Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2020

Open Access 01-12-2020 | Metronidazole | Review

Anti-trichomonad activities of different compounds from foods, marine products, and medicinal plants: a review

Authors: Mendel Friedman, Christina C. Tam, Luisa W. Cheng, Kirkwood M. Land

Published in: BMC Complementary Medicine and Therapies | Issue 1/2020

Login to get access

Abstract

Human trichomoniasis, caused by the pathogenic parasitic protozoan Trichomonas vaginalis, is the most common non-viral sexually transmitted disease that contributes to reproductive morbidity in affected women and possibly to prostate cancer in men. Tritrichomonas foetus strains cause the disease trichomoniasis in farm animals (cattle, bulls, pigs) and diarrhea in domestic animals (cats and dogs). Because some T. vaginalis strains have become resistant to the widely used drug metronidazole, there is a need to develop alternative treatments, based on safe natural products that have the potential to replace and/or enhance the activity of lower doses of metronidazole. To help meet this need, this overview collates and interprets worldwide reported studies on the efficacy of structurally different classes of food, marine, and medicinal plant extracts and some of their bioactive pure compounds against T. vaginalis and T. foetus in vitro and in infected mice and women. Active food extracts include potato peels and their glycoalkaloids α-chaconine and α-solanine, caffeic and chlorogenic acids, and quercetin; the tomato glycoalkaloid α-tomatine; theaflavin-rich black tea extracts and bioactive theaflavins; plant essential oils and their compounds (+)-α-bisabolol and eugenol; the grape skin compound resveratrol; the kidney bean lectin, marine extracts from algae, seaweeds, and fungi and compounds that are derived from fungi; medicinal extracts and about 30 isolated pure compounds. Also covered are the inactivation of drug-resistant T. vaginalis and T. foetus strains by sensitized light; anti-trichomonad effects in mice and women; beneficial effects of probiotics in women; and mechanisms that govern cell death. The summarized findings will hopefully stimulate additional research, including molecular-mechanism-guided inactivations and human clinical studies, that will help ameliorate adverse effects of pathogenic protozoa.
Literature
1.
go back to reference Beers MH. The Merck manual of diagnosis and therapy. 18th ed. Whitehouse Station, NJ: Merck Research Laboratories; 2006. Beers MH. The Merck manual of diagnosis and therapy. 18th ed. Whitehouse Station, NJ: Merck Research Laboratories; 2006.
2.
go back to reference World Health Organization - Dept. of Reproductive Health and Research. Global incidence and prevalence of selected curable sexually transmitted infections - 2008. Geneva: WHO; 2012. p. 20. World Health Organization - Dept. of Reproductive Health and Research. Global incidence and prevalence of selected curable sexually transmitted infections - 2008. Geneva: WHO; 2012. p. 20.
3.
go back to reference Rowley J, Vander Hoorn S, Korenromp E, Low N, Unemo M, Abu-Raddad LJ, et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull World Health Organ. 2019;97(8):548–62P.PubMedPubMedCentral Rowley J, Vander Hoorn S, Korenromp E, Low N, Unemo M, Abu-Raddad LJ, et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull World Health Organ. 2019;97(8):548–62P.PubMedPubMedCentral
4.
go back to reference Stemmer SM, Mordechai E, Adelson ME, Gygax SE, Hilbert DW. Trichomonas vaginalis is most frequently detected in women at the age of peri−/premenopause: an unusual pattern for a sexually transmitted pathogen. Am J Obstet Gynecol. 2018;218(3):328.e1–e13. Stemmer SM, Mordechai E, Adelson ME, Gygax SE, Hilbert DW. Trichomonas vaginalis is most frequently detected in women at the age of peri−/premenopause: an unusual pattern for a sexually transmitted pathogen. Am J Obstet Gynecol. 2018;218(3):328.e1–e13.
6.
go back to reference Givens MD. Review: risks of disease transmission through semen in cattle. Animal Int J Animal Bioscie. 2018;12(s1):s165–s71. Givens MD. Review: risks of disease transmission through semen in cattle. Animal Int J Animal Bioscie. 2018;12(s1):s165–s71.
7.
go back to reference Morin-Adeline V, Mueller K, Conesa A, Šlapeta J. Comparative RNA-seq analysis of the Tritrichomonas foetus PIG30/1 isolate from pigs reveals close association with Tritrichomonas foetus BP-4 isolate ‘bovine genotype’. Vet Parasitol. 2015;212(3–4):111–7.PubMed Morin-Adeline V, Mueller K, Conesa A, Šlapeta J. Comparative RNA-seq analysis of the Tritrichomonas foetus PIG30/1 isolate from pigs reveals close association with Tritrichomonas foetus BP-4 isolate ‘bovine genotype’. Vet Parasitol. 2015;212(3–4):111–7.PubMed
8.
go back to reference Gookin JL, Hanrahan K, Levy MG. The conundrum of feline Trichomonosis. J Feline Med Surg. 2017;19(3):261–74.PubMed Gookin JL, Hanrahan K, Levy MG. The conundrum of feline Trichomonosis. J Feline Med Surg. 2017;19(3):261–74.PubMed
9.
go back to reference Paul A, Stayt J. The intestinal microbiome in dogs and cats with diarrhoea as detected by a faecal polymerase chain reaction-based panel in Perth, Western Australia. Aust Vet J. 2019;97(10):418–21.PubMedPubMedCentral Paul A, Stayt J. The intestinal microbiome in dogs and cats with diarrhoea as detected by a faecal polymerase chain reaction-based panel in Perth, Western Australia. Aust Vet J. 2019;97(10):418–21.PubMedPubMedCentral
10.
go back to reference Bastos BF. Almeida FMd, Brener B. what is known about Tritrichomonas foetus infection in cats? Rev Bras Parasitol Vet. 2019;28(1):1–11.PubMed Bastos BF. Almeida FMd, Brener B. what is known about Tritrichomonas foetus infection in cats? Rev Bras Parasitol Vet. 2019;28(1):1–11.PubMed
11.
go back to reference Cargnin ST, PdB V, Cibulski S, Cassel E, RMF V, Montanha J, et al. anti-Trichomonas vaginalis activity of Hypericum polyanthemum extract obtained by supercritical fluid extraction and isolated compounds. Parasitol Int. 2013;62(2):112–7.PubMed Cargnin ST, PdB V, Cibulski S, Cassel E, RMF V, Montanha J, et al. anti-Trichomonas vaginalis activity of Hypericum polyanthemum extract obtained by supercritical fluid extraction and isolated compounds. Parasitol Int. 2013;62(2):112–7.PubMed
12.
go back to reference Innocente AM, de Brum VP, Frasson AP, Casanova BB, Gosmann G, Gnoatto SCB, et al. Anti-Trichomonas vaginalis activity from triterpenoid derivatives. Parasitol Res. 2014;113(8):2933–40.PubMed Innocente AM, de Brum VP, Frasson AP, Casanova BB, Gosmann G, Gnoatto SCB, et al. Anti-Trichomonas vaginalis activity from triterpenoid derivatives. Parasitol Res. 2014;113(8):2933–40.PubMed
13.
go back to reference Farias KS, Kato NN, Boaretto AG, Weber JI, Brust FR, Alves FM, et al. Nectandra as a renewable source for (+)-α-bisabolol, an antibiofilm and anti-Trichomonas vaginalis compound. Fitoterapia. 2019;136:104179.PubMed Farias KS, Kato NN, Boaretto AG, Weber JI, Brust FR, Alves FM, et al. Nectandra as a renewable source for (+)-α-bisabolol, an antibiofilm and anti-Trichomonas vaginalis compound. Fitoterapia. 2019;136:104179.PubMed
14.
