Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2020

Open Access 01-12-2020 | Research article

Induction of peroxisome proliferator activated receptor γ (PPARγ) mediated gene expression and inhibition of induced nitric oxide production by Maerua subcordata (Gilg) DeWolf

Authors: Mebrahtom Gebrelibanos Hiben, Laura de Haan, Bert Spenkelink, Sebastiaan Wesseling, Jacques Vervoort, Ivonne M. C. M. Rietjens

Published in: BMC Complementary Medicine and Therapies | Issue 1/2020

Login to get access

Abstract

Background

The health benefits of botanicals is linked to their phytochemicals that often exert pleiotropic effects via targeting multiple molecular signaling pathways such as the peroxisome proliferator-activated receptors (PPARs) and the nuclear factor kappaB (NFκB). The PPARs are transcription factors that control metabolic homeostasis and inflammation while the NF-κB is a master regulator of inflammatory genes such as the inducible nitric-oxide synthase that result in nitric oxide (NO) overproduction.

Methods

Extracts of Maerua subcordata (MS) and selected candidate constituents thereof, identified by liquid chromatography coupled to mass spectroscopy, were tested for their ability to induce PPARγ mediated gene expression in U2OS-PPARγ cells using luciferase reporter gene assay and also for their ability to inhibit lipopolysaccharide (LPS) induced NO production in RAW264.7 macrophages. While measuring the effect of test samples on PPARγ mediated gene expression, a counter assay that used U2OS-Cytotox cells was performed to monitor cytotoxicity or any non-specific changes in luciferase activity.

Results

The results revealed that the fruit, root, and seed extracts were non-cytotoxic up to a concentration of 30 g dry weight per litre (gDW/L) and induced PPARγ mediated gene expression but the leaf extract showed some cytotoxicity and exhibited minimal induction. Instead, all extracts showed concentration (1–15 gDW/L) dependent inhibition of LPS induced NO production. The root extract showed weaker inhibition. Among the candidate constituents, agmatine, stachydrine, trigonelline, indole-3-carboxyaldehyde, plus ethyl-, isobutyl-, isopropyl, and methyl-isothiocyanates showed similar inhibition, and most showed increased inhibition with increasing concentration (1–100 μM) although to a lesser potency than the positive control, aminoguanidine.

