testis antigens and anti-angiogenic peptides for patients with non-small cell lung cancer. J Transl Med. 2013;11:97.CrossRefPubMedCentralPubMed
37.
go back to reference Lladser A, Ljungberg K, Tufvesson H, Tazzari M, Roos AK, Quest AF, et al. Intradermal DNA electroporation induces survivin-specific CTLs, suppresses angiogenesis and confers protection against mouse melanoma. Cancer Immunol Immunother. 2010;59(1):81–92.CrossRefPubMed Lladser A, Ljungberg K, Tufvesson H, Tazzari M, Roos AK, Quest AF, et al. Intradermal DNA electroporation induces survivin-specific CTLs, suppresses angiogenesis and confers protection against mouse melanoma. Cancer Immunol Immunother. 2010;59(1):81–92.CrossRefPubMed
38.
go back to reference Xiang R, Luo Y, Niethammer AG, Reisfeld RA. Oral DNA vaccines target the tumor vasculature and microenvironment and suppress tumor growth and metastasis. Immunol Rev. 2008;222:117–28.CrossRefPubMed Xiang R, Luo Y, Niethammer AG, Reisfeld RA. Oral DNA vaccines target the tumor vasculature and microenvironment and suppress tumor growth and metastasis. Immunol Rev. 2008;222:117–28.CrossRefPubMed
39.
go back to reference Xiang R, Mizutani N, Luo Y, Chiodoni C, Zhou H, Mizutani M. A DNA vaccine targeting survivin combines apoptosis with suppression of angiogenesis in lung tumor eradication. Cancer Res. 2005;65(2):553–61.PubMed Xiang R, Mizutani N, Luo Y, Chiodoni C, Zhou H, Mizutani M. A DNA vaccine targeting survivin combines apoptosis with suppression of angiogenesis in lung tumor eradication. Cancer Res. 2005;65(2):553–61.PubMed
40.
go back to reference Plum SM, Vu HA, Mercer B, Fogler WE, Fortier AH. Generation of a specific immunological response to FGF-2 does not affect wound healing or reproduction. Immunopharmacol Immunotoxicol. 2004;26(1):29–41.CrossRefPubMed Plum SM, Vu HA, Mercer B, Fogler WE, Fortier AH. Generation of a specific immunological response to FGF-2 does not affect wound healing or reproduction. Immunopharmacol Immunotoxicol. 2004;26(1):29–41.CrossRefPubMed
41.
go back to reference Wei YQ, Huang MJ, Yang L, Zhao X, Tian L, Lu Y, et al. Immunogene therapy of tumors with vaccine based on Xenopus homologous vascular endothelial growth factor as a model antigen. Proc Natl Acad Sci U S A. 2001;98(20):11545–50.CrossRefPubMedCentralPubMed Wei YQ, Huang MJ, Yang L, Zhao X, Tian L, Lu Y, et al. Immunogene therapy of tumors with vaccine based on Xenopus homologous vascular endothelial growth factor as a model antigen. Proc Natl Acad Sci U S A. 2001;98(20):11545–50.CrossRefPubMedCentralPubMed
42.
go back to reference Liu JY, Wei YQ, Yang L, Zhao X, Tian L, Hou JM, et al. Immunotherapy of tumors with vaccine based on quail homologous vascular endothelial growth factor receptor-2. Blood. 2003;102(5):1815–23.CrossRefPubMed Liu JY, Wei YQ, Yang L, Zhao X, Tian L, Hou JM, et al. Immunotherapy of tumors with vaccine based on quail homologous vascular endothelial growth factor receptor-2. Blood. 2003;102(5):1815–23.CrossRefPubMed
43.
go back to reference Su JM, Wei YQ, Tian L, Zhao X, Yang L, He QM, et al. Active immunogene therapy of cancer with vaccine on the basis of chicken homologous matrix metalloproteinase-2. Cancer Res. 2003;63(3):600–7.PubMed Su JM, Wei YQ, Tian L, Zhao X, Yang L, He QM, et al. Active immunogene therapy of cancer with vaccine on the basis of chicken homologous matrix metalloproteinase-2. Cancer Res. 2003;63(3):600–7.PubMed
44.