go back to reference Friedman M, Huang V, Quiambao Q, Noritake S, Liu J, Kwon O, et al. Potato peels and their bioactive glycoalkaloids and phenolic compounds inhibit the growth of pathogenic trichomonads. J Agric Food Chem. 2018;66(30):7942–7.PubMed Friedman M, Huang V, Quiambao Q, Noritake S, Liu J, Kwon O, et al. Potato peels and their bioactive glycoalkaloids and phenolic compounds inhibit the growth of pathogenic trichomonads. J Agric Food Chem. 2018;66(30):7942–7.PubMed
15.
go back to reference Giordani RB, Weizenmann M, Rosemberg DB, De Carli GA, Bogo MR, Zuanazzi JAS, et al. Trichomonas vaginalis nucleoside triphosphate diphosphohydrolase and ecto-5′-nucleotidase activities are inhibited by lycorine and candimine. Parasitol Int. 2010;59(2):226–31.PubMed Giordani RB, Weizenmann M, Rosemberg DB, De Carli GA, Bogo MR, Zuanazzi JAS, et al. Trichomonas vaginalis nucleoside triphosphate diphosphohydrolase and ecto-5′-nucleotidase activities are inhibited by lycorine and candimine. Parasitol Int. 2010;59(2):226–31.PubMed
16.
go back to reference O’Donoghue AJ, Bibo-Verdugo B, Miyamoto Y, Wang SC, Yang JZ, Zuill DE, et al. 20S proteasome as a drug target in Trichomonas vaginalis. Antimicrob Agents Chemother. 2019;63(11):e00448–19.PubMedPubMedCentral O’Donoghue AJ, Bibo-Verdugo B, Miyamoto Y, Wang SC, Yang JZ, Zuill DE, et al. 20S proteasome as a drug target in Trichomonas vaginalis. Antimicrob Agents Chemother. 2019;63(11):e00448–19.PubMedPubMedCentral
17.
go back to reference Wang H-H. Antitrichomonal action of emodin in mice. J Ethnopharmacol. 1993;40(2):111–6.PubMed Wang H-H. Antitrichomonal action of emodin in mice. J Ethnopharmacol. 1993;40(2):111–6.PubMed
18.
go back to reference Dai M, Peng C, Peng F, Xie C, Wang P, Sun F. Anti-Trichomonas vaginalis properties of the oil of Amomum tsao-ko and its major component, geraniol. Pharm Biol. 2016;54(3):445–50.PubMed Dai M, Peng C, Peng F, Xie C, Wang P, Sun F. Anti-Trichomonas vaginalis properties of the oil of Amomum tsao-ko and its major component, geraniol. Pharm Biol. 2016;54(3):445–50.PubMed
19.
go back to reference Mehriardestani M, Aliahmadi A, Toliat T, Rahimi R. Medicinal plants and their isolated compounds showing anti-Trichomonas vaginalis- activity. Biomed Pharmacother. 2017;88:885–93.PubMed Mehriardestani M, Aliahmadi A, Toliat T, Rahimi R. Medicinal plants and their isolated compounds showing anti-Trichomonas vaginalis- activity. Biomed Pharmacother. 2017;88:885–93.PubMed
20.
go back to reference Menezes CB, Rigo GV, Bridi H, DdS T, Macedo AJ, von Poser GL, et al. the anti-Trichomonas vaginalis phloroglucinol derivative isoaustrobrasilol B modulates extracellular nucleotide hydrolysis. Chem Biol Drug Des. 2017;90(5):811–9.PubMed Menezes CB, Rigo GV, Bridi H, DdS T, Macedo AJ, von Poser GL, et al. the anti-Trichomonas vaginalis phloroglucinol derivative isoaustrobrasilol B modulates extracellular nucleotide hydrolysis. Chem Biol Drug Des. 2017;90(5):811–9.PubMed
21.
go back to reference Aminou HA, Alam-Eldin YH, Hashem HA. Effect of Nigella sativa alcoholic extract and oil, as well as Phaseolus vulgaris (kidney bean) lectin on the ultrastructure of Trichomonas vaginalis trophozoites. J Parasit Dis. 2016;40(3):707–13.PubMed Aminou HA, Alam-Eldin YH, Hashem HA. Effect of Nigella sativa alcoholic extract and oil, as well as Phaseolus vulgaris (kidney bean) lectin on the ultrastructure of Trichomonas vaginalis trophozoites. J Parasit Dis. 2016;40(3):707–13.PubMed
22.
go back to reference Cáceres-Castillo D, Pérez-Navarro Y, Torres-Romero JC, Mirón-López G, Ceballos-Cruz J, Arana-Argáez V, et al. Trichomonicidal activity of a new anthraquinone isolated from the roots of Morinda panamensis seem. Drug Dev Res. 2019;80(1):155–61.PubMed Cáceres-Castillo D, Pérez-Navarro Y, Torres-Romero JC, Mirón-López G, Ceballos-Cruz J, Arana-Argáez V, et al. Trichomonicidal activity of a new anthraquinone isolated from the roots of Morinda panamensis seem. Drug Dev Res. 2019;80(1):155–61.PubMed
23.
go back to reference Vieira PB, Giordani RB, De Carli GA, Zuanazzi JA, Tasca T. Screening and bioguided fractionation of Amaryllidaceae species with anti-Trichomonas vaginalis activity. Planta Med. 2011;77(10):1054–9. Vieira PB, Giordani RB, De Carli GA, Zuanazzi JA, Tasca T. Screening and bioguided fractionation of Amaryllidaceae species with anti-Trichomonas vaginalis activity. Planta Med. 2011;77(10):1054–9.
24.
go back to reference Ofer K, Gold D, Flescher E. Methyl jasmonate induces cell cycle block and cell death in the amitochondriate parasite Trichomonas vaginalis. Int J Parasitol. 2008;38(8):959–68.PubMed Ofer K, Gold D, Flescher E. Methyl jasmonate induces cell cycle block and cell death in the amitochondriate parasite Trichomonas vaginalis. Int J Parasitol. 2008;38(8):959–68.PubMed
25.
go back to reference King JB, Carter AC, Dai W, Lee JW, Kil Y-S, Du L, et al. Design and application of a high-throughput, high-content screening system for natural product inhibitors of the human parasite Trichomonas vaginalis. ACS Infect Dis. 2019;5(8):1456–70.PubMed King JB, Carter AC, Dai W, Lee JW, Kil Y-S, Du L, et al. Design and application of a high-throughput, high-content screening system for natural product inhibitors of the human parasite Trichomonas vaginalis. ACS Infect Dis. 2019;5(8):1456–70.PubMed
26.
go back to reference Mallo N, Lamas J, Leiro JM. Hydrogenosome metabolism is the key target for antiparasitic activity of resveratrol against Trichomonas vaginalis. Antimicrob Agents Chemother. 2013;57(6):2476–84.PubMedPubMedCentral Mallo N, Lamas J, Leiro JM. Hydrogenosome metabolism is the key target for antiparasitic activity of resveratrol against Trichomonas vaginalis. Antimicrob Agents Chemother. 2013;57(6):2476–84.PubMedPubMedCentral
27.
go back to reference Rocha TD, de Brum VP, Gnoatto SCB, Tasca T, Gosmann G. Anti-Trichomonas vaginalis activity of saponins from Quillaja, Passiflora, and Ilex species. Parasitol Res. 2012;110(6):2551–6.PubMed Rocha TD, de Brum VP, Gnoatto SCB, Tasca T, Gosmann G. Anti-Trichomonas vaginalis activity of saponins from Quillaja, Passiflora, and Ilex species. Parasitol Res. 2012;110(6):2551–6.PubMed
28.