Conclusion

The present study demonstrated for the first time the induction of PPARγ mediated gene expression by MS fruit, root, and seed extracts and the inhibition of LPS induced NO production by MS fruit, leaf, root, and seed extracts and some candidate constituents thereof.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lee J, Jo DG, Park D, Chung HY, Mattson MP. Adaptive cellular response pathways adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: focus on the nervous system. Pharmacol Rev. 2014;66(3):815–68.PubMedPubMedCentralCrossRef Lee J, Jo DG, Park D, Chung HY, Mattson MP. Adaptive cellular response pathways adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: focus on the nervous system. Pharmacol Rev. 2014;66(3):815–68.PubMedPubMedCentralCrossRef
2.
go back to reference Howes MJ, Simmonds MS. The role of phytochemicals as micronutrients in health and disease. Curr Opin Clin Nutr Metab Care. 2014;17(6):558–66.PubMedCrossRef Howes MJ, Simmonds MS. The role of phytochemicals as micronutrients in health and disease. Curr Opin Clin Nutr Metab Care. 2014;17(6):558–66.PubMedCrossRef
3.
go back to reference Upadhyay S, Dixit M. Role of polyphenols and other phytochemicals on molecular signaling. Oxid Med Cellular Longevity. 2015;2015:504253.CrossRef Upadhyay S, Dixit M. Role of polyphenols and other phytochemicals on molecular signaling. Oxid Med Cellular Longevity. 2015;2015:504253.CrossRef
4.
go back to reference Ko JK, Lee SS, Martin H. Phytochemicals as Modulators of PPARs and RXRs. PPAR Res. 2010;2010:407650.PubMedCrossRef Ko JK, Lee SS, Martin H. Phytochemicals as Modulators of PPARs and RXRs. PPAR Res. 2010;2010:407650.PubMedCrossRef
5.
go back to reference Kota BP, Huang THW, Roufogalis BD. An overview on biological mechanisms of PPARs. Pharmacol Res. 2005;51:85–94.PubMedCrossRef Kota BP, Huang THW, Roufogalis BD. An overview on biological mechanisms of PPARs. Pharmacol Res. 2005;51:85–94.PubMedCrossRef
6.
go back to reference Corzo C, Griffin PR. Targeting the peroxisome proliferator-activated receptor-γ to counter the inflammatory milieu in obesity. Diabetes Metab J. 2013;37:395–403.PubMedPubMedCentralCrossRef Corzo C, Griffin PR. Targeting the peroxisome proliferator-activated receptor-γ to counter the inflammatory milieu in obesity. Diabetes Metab J. 2013;37:395–403.PubMedPubMedCentralCrossRef
7.
go back to reference Han L, Shen WJ, Bittner S, Kraemer FB, Azhar S. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-β/δ and PPAR-γ. Futur Cardiol. 2017;13(3):279–96.CrossRef Han L, Shen WJ, Bittner S, Kraemer FB, Azhar S. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-β/δ and PPAR-γ. Futur Cardiol. 2017;13(3):279–96.CrossRef
8.
go back to reference Botta M, Audano M, Sahebkar A, Sirtori CR, Mitro N, Ruscica M. PPAR Agonists and Metabolic Syndrome: An Established Role? Int J Mol Sci. 2018;19(4): pii: E1197.PubMedCentralCrossRef Botta M, Audano M, Sahebkar A, Sirtori CR, Mitro N, Ruscica M. PPAR Agonists and Metabolic Syndrome: An Established Role? Int J Mol Sci. 2018;19(4): pii: E1197.PubMedCentralCrossRef
9.
go back to reference Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2.pii:17023. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2.pii:17023.
10.
go back to reference Wahli W, Michalik L. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol Metabol. 2012;23(7):351–63.CrossRef Wahli W, Michalik L. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol Metabol. 2012;23(7):351–63.CrossRef
11.
12.
go back to reference Gijsbers L, Man HY, Kloet SK, de Haan LHJ, Keijer J, Rietjens IMCM, et al. Stable reporter cell lines for peroxisome proliferator-activated receptor γ (PPARγ)-mediated modulation of gene expression. Anal Biochem. 2011;414:77–83.PubMedCrossRef Gijsbers L, Man HY, Kloet SK, de Haan LHJ, Keijer J, Rietjens IMCM, et al. Stable reporter cell lines for peroxisome proliferator-activated receptor γ (PPARγ)-mediated modulation of gene expression. Anal Biochem. 2011;414:77–83.PubMedCrossRef
13.
go back to reference Brunmeir R, Xu F. Functional Regulation of PPARs through Post-Translational Modifications. Int J Mol Sci. 2018;19(6): pii: E1738.PubMedCentralCrossRef Brunmeir R, Xu F. Functional Regulation of PPARs through Post-Translational Modifications. Int J Mol Sci. 2018;19(6): pii: E1738.PubMedCentralCrossRef
14.
go back to reference Varga T, Czimmerer Z, Nagy L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta. 2011;1812(8):1007–22.PubMedPubMedCentralCrossRef Varga T, Czimmerer Z, Nagy L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta. 2011;1812(8):1007–22.PubMedPubMedCentralCrossRef
15.
go back to reference Mirza AZ, Althagafi II, Shamshad H. Role of PPAR receptor in different diseases and their ligands: physiological importance and clinical implications. Eur J Med Chem. 2019;166:502–13.PubMedCrossRef Mirza AZ, Althagafi II, Shamshad H. Role of PPAR receptor in different diseases and their ligands: physiological importance and clinical implications. Eur J Med Chem. 2019;166:502–13.PubMedCrossRef
16.