go back to reference Tan GH, Wei YQ, Tian L, Zhao X, Yang L, Li J, et al. Active immunotherapy of tumors with a recombinant xenogeneic endoglin as a model antigen. Eur J Immunol. 2004;34(7):2012–21.CrossRefPubMed Tan GH, Wei YQ, Tian L, Zhao X, Yang L, Li J, et al. Active immunotherapy of tumors with a recombinant xenogeneic endoglin as a model antigen. Eur J Immunol. 2004;34(7):2012–21.CrossRefPubMed
45.
go back to reference Jiao JG, Li YN, Wang H, Liu Q, Cao JX, Bai RZ, et al. A plasmid DNA vaccine encoding the extracellular domain of porcine endoglin induces anti-tumour immune response against self endoglin-related angiogenesis in two liver cancer models. Dig Liver Dis. 2006;38(8):578–87.CrossRefPubMed Jiao JG, Li YN, Wang H, Liu Q, Cao JX, Bai RZ, et al. A plasmid DNA vaccine encoding the extracellular domain of porcine endoglin induces anti-tumour immune response against self endoglin-related angiogenesis in two liver cancer models. Dig Liver Dis. 2006;38(8):578–87.CrossRefPubMed
46.
go back to reference Natarajan M, Gibbons CF, Mohan S, Moore S, Kadhim MA. Oxidative stress signalling: a potential mediator of tumour necrosis factor alpha-induced genomic instability in primary vascular endothelial cells. Br J Radiol. 2007;80(Spec No 1):S13–22. Natarajan M, Gibbons CF, Mohan S, Moore S, Kadhim MA. Oxidative stress signalling: a potential mediator of tumour necrosis factor alpha-induced genomic instability in primary vascular endothelial cells. Br J Radiol. 2007;80(Spec No 1):S13–22.
47.
go back to reference Hida K, Ohga N, Akiyama K, Maishi N, Hida Y. Heterogeneity of tumor endothelial cells. Cancer Sci. 2013;104(11):1391–5.CrossRefPubMed Hida K, Ohga N, Akiyama K, Maishi N, Hida Y. Heterogeneity of tumor endothelial cells. Cancer Sci. 2013;104(11):1391–5.CrossRefPubMed
48.
go back to reference Wei YQ, Wang QR, Zhao X, Yang L, Tian L, Lu Y, et al. Immunotherapy of tumors with xenogeneic endothelial cells as a vaccine. Nat Med. 2000;6(10):1160–6.CrossRefPubMed Wei YQ, Wang QR, Zhao X, Yang L, Tian L, Lu Y, et al. Immunotherapy of tumors with xenogeneic endothelial cells as a vaccine. Nat Med. 2000;6(10):1160–6.CrossRefPubMed
49.
go back to reference Scappaticci FA1, Contreras A, Boswell CA, Lewis JS, Nolan G. Polyclonal antibodies to xenogeneic endothelial cells induce apoptosis and block support of tumor growth in mice. Vaccine. 2003;21(19–20):2667–77.CrossRefPubMed Scappaticci FA1, Contreras A, Boswell CA, Lewis JS, Nolan G. Polyclonal antibodies to xenogeneic endothelial cells induce apoptosis and block support of tumor growth in mice. Vaccine. 2003;21(19–20):2667–77.CrossRefPubMed
50.
go back to reference Tanaka M, Tsuno NH, Fujii T, Todo T, Saito N, Takahashi K. Human umbilical vein endothelial cell vaccine therapy in patients with recurrent glioblastoma. Cancer Sci. 2013;104(2):200–5.CrossRefPubMed Tanaka M, Tsuno NH, Fujii T, Todo T, Saito N, Takahashi K. Human umbilical vein endothelial cell vaccine therapy in patients with recurrent glioblastoma. Cancer Sci. 2013;104(2):200–5.CrossRefPubMed
51.
go back to reference Xu M, Zhou L, Zhang P, Lu Y, Ge C, Yao W, et al. Enhanced antitumor efficacy by combination treatment with a human umbilical vein endothelial cell vaccine and a tumor cell lysate-based vaccine. Tumour Biol. 2013;34(5):3173–82.CrossRefPubMed Xu M, Zhou L, Zhang P, Lu Y, Ge C, Yao W, et al. Enhanced antitumor efficacy by combination treatment with a human umbilical vein endothelial cell vaccine and a tumor cell lysate-based vaccine. Tumour Biol. 2013;34(5):3173–82.CrossRefPubMed
52.