go back to reference Damke E, Tsuzuki JK, Chassot F, Cortez DAG, Ferreira ICP, Mesquita CSS, et al. Spermicidal and anti-Trichomonas vaginalis activity of Brazilian Sapindus saponaria. BMC Complement Altern Med. 2013;13(1):196.PubMedPubMedCentral Damke E, Tsuzuki JK, Chassot F, Cortez DAG, Ferreira ICP, Mesquita CSS, et al. Spermicidal and anti-Trichomonas vaginalis activity of Brazilian Sapindus saponaria. BMC Complement Altern Med. 2013;13(1):196.PubMedPubMedCentral
29.
go back to reference Liu J, Kanetake S, Wu Y-H, Tam C, Cheng LW, Land KM, et al. Anti-protozoal effects of the tomato tetrasaccharide glycoalkaloid tomatine and the aglycone tomatidine on mucosal trichomonads. J Agric Food Chem. 2016;64(46):8806–10.PubMed Liu J, Kanetake S, Wu Y-H, Tam C, Cheng LW, Land KM, et al. Anti-protozoal effects of the tomato tetrasaccharide glycoalkaloid tomatine and the aglycone tomatidine on mucosal trichomonads. J Agric Food Chem. 2016;64(46):8806–10.PubMed
30.
go back to reference Arthan D, Sithiprom S, Thima K, Limmatvatirat C, Chavalitshewinkoon-Petmitr P, Svasti J. Inhibitory effects of Thai plants β-glycosides on Trichomonas vaginalis. Parasitol Res. 2008;103(2):443–8.PubMed Arthan D, Sithiprom S, Thima K, Limmatvatirat C, Chavalitshewinkoon-Petmitr P, Svasti J. Inhibitory effects of Thai plants β-glycosides on Trichomonas vaginalis. Parasitol Res. 2008;103(2):443–8.PubMed
31.
go back to reference Bitencourt FG, de Brum VP, Meirelles LC, Rigo GV, da Silva EF, Gnoatto SCB, et al. Anti-Trichomonas vaginalis activity of ursolic acid derivative: a promising alternative. Parasitol Res. 2018;117(5):1573–80.PubMed Bitencourt FG, de Brum VP, Meirelles LC, Rigo GV, da Silva EF, Gnoatto SCB, et al. Anti-Trichomonas vaginalis activity of ursolic acid derivative: a promising alternative. Parasitol Res. 2018;117(5):1573–80.PubMed
32.
go back to reference Fernández-Calienes Valdés A, Monzote Fidalgo L, Sariego Ramos I, Marrero Delange D, Morales Rico CL, Mendiola Martínez J, et al. Antiprotozoal screening of the Cuban native plant Scutellaria havanensis. Pharm Biol. 2016;54(12):3197–202.PubMed Fernández-Calienes Valdés A, Monzote Fidalgo L, Sariego Ramos I, Marrero Delange D, Morales Rico CL, Mendiola Martínez J, et al. Antiprotozoal screening of the Cuban native plant Scutellaria havanensis. Pharm Biol. 2016;54(12):3197–202.PubMed
34.
go back to reference Younes JA, Lievens E, Hummelen R, van der Westen R, Reid G, Petrova MI. Women and their microbes: the unexpected friendship. Trends Microbiol. 2018;26(1):16–32.PubMed Younes JA, Lievens E, Hummelen R, van der Westen R, Reid G, Petrova MI. Women and their microbes: the unexpected friendship. Trends Microbiol. 2018;26(1):16–32.PubMed
35.
go back to reference Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SSK, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4680–7. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SSK, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4680–7.
36.
go back to reference Diop K, Dufour J-C, Levasseur A, Fenollar F. Exhaustive repertoire of human vaginal microbiota. Hum Microbiome J. 2019;11:100051. Diop K, Dufour J-C, Levasseur A, Fenollar F. Exhaustive repertoire of human vaginal microbiota. Hum Microbiome J. 2019;11:100051.
37.
go back to reference Hinderfeld AS, Phukan N, Bär A-K, Roberton AM, Simoes-Barbosa A. Cooperative interactions between Trichomonas vaginalis and associated bacteria enhance paracellular permeability of the cervicovaginal epithelium by dysregulating tight junctions. Infect Immun. 2019;87(5):e00141–19.PubMedPubMedCentral Hinderfeld AS, Phukan N, Bär A-K, Roberton AM, Simoes-Barbosa A. Cooperative interactions between Trichomonas vaginalis and associated bacteria enhance paracellular permeability of the cervicovaginal epithelium by dysregulating tight junctions. Infect Immun. 2019;87(5):e00141–19.PubMedPubMedCentral
38.
go back to reference Boris S, Barbés C. Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect. 2000;2(5):543–6.PubMed Boris S, Barbés C. Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect. 2000;2(5):543–6.PubMed
39.
go back to reference Bouchemal K, Bories C, Loiseau PM. Strategies for prevention and treatment of Trichomonas vaginalis infections. Clin Microbiol Rev. 2017;30(3):811–25.PubMedPubMedCentral Bouchemal K, Bories C, Loiseau PM. Strategies for prevention and treatment of Trichomonas vaginalis infections. Clin Microbiol Rev. 2017;30(3):811–25.PubMedPubMedCentral
40.
go back to reference Phukan N, Brooks AES, Simoes-Barbosa A. A cell surface aggregation-promoting factor from Lactobacillus gasseri contributes to inhibition of Trichomonas vaginalis adhesion to human vaginal ectocervical cells. Infect Immun. 2018;86(8):e00907–17.PubMedPubMedCentral Phukan N, Brooks AES, Simoes-Barbosa A. A cell surface aggregation-promoting factor from Lactobacillus gasseri contributes to inhibition of Trichomonas vaginalis adhesion to human vaginal ectocervical cells. Infect Immun. 2018;86(8):e00907–17.PubMedPubMedCentral
41.
go back to reference Brotman RM, Bradford LL, Conrad M, Gajer P, Ault K, Peralta L, et al. Association between Trichomonas vaginalis and vaginal bacterial community composition among reproductive-age women. Sex Transm Dis. 2012;39(10):807–12.PubMed Brotman RM, Bradford LL, Conrad M, Gajer P, Ault K, Peralta L, et al. Association between Trichomonas vaginalis and vaginal bacterial community composition among reproductive-age women. Sex Transm Dis. 2012;39(10):807–12.PubMed
42.
go back to reference Valadkhani Z, Hassan N. Z a, Mostafavi E. protective role of Lactobacillus acidophilus against vaginal infection with Trichomonas vaginalis. Mediterr J Biosci. 2016;1:50–4. Valadkhani Z, Hassan N. Z a, Mostafavi E. protective role of Lactobacillus acidophilus against vaginal infection with Trichomonas vaginalis. Mediterr J Biosci. 2016;1:50–4.
44.
go back to reference Friedman M, Kozukue N, Kim H-J, Choi S-H, Mizuno M. Glycoalkaloid, phenolic, and flavonoid content and antioxidative activities of conventional nonorganic and organic potato peel powders from commercial gold, red, and russet potatoes. J Food Compos Anal. 2017;62:69–75. Friedman M, Kozukue N, Kim H-J, Choi S-H, Mizuno M. Glycoalkaloid, phenolic, and flavonoid content and antioxidative activities of conventional nonorganic and organic potato peel powders from commercial gold, red, and russet potatoes. J Food Compos Anal. 2017;62:69–75.