go back to reference Pascual G, Fong AL, Ogawa S, Gamliel A, Li AC, Perissi V, et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature. 2005;437(7059):759–63.PubMedPubMedCentralCrossRef Pascual G, Fong AL, Ogawa S, Gamliel A, Li AC, Perissi V, et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature. 2005;437(7059):759–63.PubMedPubMedCentralCrossRef
17.
go back to reference Zelcer N, Tontonoz P. SUMOylation and PPARgamma: wrestling with inflammatory signaling. Cell Metab. 2005;2(5):273–5.PubMedCrossRef Zelcer N, Tontonoz P. SUMOylation and PPARgamma: wrestling with inflammatory signaling. Cell Metab. 2005;2(5):273–5.PubMedCrossRef
18.
go back to reference Baker RG, Hayden MS, Ghosh S. NF-kB, inflammation, and metabolic disease. Cell Metabol. 2011;13:11–22.CrossRef Baker RG, Hayden MS, Ghosh S. NF-kB, inflammation, and metabolic disease. Cell Metabol. 2011;13:11–22.CrossRef
20.
go back to reference Minihane AM, Vinoy S, Russell WR, Baka A, Roche HM, Tuohy KM, et al. Low-grade inflammation, diet composition and health: current research evidence and its translation. Br J Nutr. 2015;114:999–1012.PubMedPubMedCentralCrossRef Minihane AM, Vinoy S, Russell WR, Baka A, Roche HM, Tuohy KM, et al. Low-grade inflammation, diet composition and health: current research evidence and its translation. Br J Nutr. 2015;114:999–1012.PubMedPubMedCentralCrossRef
21.
22.
go back to reference Choudhury MG, Kumari S, Das KB, Saha N. Lipopolysaccharide causes NFĸB-mediated induction of inducible nitric oxide synthase gene and more production of nitric oxide in air-breathing catfish, Clarias Magur (Hamilton). Gene. 2018;658:18–27.PubMedCrossRef Choudhury MG, Kumari S, Das KB, Saha N. Lipopolysaccharide causes NFĸB-mediated induction of inducible nitric oxide synthase gene and more production of nitric oxide in air-breathing catfish, Clarias Magur (Hamilton). Gene. 2018;658:18–27.PubMedCrossRef
23.
go back to reference Wen Q, Mei L, Ye S, Liu X, Xu Q, Miao J, et al. Chrysophanol demonstrates anti-inflammatory properties in LPS-primed RAW 264.7 macrophages through activating PPAR-γ. Int Immunopharmacol. 2018;56:90–7.PubMedCrossRef Wen Q, Mei L, Ye S, Liu X, Xu Q, Miao J, et al. Chrysophanol demonstrates anti-inflammatory properties in LPS-primed RAW 264.7 macrophages through activating PPAR-γ. Int Immunopharmacol. 2018;56:90–7.PubMedCrossRef
24.
go back to reference Lin CF, Young KC, Bai CH, Yu BC, Ma CT, Chien YC, et al. Rosiglitazone Regulates Anti-Inflammation and Growth Inhibition via PTEN. Biomed Res Int. 2014;2014:787924.PubMedPubMedCentral Lin CF, Young KC, Bai CH, Yu BC, Ma CT, Chien YC, et al. Rosiglitazone Regulates Anti-Inflammation and Growth Inhibition via PTEN. Biomed Res Int. 2014;2014:787924.PubMedPubMedCentral
25.
go back to reference Crosby MB, Zhang J, Nowling TM, Svenson JL, Nicol CJ, Gonzalez FJ, et al. Inflammatory modulation of PPARγ expression and activity. Clin Immunol. 2006;118:276–83.PubMedCrossRef Crosby MB, Zhang J, Nowling TM, Svenson JL, Nicol CJ, Gonzalez FJ, et al. Inflammatory modulation of PPARγ expression and activity. Clin Immunol. 2006;118:276–83.PubMedCrossRef
26.
go back to reference Kim J, Park CS, Lim Y, Kim HS. Paeonia japonica, Houttuynia cordata, and Aster scaber water extracts induce nitric oxide and cytokine production by lipopolysaccharide-activated macrophages. J Med Food. 2009;12(2):365–73.PubMedCrossRef Kim J, Park CS, Lim Y, Kim HS. Paeonia japonica, Houttuynia cordata, and Aster scaber water extracts induce nitric oxide and cytokine production by lipopolysaccharide-activated macrophages. J Med Food. 2009;12(2):365–73.PubMedCrossRef
28.
go back to reference Calder PC, Ahluwalia N, Brouns F, Buetler T, Clement K, Cunningham K, et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr. 2011;106:0007–1145.CrossRef Calder PC, Ahluwalia N, Brouns F, Buetler T, Clement K, Cunningham K, et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr. 2011;106:0007–1145.CrossRef
29.
go back to reference Stefanson AL, Bakovic M. Dietary regulation of Keap1/Nrf2/ARE pathway: focus on plant-derived compounds and trace minerals. Nutrients. 2014;6:3777–801.PubMedPubMedCentralCrossRef Stefanson AL, Bakovic M. Dietary regulation of Keap1/Nrf2/ARE pathway: focus on plant-derived compounds and trace minerals. Nutrients. 2014;6:3777–801.PubMedPubMedCentralCrossRef
30.
go back to reference Dar KB, Bhat AH, Amin S, Masood A, Zargar MA, Ganie SA. Inflammation: a multidimensional insight on natural anti-inflammatory therapeutic compounds. Curr Med Chem. 2016;23(33):3775–800.PubMedCrossRef Dar KB, Bhat AH, Amin S, Masood A, Zargar MA, Ganie SA. Inflammation: a multidimensional insight on natural anti-inflammatory therapeutic compounds. Curr Med Chem. 2016;23(33):3775–800.PubMedCrossRef
32.