go back to reference Ferguson HJ, Wragg J, Ismail T, Bicknell R. Vaccination against tumour blood vessels in colorectal cancer. Eur J Surg Oncol. 2014;40(2):133–6.CrossRefPubMed Ferguson HJ, Wragg J, Ismail T, Bicknell R. Vaccination against tumour blood vessels in colorectal cancer. Eur J Surg Oncol. 2014;40(2):133–6.CrossRefPubMed
53.
go back to reference Zhang W, Liu JN, Tan XY. Vaccination with xenogeneic tumor endothelial proteins isolated in situ inhibits tumor angiogenesis and spontaneous metastasis. Int J Cancer. 2009;125(1):124–32.CrossRefPubMed Zhang W, Liu JN, Tan XY. Vaccination with xenogeneic tumor endothelial proteins isolated in situ inhibits tumor angiogenesis and spontaneous metastasis. Int J Cancer. 2009;125(1):124–32.CrossRefPubMed
54.
go back to reference Yoshiura K, Nishishita T, Nakaoka T, Yamashita N, Yamashita N. Inhibition of B16 melanoma growth and metastasis in C57BL mice by vaccination with a syngeneic endothelial cell line. J Exp Clin Cancer Res. 2009;28:13.CrossRefPubMedCentralPubMed Yoshiura K, Nishishita T, Nakaoka T, Yamashita N, Yamashita N. Inhibition of B16 melanoma growth and metastasis in C57BL mice by vaccination with a syngeneic endothelial cell line. J Exp Clin Cancer Res. 2009;28:13.CrossRefPubMedCentralPubMed
55.
go back to reference Okaji Y, Tsuno NH, Saito S, Yoneyama S, Tanaka M, Nagawa H, et al. Vaccines targeting tumour angiogenesis–a novel strategy for cancer immunotherapy. Eur J Surg Oncol. 2006;32(4):363–70.CrossRefPubMed Okaji Y, Tsuno NH, Saito S, Yoneyama S, Tanaka M, Nagawa H, et al. Vaccines targeting tumour angiogenesis–a novel strategy for cancer immunotherapy. Eur J Surg Oncol. 2006;32(4):363–70.CrossRefPubMed
56.
go back to reference Ugele B, Lange F. Isolation of endothelial cells from human placental microvessels: effect of different proteolytic enzymes on releasing endothelial cells from villous tissue. In Vitro Cell Dev Biol Anim. 2001;37(7):408–13.CrossRefPubMed Ugele B, Lange F. Isolation of endothelial cells from human placental microvessels: effect of different proteolytic enzymes on releasing endothelial cells from villous tissue. In Vitro Cell Dev Biol Anim. 2001;37(7):408–13.CrossRefPubMed
57.
go back to reference Kacemi A, Challier JC, Galtier M, Olive G. Isolation of villous microvessels from the human placenta. C R Acad Sci III. 1997;320(2):171–7.CrossRefPubMed Kacemi A, Challier JC, Galtier M, Olive G. Isolation of villous microvessels from the human placenta. C R Acad Sci III. 1997;320(2):171–7.CrossRefPubMed
58.
go back to reference Moscatelli DA, Presta M, Mignatti P, Mullins DE, Crowe RM, Rifkin DB. Purification and biological activities of an angiogenesis factor from human placenta. Anticancer Res. 1986;6(4):861–3.PubMed Moscatelli DA, Presta M, Mignatti P, Mullins DE, Crowe RM, Rifkin DB. Purification and biological activities of an angiogenesis factor from human placenta. Anticancer Res. 1986;6(4):861–3.PubMed
59.
go back to reference Takenaga K. Angiogenic signaling aberrantly induced by tumor hypoxia. Front Biosci (Landmark Ed). 2011;16:31–48.CrossRef Takenaga K. Angiogenic signaling aberrantly induced by tumor hypoxia. Front Biosci (Landmark Ed). 2011;16:31–48.CrossRef
60.
go back to reference Folkman J, Long Jr DM, Becker FF. Growth and metastasis of tumor in organ culture. Cancer. 1963;16:453–67.CrossRefPubMed Folkman J, Long Jr DM, Becker FF. Growth and metastasis of tumor in organ culture. Cancer. 1963;16:453–67.CrossRefPubMed
61.
go back to reference de Castro JG, Puglisi F, de Azambuja E, El Saghir NS, Awada A. Angiogenesis and cancer: a cross-talk between basic science and clinical trials (the “do ut des” paradigm). Crit Rev Oncol Hematol. 2006;59(1):40–50.CrossRef de Castro JG, Puglisi F, de Azambuja E, El Saghir NS, Awada A. Angiogenesis and cancer: a cross-talk between basic science and clinical trials (the “do ut des” paradigm). Crit Rev Oncol Hematol. 2006;59(1):40–50.CrossRef
62.
go back to reference Patra D, Sandell LJ. Antiangiogenic and anticancer molecules in cartilage. Expert Rev Mol Med. 2012;19;14:e10. Patra D, Sandell LJ. Antiangiogenic and anticancer molecules in cartilage. Expert Rev Mol Med. 2012;19;14:e10.