45.
go back to reference Friedman M, Lee KR, Kim HJ, Lee IS, Kozukue N. Anticarcinogenic effects of glycoalkaloids from potatoes against human cervical, liver, lymphoma, and stomach cancer cells. J Agric Food Chem. 2005;53(15):6162–9.PubMed Friedman M, Lee KR, Kim HJ, Lee IS, Kozukue N. Anticarcinogenic effects of glycoalkaloids from potatoes against human cervical, liver, lymphoma, and stomach cancer cells. J Agric Food Chem. 2005;53(15):6162–9.PubMed
46.
go back to reference Friedman M. Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by eggplants, potatoes, and tomatoes. J Agric Food Chem. 2015;63(13):3323–37.PubMed Friedman M. Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by eggplants, potatoes, and tomatoes. J Agric Food Chem. 2015;63(13):3323–37.PubMed
47.
go back to reference Elkahoui S, Bartley GE, Yokoyama WH, Friedman M. Dietary supplementation of potato peel powders prepared from conventional and organic russet and nonorganic gold and red potatoes reduces weight gain in mice on a high-fat diet. J Agric Food Chem. 2018;66(24):6064–72.PubMed Elkahoui S, Bartley GE, Yokoyama WH, Friedman M. Dietary supplementation of potato peel powders prepared from conventional and organic russet and nonorganic gold and red potatoes reduces weight gain in mice on a high-fat diet. J Agric Food Chem. 2018;66(24):6064–72.PubMed
48.
go back to reference Blankemeyer JT, White JB, Stringer BK, Friedman M. Effect of α-tomatine and tomatidine on membrane potential of frog embryos and active transport of ions in frog skin. Food Cheml Toxicol. 1997;35(7):639–46. Blankemeyer JT, White JB, Stringer BK, Friedman M. Effect of α-tomatine and tomatidine on membrane potential of frog embryos and active transport of ions in frog skin. Food Cheml Toxicol. 1997;35(7):639–46.
49.
go back to reference Blankemeyer JT, Atherton R, Friedman M. Effect of potato glycoalkaloids α-chaconine and α-solanine on sodium active-transport in frog-skin. J Agric Food Chem. 1995;43(3):636–9. Blankemeyer JT, Atherton R, Friedman M. Effect of potato glycoalkaloids α-chaconine and α-solanine on sodium active-transport in frog-skin. J Agric Food Chem. 1995;43(3):636–9.
50.
go back to reference de Groot C, Müller-Goymann CC. Saponin interactions with model membrane systems – langmuir monolayer studies, hemolysis and formation of ISCOMs. Planta Med. 2016;82(18):1496–512.PubMed de Groot C, Müller-Goymann CC. Saponin interactions with model membrane systems – langmuir monolayer studies, hemolysis and formation of ISCOMs. Planta Med. 2016;82(18):1496–512.PubMed
51.
go back to reference Kozukue N, Han J-S, Lee K-R, Friedman M. Dehydrotomatine and α-tomatine content in tomato fruits and vegetative plant tissues. J Agric Food Chem. 2004;52(7):2079–83.PubMed Kozukue N, Han J-S, Lee K-R, Friedman M. Dehydrotomatine and α-tomatine content in tomato fruits and vegetative plant tissues. J Agric Food Chem. 2004;52(7):2079–83.PubMed
52.
go back to reference Friedman M, Kozukue N, Mizuno M, Sakakibara H, Choi S-H, Fujitake M, et al. The analysis of the content of biologically active phenolic compounds, flavonoids, and glycoalkaloids in harvested red, yellow, and green tomatoes, tomato leaves, and tomato stems. Curr Top Phytochem. 2019;15:43–53. Friedman M, Kozukue N, Mizuno M, Sakakibara H, Choi S-H, Fujitake M, et al. The analysis of the content of biologically active phenolic compounds, flavonoids, and glycoalkaloids in harvested red, yellow, and green tomatoes, tomato leaves, and tomato stems. Curr Top Phytochem. 2019;15:43–53.
53.
go back to reference Friedman M, Fitch TE, Yokoyama WE. Lowering of plasma LDL cholesterol in hamsters by the tomato glycoalkaloid tomatine. Food Cheml Toxicol. 2000;38(7):549–53. Friedman M, Fitch TE, Yokoyama WE. Lowering of plasma LDL cholesterol in hamsters by the tomato glycoalkaloid tomatine. Food Cheml Toxicol. 2000;38(7):549–53.
54.
go back to reference Friedman M, McQuistan T, Hendricks JD, Pereira C, Bailey GS. Protective effect of dietary tomatine against dibenzo [a,l] pyrene (DBP)-induced liver and stomach tumors in rainbow trout. Mol Nutr Food Res. 2007;51(12):1485–91.PubMed Friedman M, McQuistan T, Hendricks JD, Pereira C, Bailey GS. Protective effect of dietary tomatine against dibenzo [a,l] pyrene (DBP)-induced liver and stomach tumors in rainbow trout. Mol Nutr Food Res. 2007;51(12):1485–91.PubMed
55.
go back to reference Kim SP, Nam SH, Friedman M. The tomato glycoalkaloid α-tomatine induces caspase-independent cell death in mouse colon cancer CT-26 cells and transplanted tumors in mice. J Agric Food Chem. 2015;63(4):1142–50.PubMed Kim SP, Nam SH, Friedman M. The tomato glycoalkaloid α-tomatine induces caspase-independent cell death in mouse colon cancer CT-26 cells and transplanted tumors in mice. J Agric Food Chem. 2015;63(4):1142–50.PubMed
56.
go back to reference Choi S-H, Lee S-H, Kim H-J, Lee I-S, Kozukue N, Levin CE, et al. Changes in free amino acid, phenolic, chlorophyll, carotenoid, and glycoalkaloid contents in tomatoes during 11 stages of growth and inhibition of cervical and lung human cancer cells by green tomato extracts. J Agric Food Chem. 2010;58(13):7547–56.PubMed Choi S-H, Lee S-H, Kim H-J, Lee I-S, Kozukue N, Levin CE, et al. Changes in free amino acid, phenolic, chlorophyll, carotenoid, and glycoalkaloid contents in tomatoes during 11 stages of growth and inhibition of cervical and lung human cancer cells by green tomato extracts. J Agric Food Chem. 2010;58(13):7547–56.PubMed
57.
go back to reference Friedman M, Levin CE. α-Tomatine content in tomato and tomato products determined by HPLC with pulsed amperometric detection. J Agric Food Chem. 1995;43(6):1507–11. Friedman M, Levin CE. α-Tomatine content in tomato and tomato products determined by HPLC with pulsed amperometric detection. J Agric Food Chem. 1995;43(6):1507–11.
58.
go back to reference Chen Y, Li S, Sun F, Han H, Zhang X, Fan Y, et al. In vivo antimalarial activities of glycoalkaloids isolated from Solanaceae plants. Pharm Biol. 2010;48(9):1018–24.PubMed Chen Y, Li S, Sun F, Han H, Zhang X, Fan Y, et al. In vivo antimalarial activities of glycoalkaloids isolated from Solanaceae plants. Pharm Biol. 2010;48(9):1018–24.PubMed
59.
go back to reference Thorne HV, Clarke GF, Skuce R. The inactivation of herpes simplex virus by some Solanaceae glycoalkaloids. Antivir Res. 1985;5(6):335–43.PubMed Thorne HV, Clarke GF, Skuce R. The inactivation of herpes simplex virus by some Solanaceae glycoalkaloids. Antivir Res. 1985;5(6):335–43.PubMed
60.
go back to reference Schedin-Weiss S, Gaunitz S, Sui P, Chen Q, Haslam SM, Blennow K, et al. Glycan biomarkers for Alzheimer disease correlate with T-tau and P-tau in cerebrospinal fluid in subjective cognitive impairment. FEBS J. 2020;287(15):3221–34. https://doi.org/10.1111/febs.15197. Schedin-Weiss S, Gaunitz S, Sui P, Chen Q, Haslam SM, Blennow K, et al. Glycan biomarkers for Alzheimer disease correlate with T-tau and P-tau in cerebrospinal fluid in subjective cognitive impairment. FEBS J. 2020;287(15):3221–34. https://​doi.​org/​10.​1111/​febs.​15197.