go back to reference Ndoye Foe FM, Tchinang TFK, Nyegue AM, Abdou JP, Yaya AJG, Tchinda AT, et al. Chemical composition, in vitro antioxidant and anti-inflammatory properties of essential oils of four dietary and medicinal plants from Cameroon. BMC Complement Altern Med. 2016;16:117.PubMedPubMedCentralCrossRef Ndoye Foe FM, Tchinang TFK, Nyegue AM, Abdou JP, Yaya AJG, Tchinda AT, et al. Chemical composition, in vitro antioxidant and anti-inflammatory properties of essential oils of four dietary and medicinal plants from Cameroon. BMC Complement Altern Med. 2016;16:117.PubMedPubMedCentralCrossRef
33.
go back to reference Subedi L, Venkatesan R, Kim SY. Neuroprotective and Anti-Inflammatory Activities of Allyl Isothiocyanate through Attenuation of JNK/NF-κB/TNF-α Signaling. Int J Mol Sci. 2017;18(7). pii: E1423. Subedi L, Venkatesan R, Kim SY. Neuroprotective and Anti-Inflammatory Activities of Allyl Isothiocyanate through Attenuation of JNK/NF-κB/TNF-α Signaling. Int J Mol Sci. 2017;18(7). pii: E1423.
34.
go back to reference Liu Y, Wei S, Zou Q, Luo Y. Stachydrine suppresses viability & migration of astrocytoma cells via CXCR4/ERK & CXCR4/Akt pathway activity. Future Oncol. 2018;14(15):1443–59.PubMedCrossRef Liu Y, Wei S, Zou Q, Luo Y. Stachydrine suppresses viability & migration of astrocytoma cells via CXCR4/ERK & CXCR4/Akt pathway activity. Future Oncol. 2018;14(15):1443–59.PubMedCrossRef
35.
go back to reference Gebrelibanos Hiben M, de Haan L, Spenkelink B, Wesseling S, Louisse J, Vervoort J, et al. Effects of Maerua subcordata (Gilg) DeWolf on electrophile-responsive element (EpRE)-mediated gene expression in vitro. PLoS One. 2019b;14(4):e0215155.PubMedPubMedCentralCrossRef Gebrelibanos Hiben M, de Haan L, Spenkelink B, Wesseling S, Louisse J, Vervoort J, et al. Effects of Maerua subcordata (Gilg) DeWolf on electrophile-responsive element (EpRE)-mediated gene expression in vitro. PLoS One. 2019b;14(4):e0215155.PubMedPubMedCentralCrossRef
36.
go back to reference Gijsbers L, van Eekelen HDLM, Nguyen TH, de Haan LHJ, van der Burg B, Aarts JMMJG, et al. Induction of electrophile-responsive element (EpRE)-mediated gene expression by tomato extracts in vitro. Food Chem. 2012;135:1166–72.PubMedCrossRef Gijsbers L, van Eekelen HDLM, Nguyen TH, de Haan LHJ, van der Burg B, Aarts JMMJG, et al. Induction of electrophile-responsive element (EpRE)-mediated gene expression by tomato extracts in vitro. Food Chem. 2012;135:1166–72.PubMedCrossRef
37.
go back to reference van der Linden SC, von Bergh ARM, van Vught-Lussenburg BMA, Jonker LRA, Teunis M, Krul CAM, et al. Development of a panel of high-throughput reporter-gene assays to detect genotoxicity and oxidative stress. Mutat Res Genet Toxicol Environ Mutagen. 2014;760:23–32.PubMedCrossRef van der Linden SC, von Bergh ARM, van Vught-Lussenburg BMA, Jonker LRA, Teunis M, Krul CAM, et al. Development of a panel of high-throughput reporter-gene assays to detect genotoxicity and oxidative stress. Mutat Res Genet Toxicol Environ Mutagen. 2014;760:23–32.PubMedCrossRef
38.
go back to reference Gijsbers L, van Eekelen HDLM, de Haan LHJ, Swier JM, Heijink NL, Kloet SK, et al. Induction of Peroxisome Proliferator-Activated Receptor γ (PPARγ)- Mediated Gene Expression by Tomato (Solanum lycopersicum L.) Extracts. J Agr Food Chem. 2013;61:3419–27.CrossRef Gijsbers L, van Eekelen HDLM, de Haan LHJ, Swier JM, Heijink NL, Kloet SK, et al. Induction of Peroxisome Proliferator-Activated Receptor γ (PPARγ)- Mediated Gene Expression by Tomato (Solanum lycopersicum L.) Extracts. J Agr Food Chem. 2013;61:3419–27.CrossRef
39.
go back to reference Beekmann K, Rubió L, de Haan LH, Actis-Goretta L, van der Burg B, van Bladeren PJ, et al. The effect of quercetin and kaempferol aglycones and glucuronides on peroxisome proliferator-activated receptor-gamma (PPAR-γ). Food Funct. 2015;6(4):1098–107.PubMedCrossRef Beekmann K, Rubió L, de Haan LH, Actis-Goretta L, van der Burg B, van Bladeren PJ, et al. The effect of quercetin and kaempferol aglycones and glucuronides on peroxisome proliferator-activated receptor-gamma (PPAR-γ). Food Funct. 2015;6(4):1098–107.PubMedCrossRef
40.
go back to reference Bowdish D Propagation & Culturing of RAW264.7 Cells. Bowdish Lab, McMaster University (www.bowdish.ca); Hamilton, ON, Canada; 2013. Bowdish D Propagation & Culturing of RAW264.7 Cells. Bowdish Lab, McMaster University (www.​bowdish.​ca); Hamilton, ON, Canada; 2013.
41.
go back to reference Meijerink J, Plastina P, Vincken JP, Poland M, Attya M, Balvers M, et al. The ethanolamide metabolite of DHA, docosahexaenoylethanolamine, shows immunomodulating effects in mouse peritoneal and RAW264.7 macrophages: evidence for a new link between fish oil and inflammation. Br J Nutr. 2011;105(12):1798–807.PubMedCrossRef Meijerink J, Plastina P, Vincken JP, Poland M, Attya M, Balvers M, et al. The ethanolamide metabolite of DHA, docosahexaenoylethanolamine, shows immunomodulating effects in mouse peritoneal and RAW264.7 macrophages: evidence for a new link between fish oil and inflammation. Br J Nutr. 2011;105(12):1798–807.PubMedCrossRef
42.
go back to reference Sun J, Zhang X, Broderick M, Fein H. Measurement of nitric oxide production in biological systems by using Griess reaction assay. Sensors. 2003;3:276–84.CrossRef Sun J, Zhang X, Broderick M, Fein H. Measurement of nitric oxide production in biological systems by using Griess reaction assay. Sensors. 2003;3:276–84.CrossRef