63.
go back to reference Culy C. Bevacizumab: antiangiogenic cancer therapy. Drugs Today (Barc). 2005;41(1):23–36.CrossRef Culy C. Bevacizumab: antiangiogenic cancer therapy. Drugs Today (Barc). 2005;41(1):23–36.CrossRef
64.
go back to reference Vaklavas C, Lenihan D, Kurzrock R, Tsimberidou AM. Anti-vascular endothelial growth factor therapies and cardiovascular toxicity: what are the important clinical markers to target? Oncologist. 2010;15(2):130–41.CrossRefPubMedCentralPubMed Vaklavas C, Lenihan D, Kurzrock R, Tsimberidou AM. Anti-vascular endothelial growth factor therapies and cardiovascular toxicity: what are the important clinical markers to target? Oncologist. 2010;15(2):130–41.CrossRefPubMedCentralPubMed
65.
go back to reference Kerbel RS. Reappraising antiangiogenic therapy for breast cancer. Breast. 2011;20 Suppl 3:S56–60.CrossRefPubMed Kerbel RS. Reappraising antiangiogenic therapy for breast cancer. Breast. 2011;20 Suppl 3:S56–60.CrossRefPubMed
66.
go back to reference Harandi A. Immunoplacental therapy, a potential multi-epitope cancer vaccine. Med Hypotheses. 2006;66(6):1182–7.CrossRefPubMed Harandi A. Immunoplacental therapy, a potential multi-epitope cancer vaccine. Med Hypotheses. 2006;66(6):1182–7.CrossRefPubMed
67.
go back to reference Yoshikawa M, Mukai Y, Okada Y, Tsumori Y, Tsunoda S, Tsutsumi Y, et al. Robo4 is an effective tumor endothelial marker for antibody-drug conjugates based on the rapid isolation of the anti-Robo4 cell-internalizing antibody. Blood. 2013;121(14):2804–13.CrossRefPubMed Yoshikawa M, Mukai Y, Okada Y, Tsumori Y, Tsunoda S, Tsutsumi Y, et al. Robo4 is an effective tumor endothelial marker for antibody-drug conjugates based on the rapid isolation of the anti-Robo4 cell-internalizing antibody. Blood. 2013;121(14):2804–13.CrossRefPubMed
68.
go back to reference Mura M, Swain RK, Zhuang X, Vorschmitt H, Reynolds G, Durant S, et al. Identification and angiogenic role of the novel tumor endothelial marker CLEC14A. Oncogene. 2012;31(3):293–305.CrossRefPubMed Mura M, Swain RK, Zhuang X, Vorschmitt H, Reynolds G, Durant S, et al. Identification and angiogenic role of the novel tumor endothelial marker CLEC14A. Oncogene. 2012;31(3):293–305.CrossRefPubMed
69.
go back to reference Simonavicius N, Robertson D, Bax DA, Jones C, Huijbers IJ, Isacke CM. Endosialin (CD248) is a marker of tumor-associated pericytes in high-grade glioma. Mod Pathol. 2008;21(3):308–15.CrossRefPubMed Simonavicius N, Robertson D, Bax DA, Jones C, Huijbers IJ, Isacke CM. Endosialin (CD248) is a marker of tumor-associated pericytes in high-grade glioma. Mod Pathol. 2008;21(3):308–15.CrossRefPubMed
Metadata
Title
Induction of tumor inhibitory anti-angiogenic response through immunization with interferon Gamma primed placental endothelial cells: ValloVax™
Authors
Thomas E Ichim
Shuang Li
Hong Ma
Yuliya V Yurova
Julia S Szymanski
Amit N Patel
Santosh Kesari
Wei-Ping Min
Samuel C Wagner
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2015
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-015-0441-0

Other articles of this Issue 1/2015

Journal of Translational Medicine 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.