61.
go back to reference Noritake SM, Liu J, Kanetake S, Levin CE, Tam C, Cheng LW, et al. Phytochemical-rich foods inhibit the growth of pathogenic trichomonads. BMC Complement Altern Med. 2017;17(1):461.PubMed Noritake SM, Liu J, Kanetake S, Levin CE, Tam C, Cheng LW, et al. Phytochemical-rich foods inhibit the growth of pathogenic trichomonads. BMC Complement Altern Med. 2017;17(1):461.PubMed
62.
go back to reference Friedman M. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol Nutr Food Res. 2007;51(1):116–34.PubMed Friedman M. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol Nutr Food Res. 2007;51(1):116–34.PubMed
63.
go back to reference Friedman M, Henika PR, Levin CE, Mandrell RE, Kozukue N. Antimicrobial activities of tea catechins and theaflavins and tea extracts against Bacillus cereus. J Food Prot. 2006;69(2):354–61.PubMed Friedman M, Henika PR, Levin CE, Mandrell RE, Kozukue N. Antimicrobial activities of tea catechins and theaflavins and tea extracts against Bacillus cereus. J Food Prot. 2006;69(2):354–61.PubMed
64.
go back to reference Friedman M, Mackey BE, Kim H-J, Lee I-S, Lee K-R, Lee S-U, et al. Structure-activity relationships of tea compounds against human cancer cells. J Agric Food Chem. 2007;55(2):243–53.PubMed Friedman M, Mackey BE, Kim H-J, Lee I-S, Lee K-R, Lee S-U, et al. Structure-activity relationships of tea compounds against human cancer cells. J Agric Food Chem. 2007;55(2):243–53.PubMed
65.
go back to reference Friedman M, Kim S-Y, Lee S-J, Han G-P, Han J-S, Lee K-R, et al. Distribution of catechins, theaflavins, caffeine, and theobromine in 77 teas consumed in the United States. J Food Sci. 2005;70(9):C550–C9. Friedman M, Kim S-Y, Lee S-J, Han G-P, Han J-S, Lee K-R, et al. Distribution of catechins, theaflavins, caffeine, and theobromine in 77 teas consumed in the United States. J Food Sci. 2005;70(9):C550–C9.
66.
go back to reference Friedman M, Levin CE, Choi S-H, Kozukue E, Kozukue N. HPLC analysis of catechins, theaflavins, and alkaloids in commercial teas and green tea dietary supplements: comparison of water and 80% ethanol/water extracts. J Food Sci. 2006;71(6):C328–37. Friedman M, Levin CE, Choi S-H, Kozukue E, Kozukue N. HPLC analysis of catechins, theaflavins, and alkaloids in commercial teas and green tea dietary supplements: comparison of water and 80% ethanol/water extracts. J Food Sci. 2006;71(6):C328–37.
67.
go back to reference Sirk TW, Brown EF, Friedman M, Sum AK. Molecular binding of catechins to biomembranes: relationship to biological activity. J Agric Food Chem. 2009;57(15):6720–8.PubMed Sirk TW, Brown EF, Friedman M, Sum AK. Molecular binding of catechins to biomembranes: relationship to biological activity. J Agric Food Chem. 2009;57(15):6720–8.PubMed
68.
go back to reference Sirk TW, Brown EF, Sum AK, Friedman M. Molecular dynamics study on the biophysical interactions of seven green tea catechins with lipid bilayers of cell membranes. J Agric Food Chem. 2008;56(17):7750–8.PubMed Sirk TW, Brown EF, Sum AK, Friedman M. Molecular dynamics study on the biophysical interactions of seven green tea catechins with lipid bilayers of cell membranes. J Agric Food Chem. 2008;56(17):7750–8.PubMed
69.
go back to reference Sirk TW, Friedman M, Brown EF. Molecular binding of black tea theaflavins to biological membranes: relationship to bioactivities. J Agric Food Chem. 2011;59(8):3780–7.PubMed Sirk TW, Friedman M, Brown EF. Molecular binding of black tea theaflavins to biological membranes: relationship to bioactivities. J Agric Food Chem. 2011;59(8):3780–7.PubMed
70.
go back to reference Moon T, Wilkinson JM, Cavanagh HMA. Antiparasitic activity of two Lavandula essential oils against Giardia duodenalis, Trichomonas vaginalis and Hexamita inflata. Parasitol Res. 2006;99(6):722–8.PubMed Moon T, Wilkinson JM, Cavanagh HMA. Antiparasitic activity of two Lavandula essential oils against Giardia duodenalis, Trichomonas vaginalis and Hexamita inflata. Parasitol Res. 2006;99(6):722–8.PubMed
71.
go back to reference Cheikh-Ali Z, Adiko M, Bouttier S, Bories C, Okpekon T, Poupon E, et al. Composition, and antimicrobial and remarkable antiprotozoal activities of the essential oil of rhizomes of Aframomum sceptrum K. Schum. (Zingiberaceae). Chem Biodivers. 2011;8(4):658–67.PubMed Cheikh-Ali Z, Adiko M, Bouttier S, Bories C, Okpekon T, Poupon E, et al. Composition, and antimicrobial and remarkable antiprotozoal activities of the essential oil of rhizomes of Aframomum sceptrum K. Schum. (Zingiberaceae). Chem Biodivers. 2011;8(4):658–67.PubMed
72.
go back to reference Akram Khan M, Afzal M. Chemical composition of Nigella sativa Linn: part 2 recent advances. Inflammopharmacology. 2016;24(2):67–79.PubMedPubMedCentral Akram Khan M, Afzal M. Chemical composition of Nigella sativa Linn: part 2 recent advances. Inflammopharmacology. 2016;24(2):67–79.PubMedPubMedCentral
73.
go back to reference Shaikh S, Aaqil H, Rizvi SM, Shakil S, Abuzenadah AM, Gupta P, et al. Comparative inhibition study of compounds identified in the methanolic extract of Apamarga Kshara against Trichomonas vaginalis carbamate kinase (TvCK): an enzoinformatics approach. Interdiscip Sci. 2016;8(4):357–65.PubMed Shaikh S, Aaqil H, Rizvi SM, Shakil S, Abuzenadah AM, Gupta P, et al. Comparative inhibition study of compounds identified in the methanolic extract of Apamarga Kshara against Trichomonas vaginalis carbamate kinase (TvCK): an enzoinformatics approach. Interdiscip Sci. 2016;8(4):357–65.PubMed
74.
go back to reference Oliveira FS, Freitas TSd, Cruz RPd, Costa MdS, Pereira RLS, Quintans-Júnior LJ, et al. Evaluation of the antibacterial and modulatory potential of α-bisabolol, β-cyclodextrin and α-bisabolol/β-cyclodextrin complex. Biomed Pharmacother. 2017;92:1111–8.PubMed Oliveira FS, Freitas TSd, Cruz RPd, Costa MdS, Pereira RLS, Quintans-Júnior LJ, et al. Evaluation of the antibacterial and modulatory potential of α-bisabolol, β-cyclodextrin and α-bisabolol/β-cyclodextrin complex. Biomed Pharmacother. 2017;92:1111–8.PubMed
75.
go back to reference Friedman M. Antimicrobial activities of plant essential oils and their components against antibiotic-susceptible and antibiotic-resistant foodborne pathogens. In: Rai M, Zachino S, Derita MD, editors. Essential oils and nanotechnology for treatment of microbial diseases. Boca Raton, Florida: CRC Press; 2017. p. 14–38. Friedman M. Antimicrobial activities of plant essential oils and their components against antibiotic-susceptible and antibiotic-resistant foodborne pathogens. In: Rai M, Zachino S, Derita MD, editors. Essential oils and nanotechnology for treatment of microbial diseases. Boca Raton, Florida: CRC Press; 2017. p. 14–38.