43.
go back to reference Králová J, Pekarová M, Drábiková K, Jančinová V, Nosáľ R, Číž M, et al. The effects of dithiaden on nitric oxide production by RAW 264.7 cells. Interdisc Toxicol. 2008;1(3–4):214–7. Králová J, Pekarová M, Drábiková K, Jančinová V, Nosáľ R, Číž M, et al. The effects of dithiaden on nitric oxide production by RAW 264.7 cells. Interdisc Toxicol. 2008;1(3–4):214–7.
44.
go back to reference Promega. Griess Reagent System Technical Bulletin; 2800 Woods Hollow Road Madison, USA;2009. Promega. Griess Reagent System Technical Bulletin; 2800 Woods Hollow Road Madison, USA;2009.
45.
go back to reference Ridder L, van der Hooft JJJ, Verhoeven S, de Vos RCH, van Schaik R, Vervoort J. Substructure-based annotation of high-resolution multistage MSn spectral trees. Rapid Commun Mass Spectrom. 2012;26:2461–71.PubMedCrossRef Ridder L, van der Hooft JJJ, Verhoeven S, de Vos RCH, van Schaik R, Vervoort J. Substructure-based annotation of high-resolution multistage MSn spectral trees. Rapid Commun Mass Spectrom. 2012;26:2461–71.PubMedCrossRef
46.
go back to reference Queiroz TB, Santos GF, Ventura SC, Hiruma-Lima CA, Gaivão IOM, Maistro EL. Cytotoxic and genotoxic potential of geraniol in peripheral blood mononuclear cells and human hepatoma cell line (HepG2). Genet Mol Res. 2017;16(3):gmr16039777. Queiroz TB, Santos GF, Ventura SC, Hiruma-Lima CA, Gaivão IOM, Maistro EL. Cytotoxic and genotoxic potential of geraniol in peripheral blood mononuclear cells and human hepatoma cell line (HepG2). Genet Mol Res. 2017;16(3):gmr16039777.
47.
go back to reference Nissim I, Horyn O, Daikhin Y, Chen P, Li C, Wehrli SL, et al. The molecular and metabolic influence of long term agmatine consumption. J Biol Chem. 2014;289(14):9710–29.PubMedPubMedCentralCrossRef Nissim I, Horyn O, Daikhin Y, Chen P, Li C, Wehrli SL, et al. The molecular and metabolic influence of long term agmatine consumption. J Biol Chem. 2014;289(14):9710–29.PubMedPubMedCentralCrossRef
48.
go back to reference Misko TP, Moore WM, Kasten TP, Nickols GA, Corbett JA, Tilton RG, et al. Selective inhibition of the inducible nitric oxide synthase by aminoguanidine. Eur J Pharmacol. 1993;233(1):119–25.PubMedCrossRef Misko TP, Moore WM, Kasten TP, Nickols GA, Corbett JA, Tilton RG, et al. Selective inhibition of the inducible nitric oxide synthase by aminoguanidine. Eur J Pharmacol. 1993;233(1):119–25.PubMedCrossRef
49.
go back to reference Assreuy J, Cunha FQ, Epperlein M, Noronha-Dutra A, O'Donnell CA, Liew FY, et al. Production of nitric oxide and superoxide by activated macrophages and killing of Leishmania major. Eur J Immunol. 1994;24(3):672–6.PubMedCrossRef Assreuy J, Cunha FQ, Epperlein M, Noronha-Dutra A, O'Donnell CA, Liew FY, et al. Production of nitric oxide and superoxide by activated macrophages and killing of Leishmania major. Eur J Immunol. 1994;24(3):672–6.PubMedCrossRef
50.
go back to reference Lupinacci E, Meijerink J, Vincken JP, Gabriele B, Gruppen H, Witkamp RF. Xanthohumol from hop (Humulus lupulus L.) is an efficient inhibitor of monocyte Chemoattractant Protein-1 and tumor necrosis factor-α release in LPS-stimulated RAW 264.7 mouse macrophages and U937 human monocytes. J Agric Food Chem. 2009;57(16):7274–81.PubMedCrossRef Lupinacci E, Meijerink J, Vincken JP, Gabriele B, Gruppen H, Witkamp RF. Xanthohumol from hop (Humulus lupulus L.) is an efficient inhibitor of monocyte Chemoattractant Protein-1 and tumor necrosis factor-α release in LPS-stimulated RAW 264.7 mouse macrophages and U937 human monocytes. J Agric Food Chem. 2009;57(16):7274–81.PubMedCrossRef
51.
go back to reference Choi EM, Hwang JK. Screening of Indonesian medicinal plants for inhibitor activity on nitric oxide production of RAW264.7 cells and antioxidant activity. Fitoterapia. 2005;76:194–203.PubMedCrossRef Choi EM, Hwang JK. Screening of Indonesian medicinal plants for inhibitor activity on nitric oxide production of RAW264.7 cells and antioxidant activity. Fitoterapia. 2005;76:194–203.PubMedCrossRef
52.
go back to reference Conforti F, Menichini F. Phenolic compounds from plants as nitric oxide production inhibitors. Curr Med Chem. 2011;18(8):1137–45.PubMedCrossRef Conforti F, Menichini F. Phenolic compounds from plants as nitric oxide production inhibitors. Curr Med Chem. 2011;18(8):1137–45.PubMedCrossRef
53.
go back to reference Xu HE, Lambert MH, Montana VG, Parks DJ, Blanchard SG, Brown PJ, et al. Molecular recognition of fatty acids by peroxisome proliferator–activated receptors. Mol Cell. 1999;3:397–403.PubMedCrossRef Xu HE, Lambert MH, Montana VG, Parks DJ, Blanchard SG, Brown PJ, et al. Molecular recognition of fatty acids by peroxisome proliferator–activated receptors. Mol Cell. 1999;3:397–403.PubMedCrossRef
56.
go back to reference Kendrick N. A gene’s mRNA level does not usually predict its protein level. Kendrick Labs, Inc.;2014. Kendrick N. A gene’s mRNA level does not usually predict its protein level. Kendrick Labs, Inc.;2014.
57.
go back to reference Jeyam M, Priyadharsini K, Ravikumar P, Shalini G. Evaluating multi-target efficiency of phytocompounds against diabetes mellitus - an in silico approach. BIOINFO Drug Targets. 2014;2(1):024–8. Jeyam M, Priyadharsini K, Ravikumar P, Shalini G. Evaluating multi-target efficiency of phytocompounds against diabetes mellitus - an in silico approach. BIOINFO Drug Targets. 2014;2(1):024–8.
58.
go back to reference Kuchta K, Matsuura N, Rauwald HW, Iinuma M. Effects of Leonurus japonicus Houtt. and its N-containing constituents leonurine and stachydrine on the activity of PPARα, β/δ, and γ in a newly developed in vitro luciferase reporter gene assay. Planta Med. 2014;80-P1L24. Kuchta K, Matsuura N, Rauwald HW, Iinuma M. Effects of Leonurus japonicus Houtt. and its N-containing constituents leonurine and stachydrine on the activity of PPARα, β/δ, and γ in a newly developed in vitro luciferase reporter gene assay. Planta Med. 2014;80-P1L24.
59.
go back to reference Tharaheswari M, Jayachandra Reddy N, Kumar R, Varshney KC, Kannan M, Sudha RS. Trigonelline and diosgenin attenuate ER stress, oxidative stress-mediated damage in pancreas and enhance adipose tissue PPARγ activity in type 2 diabetic rats. Mol Cell Biochem. 2014;396(1–2):161–74.PubMedCrossRef Tharaheswari M, Jayachandra Reddy N, Kumar R, Varshney KC, Kannan M, Sudha RS. Trigonelline and diosgenin attenuate ER stress, oxidative stress-mediated damage in pancreas and enhance adipose tissue PPARγ activity in type 2 diabetic rats. Mol Cell Biochem. 2014;396(1–2):161–74.PubMedCrossRef
60.
go back to reference Aoyagi R, Funakoshi-Tago M, Fujiwara Y, Tamura H. Coffee inhibits adipocyte differentiation via inactivation of PPARγ. Biol Pharm Bull. 2014;37(11):1820–5.PubMedCrossRef Aoyagi R, Funakoshi-Tago M, Fujiwara Y, Tamura H. Coffee inhibits adipocyte differentiation via inactivation of PPARγ. Biol Pharm Bull. 2014;37(11):1820–5.PubMedCrossRef
61.
go back to reference Ilavenil S, Kim DH, Jeong YI, Arasu MV, Vijayakumar M, Prabhu PN, et al. Trigonelline protects the cardiocyte from hydrogen peroxide induced apoptosis in H9c2 cells. Asian Pacific J Trop Med. 2015;8(4):263–8.CrossRef Ilavenil S, Kim DH, Jeong YI, Arasu MV, Vijayakumar M, Prabhu PN, et al. Trigonelline protects the cardiocyte from hydrogen peroxide induced apoptosis in H9c2 cells. Asian Pacific J Trop Med. 2015;8(4):263–8.CrossRef
62.
go back to reference Senchina DS, Martin AE, Buss JE, Kohut ML. Effects of Echinacea extracts on macrophage antiviral activities. Phytother Res. 2010;24(6):810–6.PubMed Senchina DS, Martin AE, Buss JE, Kohut ML. Effects of Echinacea extracts on macrophage antiviral activities. Phytother Res. 2010;24(6):810–6.PubMed
63.
go back to reference Ding HY, Wu PS, Wu MJ. Cleome rutidosperma and Euphorbia thymifolia Suppress Inflammatory Response via Upregulation of Phase II Enzymes and Modulation of NF-κB and JNK Activation in LPS-Stimulated BV2 Microglia. Int J Mol Sci. 2016;17(9):pii: E1420. Ding HY, Wu PS, Wu MJ. Cleome rutidosperma and Euphorbia thymifolia Suppress Inflammatory Response via Upregulation of Phase II Enzymes and Modulation of NF-κB and JNK Activation in LPS-Stimulated BV2 Microglia. Int J Mol Sci. 2016;17(9):pii: E1420.
64.
go back to reference Xu J, Zhao Y, Aisa HA. Anti-inflammatory effect of pomegranate flower in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Pharm Biol. 2017;55(1):2095–101.PubMedPubMedCentralCrossRef Xu J, Zhao Y, Aisa HA. Anti-inflammatory effect of pomegranate flower in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Pharm Biol. 2017;55(1):2095–101.PubMedPubMedCentralCrossRef
65.
go back to reference Sun W, Gao Y, Ding Y, Cao Y, Chen J, Lv G, et al. Catalpol ameliorates advanced glycation end product-induced dysfunction of glomerular endothelial cells via regulating nitric oxide synthesis by inducible nitric oxide synthase and endothelial nitric oxide synthase. IUBMB Life. 2019;12. https://doi.org/10.1002/iub.2032.PubMedCrossRef Sun W, Gao Y, Ding Y, Cao Y, Chen J, Lv G, et al. Catalpol ameliorates advanced glycation end product-induced dysfunction of glomerular endothelial cells via regulating nitric oxide synthesis by inducible nitric oxide synthase and endothelial nitric oxide synthase. IUBMB Life. 2019;12. https://​doi.​org/​10.​1002/​iub.​2032.PubMedCrossRef
66.
go back to reference Billack B, Heck DE, Porterfield DM, Malchow RP, Smith PJ, Gardner CR, et al. Minimal amidine structure for inhibition of nitric oxide biosynthesis. Biochem Pharmacol. 2001;61(12):1581–6.PubMedCrossRef Billack B, Heck DE, Porterfield DM, Malchow RP, Smith PJ, Gardner CR, et al. Minimal amidine structure for inhibition of nitric oxide biosynthesis. Biochem Pharmacol. 2001;61(12):1581–6.PubMedCrossRef
67.
go back to reference Natarajan K, Abraham P, Kota R, Isaac B. NF-κB-iNOS-COX2-TNF α inflammatory signaling pathway plays an important role in methotrexate induced small intestinal injury in rats. Food Chem Toxicol. 2018;118:766–83.PubMedCrossRef Natarajan K, Abraham P, Kota R, Isaac B. NF-κB-iNOS-COX2-TNF α inflammatory signaling pathway plays an important role in methotrexate induced small intestinal injury in rats. Food Chem Toxicol. 2018;118:766–83.PubMedCrossRef