76.
go back to reference Friedman M, Henika PR, Mandrell RE. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Prot. 2002;65(10):1545–60.PubMed Friedman M, Henika PR, Mandrell RE. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Prot. 2002;65(10):1545–60.PubMed
77.
go back to reference Friedman M, Henika PR, Levin CE, Mandrell RE. Antibacterial activities of plant essential oils and their components against Escherichia coli O157:H7 and Salmonella enterica in apple juice. J Agric Food Chem. 2004;52(19):6042–8.PubMed Friedman M, Henika PR, Levin CE, Mandrell RE. Antibacterial activities of plant essential oils and their components against Escherichia coli O157:H7 and Salmonella enterica in apple juice. J Agric Food Chem. 2004;52(19):6042–8.PubMed
78.
go back to reference Chen CH, Ravishankar S, Marchello J, Friedman M. Antimicrobial activity of plant compounds against Salmonella Typhimurium DT104 in ground pork and the influence of heat and storage on the antimicrobial activity. J Food Prot. 2013;76(7):1264–9.PubMed Chen CH, Ravishankar S, Marchello J, Friedman M. Antimicrobial activity of plant compounds against Salmonella Typhimurium DT104 in ground pork and the influence of heat and storage on the antimicrobial activity. J Food Prot. 2013;76(7):1264–9.PubMed
79.
go back to reference Todd J, Friedman M, Patel J, Jaroni D, Ravishankar S. The antimicrobial effects of cinnamon leaf oil against multi-drug resistant Salmonella Newport on organic leafy greens. Int J Food Microbiol. 2013;166(1):193–9.PubMed Todd J, Friedman M, Patel J, Jaroni D, Ravishankar S. The antimicrobial effects of cinnamon leaf oil against multi-drug resistant Salmonella Newport on organic leafy greens. Int J Food Microbiol. 2013;166(1):193–9.PubMed
80.
go back to reference Sinha S, Prakash A, Sehgal R, Medhi B. Comparative effect of manuka honey on anaerobic parasitic protozoans with standard drug therapy under in vitro conditions: a preliminary study. Indian J Pharmacol. 2018;50(4):197–203.PubMedPubMedCentral Sinha S, Prakash A, Sehgal R, Medhi B. Comparative effect of manuka honey on anaerobic parasitic protozoans with standard drug therapy under in vitro conditions: a preliminary study. Indian J Pharmacol. 2018;50(4):197–203.PubMedPubMedCentral
81.
go back to reference Taylor MA, Robertson AW, Biggs PJ, Richards KK, Jones DF, Parkar SG. The effect of carbohydrate sources: sucrose, invert sugar and components of manuka honey, on core bacteria in the digestive tract of adult honey bees (Apis mellifera). PLoS One. 2019;14(12):e0225845.PubMedPubMedCentral Taylor MA, Robertson AW, Biggs PJ, Richards KK, Jones DF, Parkar SG. The effect of carbohydrate sources: sucrose, invert sugar and components of manuka honey, on core bacteria in the digestive tract of adult honey bees (Apis mellifera). PLoS One. 2019;14(12):e0225845.PubMedPubMedCentral
82.
go back to reference Friedman M. Antibacterial, antiviral, and antifungal properties of wines and winery byproducts in relation to their flavonoid content. J Agric Food Chem. 2014;62(26):6025–42.PubMed Friedman M. Antibacterial, antiviral, and antifungal properties of wines and winery byproducts in relation to their flavonoid content. J Agric Food Chem. 2014;62(26):6025–42.PubMed
83.
go back to reference Rauf A, Imran M, Butt MS, Nadeem M, Peters DG, Mubarak MS. Resveratrol as an anti-cancer agent: a review. Crit Rev Food Sci Nutr. 2018;58(9):1428–47.PubMed Rauf A, Imran M, Butt MS, Nadeem M, Peters DG, Mubarak MS. Resveratrol as an anti-cancer agent: a review. Crit Rev Food Sci Nutr. 2018;58(9):1428–47.PubMed
84.
go back to reference Xia N, Daiber A, Förstermann U, Li H. Antioxidant effects of resveratrol in the cardiovascular system. Br J Pharmacol. 2017;174(12):1633–46.PubMed Xia N, Daiber A, Förstermann U, Li H. Antioxidant effects of resveratrol in the cardiovascular system. Br J Pharmacol. 2017;174(12):1633–46.PubMed
85.
go back to reference Moo-Puc R, Robledo D, Freile-Pelegrin Y. Evaluation of selected tropical seaweeds for in vitro anti-trichomonal activity. J Ethnopharmacol. 2008;120(1):92–7.PubMed Moo-Puc R, Robledo D, Freile-Pelegrin Y. Evaluation of selected tropical seaweeds for in vitro anti-trichomonal activity. J Ethnopharmacol. 2008;120(1):92–7.PubMed
86.
go back to reference Cantillo-Ciau Z, Moo-Puc R, Quijano L, Freile-Pelegrín Y. The tropical brown alga Lobophora variegata: a source of antiprotozoal compounds. Marine Drugs. 2010;8(4):1292–304.PubMedPubMedCentral Cantillo-Ciau Z, Moo-Puc R, Quijano L, Freile-Pelegrín Y. The tropical brown alga Lobophora variegata: a source of antiprotozoal compounds. Marine Drugs. 2010;8(4):1292–304.PubMedPubMedCentral
87.
go back to reference Scopel M, dos Santos O, Frasson AP, Abraham W-R, Tasca T, Henriques AT, et al. Anti-Trichomonas vaginalis activity of marine-associated fungi from the south Brazilian coast. Exp Parasitol. 2013;133(2):211–6.PubMed Scopel M, dos Santos O, Frasson AP, Abraham W-R, Tasca T, Henriques AT, et al. Anti-Trichomonas vaginalis activity of marine-associated fungi from the south Brazilian coast. Exp Parasitol. 2013;133(2):211–6.PubMed
88.
go back to reference Muelas-Serrano S, Nogal JJ, Martıinez-Dıiaz RA, Escario JA, Martinez-Fernandez AR, Gómez-Barrio A. In vitro screening of American plant extracts on Trypanosoma cruzi and Trichomonas vaginalis. J Ethnopharmacol. 2000;71(1):101–7.PubMed Muelas-Serrano S, Nogal JJ, Martıinez-Dıiaz RA, Escario JA, Martinez-Fernandez AR, Gómez-Barrio A. In vitro screening of American plant extracts on Trypanosoma cruzi and Trichomonas vaginalis. J Ethnopharmacol. 2000;71(1):101–7.PubMed
89.
go back to reference Calzada F, Yépez-Mulia L, Tapia-Contreras A. Effect of Mexican medicinal plant used to treat trichomoniasis on Trichomonas vaginalis trophozoites. J Ethnopharmacol. 2007;113(2):248–51.PubMed Calzada F, Yépez-Mulia L, Tapia-Contreras A. Effect of Mexican medicinal plant used to treat trichomoniasis on Trichomonas vaginalis trophozoites. J Ethnopharmacol. 2007;113(2):248–51.PubMed
90.