68.
go back to reference Auguet M, Viossat I, Marin JG, Chabrier PE. Selective inhibition of inducible nitric oxide synthase by agmatine. Jpn J Pharmacol. 1995;69(3):285–7.PubMedCrossRef Auguet M, Viossat I, Marin JG, Chabrier PE. Selective inhibition of inducible nitric oxide synthase by agmatine. Jpn J Pharmacol. 1995;69(3):285–7.PubMedCrossRef
69.
go back to reference Regunathan S, Piletz JE. Regulation of inducible nitric oxide synthase and agmatine synthesis in macrophages and astrocytes. Ann N Y Acad Sci. 2003;1009:20–9.PubMedCrossRef Regunathan S, Piletz JE. Regulation of inducible nitric oxide synthase and agmatine synthesis in macrophages and astrocytes. Ann N Y Acad Sci. 2003;1009:20–9.PubMedCrossRef
70.
go back to reference Ahmed N, Aljuhani N, Al-Hujaili HS, Al-Hujaili MA, Elkablawy MA, Noah MM, et al. Agmatine protects against sodium valproate-induced hepatic injury in mice via modulation of nuclear factor-κB/inducible nitric oxide synthetase pathway. J Biochem Mol Toxicol. 2018;32(12):e22227.PubMedCrossRef Ahmed N, Aljuhani N, Al-Hujaili HS, Al-Hujaili MA, Elkablawy MA, Noah MM, et al. Agmatine protects against sodium valproate-induced hepatic injury in mice via modulation of nuclear factor-κB/inducible nitric oxide synthetase pathway. J Biochem Mol Toxicol. 2018;32(12):e22227.PubMedCrossRef
71.
go back to reference Chen HH, Zhao P, Zhao WX, Tian J, Guo W, Xu M, et al. Stachydrine ameliorates pressure overload-induced diastolic heart failure by suppressing myocardial fibrosis. Am J Transl Res. 2017;9(9):4250–60.PubMedPubMedCentral Chen HH, Zhao P, Zhao WX, Tian J, Guo W, Xu M, et al. Stachydrine ameliorates pressure overload-induced diastolic heart failure by suppressing myocardial fibrosis. Am J Transl Res. 2017;9(9):4250–60.PubMedPubMedCentral
72.
go back to reference Zhang J, Yang A, Wu Y, Guan W, Xiong B, Peng X, et al. Stachydrine ameliorates carbon tetrachloride-induced hepatic fibrosis by inhibiting inflammation, oxidative stress and regulating MMPs/TIMPs system in rats. Biomed Pharmacother. 2018;97:1586–94.PubMedCrossRef Zhang J, Yang A, Wu Y, Guan W, Xiong B, Peng X, et al. Stachydrine ameliorates carbon tetrachloride-induced hepatic fibrosis by inhibiting inflammation, oxidative stress and regulating MMPs/TIMPs system in rats. Biomed Pharmacother. 2018;97:1586–94.PubMedCrossRef
74.
go back to reference Prawan A, Saw CL, Khor TO, Keum YS, Yu S, Hu L, et al. Anti-NF-kappaB and anti-inflammatory activities of synthetic isothiocyanates: effect of chemical structures and cellular signaling. Chem Biol Interact. 2009;179(2–3):202–11.PubMedCrossRef Prawan A, Saw CL, Khor TO, Keum YS, Yu S, Hu L, et al. Anti-NF-kappaB and anti-inflammatory activities of synthetic isothiocyanates: effect of chemical structures and cellular signaling. Chem Biol Interact. 2009;179(2–3):202–11.PubMedCrossRef
76.
go back to reference Cho HJ, Lee KW, Park JH. Erucin exerts anti-inflammatory properties in murine macrophages and mouse skin: possible mediation through the inhibition of NFκB signaling. Int J Mol Sci. 2013;14(10):20564–77.PubMedPubMedCentralCrossRef Cho HJ, Lee KW, Park JH. Erucin exerts anti-inflammatory properties in murine macrophages and mouse skin: possible mediation through the inhibition of NFκB signaling. Int J Mol Sci. 2013;14(10):20564–77.PubMedPubMedCentralCrossRef
77.
go back to reference Hirai S, Takahashi N, Goto T, Lin S, Uemura T, Yu R, et al. Functional food targeting the regulation of obesity-induced inflammatory responses and pathologies. Mediators Inflamm. 2010;2010:367838.PubMedPubMedCentralCrossRef Hirai S, Takahashi N, Goto T, Lin S, Uemura T, Yu R, et al. Functional food targeting the regulation of obesity-induced inflammatory responses and pathologies. Mediators Inflamm. 2010;2010:367838.PubMedPubMedCentralCrossRef
78.
go back to reference Zhou JY, Du XH, Zhang Z, Qian GS. Trigonelline inhibits inflammation and protects β cells to prevent fetal growth restriction during pregnancy in a mouse model of diabetes. Pharmacol. 2017;100(5–6):209–17.CrossRef Zhou JY, Du XH, Zhang Z, Qian GS. Trigonelline inhibits inflammation and protects β cells to prevent fetal growth restriction during pregnancy in a mouse model of diabetes. Pharmacol. 2017;100(5–6):209–17.CrossRef
79.
go back to reference Cobb JE, Blanchard SG, Boswell EG, Brown KK, Charifson PS, Cooper JP, et al. N-(2-Benzoylphenyl)-L-tyrosine PPARgamma agonists. 3. Structure-activity relationship and optimization of the N-aryl substituent. J Med Chem. 1998;41(25):5055–69.PubMedCrossRef Cobb JE, Blanchard SG, Boswell EG, Brown KK, Charifson PS, Cooper JP, et al. N-(2-Benzoylphenyl)-L-tyrosine PPARgamma agonists. 3. Structure-activity relationship and optimization of the N-aryl substituent. J Med Chem. 1998;41(25):5055–69.PubMedCrossRef
80.
go back to reference Merk D, Lamers C, Weber J, Flesch D, Gabler M, Proschak E, et al. Anthranilic acid derivatives as nuclear receptor modulators-development of novel PPAR selective and dual PPAR/FXR ligands. Bioorg Med Chem. 2015;23(3):499–514.PubMedCrossRef Merk D, Lamers C, Weber J, Flesch D, Gabler M, Proschak E, et al. Anthranilic acid derivatives as nuclear receptor modulators-development of novel PPAR selective and dual PPAR/FXR ligands. Bioorg Med Chem. 2015;23(3):499–514.PubMedCrossRef
81.
go back to reference Prabhakar PK, Doble M. Effect of natural products on commercial Oral Antidiabetic drugs in enhancing 2-Deoxyglucose uptake by 3T3-L1 adipocytes. Ther Adv Endocrinol Metab. 2011;2(3):103–14.PubMedPubMedCentralCrossRef Prabhakar PK, Doble M. Effect of natural products on commercial Oral Antidiabetic drugs in enhancing 2-Deoxyglucose uptake by 3T3-L1 adipocytes. Ther Adv Endocrinol Metab. 2011;2(3):103–14.PubMedPubMedCentralCrossRef
82.
go back to reference Mastrofrancesco A, Ottaviani M, Aspite N, Cardinali G, Izzo E, Graupe K, et al. Azelaic acid modulates the inflammatory response in normal human keratinocytes through PPARgamma activation. Exp Dermatol. 2010;19(9):813–20.PubMedCrossRef Mastrofrancesco A, Ottaviani M, Aspite N, Cardinali G, Izzo E, Graupe K, et al. Azelaic acid modulates the inflammatory response in normal human keratinocytes through PPARgamma activation. Exp Dermatol. 2010;19(9):813–20.PubMedCrossRef
83.
go back to reference Chang HP, Wang ML, Hsu CY, Liu ME, Chan MH, Chen YH. Suppression of inflammation-associated factors by indole-3-carbinol in mice fed high-fat diets and in isolated, co-cultured macrophages and adipocytes. Int J Obes. 2011;35(12):1530–8.CrossRef Chang HP, Wang ML, Hsu CY, Liu ME, Chan MH, Chen YH. Suppression of inflammation-associated factors by indole-3-carbinol in mice fed high-fat diets and in isolated, co-cultured macrophages and adipocytes. Int J Obes. 2011;35(12):1530–8.CrossRef
84.
go back to reference Patel B, Mann GE, Chapple SJ. Concerted redox modulation by sulforaphane alleviates diabetes and cardiometabolic syndrome. Free Rad Biol Med. 2018;122:150–60.PubMedCrossRef Patel B, Mann GE, Chapple SJ. Concerted redox modulation by sulforaphane alleviates diabetes and cardiometabolic syndrome. Free Rad Biol Med. 2018;122:150–60.PubMedCrossRef
85.
go back to reference Nguyen MT, Csermely P, Soti C. Hsp90 chaperones PPARc and regulates differentiation and survival of 3T3-L1 adipocytes. Cell Death Differ. 2013;20:1654–63.PubMedPubMedCentralCrossRef Nguyen MT, Csermely P, Soti C. Hsp90 chaperones PPARc and regulates differentiation and survival of 3T3-L1 adipocytes. Cell Death Differ. 2013;20:1654–63.PubMedPubMedCentralCrossRef
86.
go back to reference Schopfer FJ, Cole MP, Groeger AL, Chen CS, Khoo NKH, Woodcock SR, et al. Covalent peroxisome proliferator-activated receptor γ adduction by nitro-fatty acids. J Biol Chem. 2010;285(16):12321–33.PubMedPubMedCentralCrossRef Schopfer FJ, Cole MP, Groeger AL, Chen CS, Khoo NKH, Woodcock SR, et al. Covalent peroxisome proliferator-activated receptor γ adduction by nitro-fatty acids. J Biol Chem. 2010;285(16):12321–33.PubMedPubMedCentralCrossRef
87.
go back to reference Wang KC, Tsai CP, Lee CL, Chen SY, Lin GJ, Yen MH, et al. α-Lipoic acid enhances endogenous peroxisome-proliferator-activated receptor-γ to ameliorate experimental autoimmune encephalomyelitis in mice. Clin Sci (Lond). 2013;125(7):329–40.CrossRef Wang KC, Tsai CP, Lee CL, Chen SY, Lin GJ, Yen MH, et al. α-Lipoic acid enhances endogenous peroxisome-proliferator-activated receptor-γ to ameliorate experimental autoimmune encephalomyelitis in mice. Clin Sci (Lond). 2013;125(7):329–40.CrossRef
90.
go back to reference Jeong HW, Lee JW, Kim WS, Choe SS, Shin HJ, Lee GY, et al. A nonthiazolidinedione peroxisome proliferator-activated receptor α/γ dual agonist CG301360 alleviates insulin resistance and lipid Dysregulation in db/db mice. Mol Pharmacol. 2010;78:877–85.PubMedCrossRef Jeong HW, Lee JW, Kim WS, Choe SS, Shin HJ, Lee GY, et al. A nonthiazolidinedione peroxisome proliferator-activated receptor α/γ dual agonist CG301360 alleviates insulin resistance and lipid Dysregulation in db/db mice. Mol Pharmacol. 2010;78:877–85.PubMedCrossRef
91.
go back to reference Nencu I, Vlase L, Istudor V, Mircea T. Preliminary research regarding Urtica urens l. and Urtica dioica L. Farmacia. 2015;63(5):710–5. Nencu I, Vlase L, Istudor V, Mircea T. Preliminary research regarding Urtica urens l. and Urtica dioica L. Farmacia. 2015;63(5):710–5.
Metadata
Title
Induction of peroxisome proliferator activated receptor γ (PPARγ) mediated gene expression and inhibition of induced nitric oxide production by Maerua subcordata (Gilg) DeWolf
Authors
Mebrahtom Gebrelibanos Hiben
Laura de Haan
Bert Spenkelink
Sebastiaan Wesseling
Jacques Vervoort
Ivonne M. C. M. Rietjens
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2020
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-020-2856-2

Other articles of this Issue 1/2020

BMC Complementary Medicine and Therapies 1/2020 Go to the issue