go back to reference Soh PN, Benoit-Vical F. Are west African plants a source of future antimalarial drugs? J Ethnopharmacol. 2007;114(2):130–40.PubMed Soh PN, Benoit-Vical F. Are west African plants a source of future antimalarial drugs? J Ethnopharmacol. 2007;114(2):130–40.PubMed
91.
go back to reference Ziaei Hezarjaribi H, Nadeali N, Fakhar M, Soosaraei M. Medicinal plants with anti-Trichomonas vaginalis activity in Iran: a systematic review. Iran J Parasitol. 2019;14(1):1–9.PubMedPubMedCentral Ziaei Hezarjaribi H, Nadeali N, Fakhar M, Soosaraei M. Medicinal plants with anti-Trichomonas vaginalis activity in Iran: a systematic review. Iran J Parasitol. 2019;14(1):1–9.PubMedPubMedCentral
92.
go back to reference Moraes MEA, Cunha GH, Bezerra MM, Fechine FV, Pontes AV, Andrade WS, et al. Efficacy of the Mentha crispa in the treatment of women with Trichomonas vaginalis infection. Arch Gynecol Obstet. 2012;286(1):125–30.PubMed Moraes MEA, Cunha GH, Bezerra MM, Fechine FV, Pontes AV, Andrade WS, et al. Efficacy of the Mentha crispa in the treatment of women with Trichomonas vaginalis infection. Arch Gynecol Obstet. 2012;286(1):125–30.PubMed
93.
go back to reference Teles NSB, Fechine FV, Viana FAC, Viana IOL, Nascimento DF, Leite ALAS, et al. Evaluation of the therapeutic efficacy of Mentha crispa in the treatment of giardiasis. Contemp Clin Trials. 2011;32(6):809–13.PubMed Teles NSB, Fechine FV, Viana FAC, Viana IOL, Nascimento DF, Leite ALAS, et al. Evaluation of the therapeutic efficacy of Mentha crispa in the treatment of giardiasis. Contemp Clin Trials. 2011;32(6):809–13.PubMed
94.
go back to reference Abdali K, Jahed L, Amooee S, Zarshenas M, Tabatabaee H, Bekhradi R. Comparison of the effect of vaginal Zataria multiflora cream and oral metronidazole pill on results of treatments for vaginal infections including trichomoniasis and bacterial vaginosis in women of reproductive age. BioMed Res Int. 2015;2015:683640.PubMedPubMedCentral Abdali K, Jahed L, Amooee S, Zarshenas M, Tabatabaee H, Bekhradi R. Comparison of the effect of vaginal Zataria multiflora cream and oral metronidazole pill on results of treatments for vaginal infections including trichomoniasis and bacterial vaginosis in women of reproductive age. BioMed Res Int. 2015;2015:683640.PubMedPubMedCentral
95.
go back to reference Sgibnev A, Kremleva E. Probiotics in addition to metronidazole for treatment Trichomonas vaginalis in the presence of BV: a randomized, placebo-controlled, double-blind study. Eur J Clin Microbiol Infect Dis. 2020;39(2):345–51.PubMed Sgibnev A, Kremleva E. Probiotics in addition to metronidazole for treatment Trichomonas vaginalis in the presence of BV: a randomized, placebo-controlled, double-blind study. Eur J Clin Microbiol Infect Dis. 2020;39(2):345–51.PubMed
96.
go back to reference Aslani A, Asghari G, Darani HY, Ghanadian M, Hosseini F. Design, formulation, and physicochemical evaluation of vaginal cream containing Eucalyptus camaldulensis, Viola odorata, and Mentha piperita extracts for prevention and treatment of Trichomoniasis. Int J Prev Med. 2019;10:179.PubMedPubMedCentral Aslani A, Asghari G, Darani HY, Ghanadian M, Hosseini F. Design, formulation, and physicochemical evaluation of vaginal cream containing Eucalyptus camaldulensis, Viola odorata, and Mentha piperita extracts for prevention and treatment of Trichomoniasis. Int J Prev Med. 2019;10:179.PubMedPubMedCentral
97.
go back to reference Iwanowycz S, Wang J, Hodge J, Wang Y, Yu F, Fan D. Emodin inhibits breast cancer growth by blocking the tumor-promoting feedforward loop between cancer cells and macrophages. Mol Cancer Ther. 2016;15(8):1931–42.PubMedPubMedCentral Iwanowycz S, Wang J, Hodge J, Wang Y, Yu F, Fan D. Emodin inhibits breast cancer growth by blocking the tumor-promoting feedforward loop between cancer cells and macrophages. Mol Cancer Ther. 2016;15(8):1931–42.PubMedPubMedCentral
98.
go back to reference Alves DS, Pérez-Fons L, Estepa A, Micol V. Membrane-related effects underlying the biological activity of the anthraquinones emodin and barbaloin. Biochem Pharmacol. 2004;68(3):549–61.PubMed Alves DS, Pérez-Fons L, Estepa A, Micol V. Membrane-related effects underlying the biological activity of the anthraquinones emodin and barbaloin. Biochem Pharmacol. 2004;68(3):549–61.PubMed
99.
go back to reference Ji X, Liu X, Peng Y, Zhan R, Xu H, Ge X. Comparative analysis of methicillin-sensitive and resistant Staphylococcus aureus exposed to emodin based on proteomic profiling. Biochem Biophys Res Commun. 2017;494(1):318–24.PubMed Ji X, Liu X, Peng Y, Zhan R, Xu H, Ge X. Comparative analysis of methicillin-sensitive and resistant Staphylococcus aureus exposed to emodin based on proteomic profiling. Biochem Biophys Res Commun. 2017;494(1):318–24.PubMed
100.
go back to reference Song C, Liu B, Xu P, Ge X, Zhang H. Emodin ameliorates metabolic and antioxidant capacity inhibited by dietary oxidized fish oil through PPARs and Nrf2-Keap1 signaling in Wuchang bream (Megalobrama amblycephala). Fish Shellfish Immunol. 2019;94:842–51.PubMed Song C, Liu B, Xu P, Ge X, Zhang H. Emodin ameliorates metabolic and antioxidant capacity inhibited by dietary oxidized fish oil through PPARs and Nrf2-Keap1 signaling in Wuchang bream (Megalobrama amblycephala). Fish Shellfish Immunol. 2019;94:842–51.PubMed
101.
go back to reference Cobo ER, Eckmann L, Corbeil LB. Murine models of vaginal trichomonad infections. The American Journal of Tropical Medicine and Hygiene. 2011;85(4):667–73.PubMedPubMedCentral Cobo ER, Eckmann L, Corbeil LB. Murine models of vaginal trichomonad infections. The American Journal of Tropical Medicine and Hygiene. 2011;85(4):667–73.PubMedPubMedCentral
102.
go back to reference Hopper M, Yun J-f, Zhou B, Le C, Kehoe K, Le R, et al. Auranofin inactivates Trichomonas vaginalis thioredoxin reductase and is effective against trichomonads in vitro and in vivo. Int J Antimicrob Agents. 2016;48(6):690–4.PubMedPubMedCentral Hopper M, Yun J-f, Zhou B, Le C, Kehoe K, Le R, et al. Auranofin inactivates Trichomonas vaginalis thioredoxin reductase and is effective against trichomonads in vitro and in vivo. Int J Antimicrob Agents. 2016;48(6):690–4.PubMedPubMedCentral
104.
go back to reference Nam W, Kim SP, Nam S-H, Friedman M. Structure-antioxidative and anti-inflammatory activity relationships of purpurin and related anthraquinones in chemical and cell assays. Molecules. 2017;22(2):265.PubMedCentral Nam W, Kim SP, Nam S-H, Friedman M. Structure-antioxidative and anti-inflammatory activity relationships of purpurin and related anthraquinones in chemical and cell assays. Molecules. 2017;22(2):265.PubMedCentral
105.
go back to reference Nam W, Nam SH, Kim SP, Levin C, Friedman M. Anti-adipogenic and anti-obesity activities of purpurin in 3T3-L1 preadipocyte cells and in mice on a high-fat diet. BMC Complement Altern Med. 2019;19(1):364.PubMedPubMedCentral Nam W, Nam SH, Kim SP, Levin C, Friedman M. Anti-adipogenic and anti-obesity activities of purpurin in 3T3-L1 preadipocyte cells and in mice on a high-fat diet. BMC Complement Altern Med. 2019;19(1):364.PubMedPubMedCentral
106.
go back to reference Giordani RB, PdB V, Weizenmann M, Rosemberg DB, Souza AP, Bonorino C, et al. Lycorine induces cell death in the amitochondriate parasite, Trichomonas vaginalis, via an alternative non-apoptotic death pathway. Phytochemistry. 2011;72(7):645–50.PubMed Giordani RB, PdB V, Weizenmann M, Rosemberg DB, Souza AP, Bonorino C, et al. Lycorine induces cell death in the amitochondriate parasite, Trichomonas vaginalis, via an alternative non-apoptotic death pathway. Phytochemistry. 2011;72(7):645–50.PubMed
107.
go back to reference Giordani RB, Junior COR, de Andrade JP, Bastida J, Zuanazzi JAS, Tasca T, et al. Lycorine derivatives against Trichomonas vaginalis. Chem Biol Drug Des. 2012;80(1):129–33.PubMed Giordani RB, Junior COR, de Andrade JP, Bastida J, Zuanazzi JAS, Tasca T, et al. Lycorine derivatives against Trichomonas vaginalis. Chem Biol Drug Des. 2012;80(1):129–33.PubMed
108.
go back to reference Petro-Silveira B, Rigo GV, da Silva TD, Macedo AJ, Sauer E, de Oliveira AE, et al. Trichomonas vaginalis NTPDase inhibited by lycorine modulates the parasite-neutrophil interaction. Parasitol Res. 2020;119(8):2587–95.PubMed Petro-Silveira B, Rigo GV, da Silva TD, Macedo AJ, Sauer E, de Oliveira AE, et al. Trichomonas vaginalis NTPDase inhibited by lycorine modulates the parasite-neutrophil interaction. Parasitol Res. 2020;119(8):2587–95.PubMed
109.
go back to reference Vilela R, Menna-Barreto RFS, Benchimol M. Methyl jasmonate induces cell death and loss of hydrogenosomal membrane potential in Trichomonas vaginalis. Parasitol Int. 2010;59(3):387–93.PubMed Vilela R, Menna-Barreto RFS, Benchimol M. Methyl jasmonate induces cell death and loss of hydrogenosomal membrane potential in Trichomonas vaginalis. Parasitol Int. 2010;59(3):387–93.PubMed
110.
go back to reference Gunjegaonkar SM, Shanmugarajan TS. Molecular mechanism of plant stress hormone methyl jasmonate for its anti-inflammatory activity. Plant Signal Behav. 2019;14(10):e1642038.PubMedPubMedCentral Gunjegaonkar SM, Shanmugarajan TS. Molecular mechanism of plant stress hormone methyl jasmonate for its anti-inflammatory activity. Plant Signal Behav. 2019;14(10):e1642038.PubMedPubMedCentral
111.
go back to reference Vieira PB, Silva NLF, da Silva GNS, Silva DB, Lopes NP, Gnoatto SCB, et al. Caatinga plants: natural and semi-synthetic compounds potentially active against Trichomonas vaginalis. Bioorg Med Chem Lett. 2016;26(9):2229–36. Vieira PB, Silva NLF, da Silva GNS, Silva DB, Lopes NP, Gnoatto SCB, et al. Caatinga plants: natural and semi-synthetic compounds potentially active against Trichomonas vaginalis. Bioorg Med Chem Lett. 2016;26(9):2229–36.
112.
go back to reference Hübner DPG, de Brum Vieira P, Frasson AP, Menezes CB, Senger FR, Santos da Silva GN, et al. anti-Trichomonas vaginalis activity of betulinic acid derivatives. Biomed Pharmacother. 2016;84:476–84.PubMed Hübner DPG, de Brum Vieira P, Frasson AP, Menezes CB, Senger FR, Santos da Silva GN, et al. anti-Trichomonas vaginalis activity of betulinic acid derivatives. Biomed Pharmacother. 2016;84:476–84.PubMed
113.
go back to reference Jain A, Kumar L, Kushwaha B, Sharma M, Pandey A, Verma V, et al. Combining a synthetic spermicide with a natural trichomonacide for safe, prophylactic contraception. Hum Reprod. 2013;29(2):242–52.PubMed Jain A, Kumar L, Kushwaha B, Sharma M, Pandey A, Verma V, et al. Combining a synthetic spermicide with a natural trichomonacide for safe, prophylactic contraception. Hum Reprod. 2013;29(2):242–52.PubMed
114.
go back to reference de Brum VP, Silva NLF, Menezes CB, da Silva MV, Silva DB, Lopes NP, et al. Trichomonicidal and parasite membrane damaging activity of bidesmosic saponins from Manilkara rufula. Plos One. 2017;12(11):e0188531. de Brum VP, Silva NLF, Menezes CB, da Silva MV, Silva DB, Lopes NP, et al. Trichomonicidal and parasite membrane damaging activity of bidesmosic saponins from Manilkara rufula. Plos One. 2017;12(11):e0188531.
115.
go back to reference Patridge EV, Darnell A, Kucera K, Phillips GM, Bokesch HR, Gustafson KR, et al. Pyrrolocin a, a 3-decalinoyltetramic acid with selective biological activity, isolated from Amazonian cultures of the novel endophyte Diaporthales sp. E6927E. Nat Prod Commun. 2015;10(10):1649–54.PubMed Patridge EV, Darnell A, Kucera K, Phillips GM, Bokesch HR, Gustafson KR, et al. Pyrrolocin a, a 3-decalinoyltetramic acid with selective biological activity, isolated from Amazonian cultures of the novel endophyte Diaporthales sp. E6927E. Nat Prod Commun. 2015;10(10):1649–54.PubMed
116.
go back to reference Friedman M. Antibiotic-resistant bacteria: prevalence in food and inactivation by food-compatible compounds and plant extracts. J Agric Food Chem. 2015;63(15):3805–22.PubMed Friedman M. Antibiotic-resistant bacteria: prevalence in food and inactivation by food-compatible compounds and plant extracts. J Agric Food Chem. 2015;63(15):3805–22.PubMed
117.
go back to reference Kim SP, Lee SJ, Nam SH, Friedman M. Mechanism of antibacterial activities of a rice hull smoke extract (RHSE) against multidrug-resistant Salmonella Typhimurium in vitro and in mice. J Food Sci. 2018;83(2):440–5.PubMed Kim SP, Lee SJ, Nam SH, Friedman M. Mechanism of antibacterial activities of a rice hull smoke extract (RHSE) against multidrug-resistant Salmonella Typhimurium in vitro and in mice. J Food Sci. 2018;83(2):440–5.PubMed
118.
go back to reference da Silva NS, Ribeiro Cde M, Machado AH, Pacheco-Soares C. Ultrastructural changes in Tritrichomonas foetus after treatments with AlPcS4 and photodynamic therapy. Vet Parasitol. 2007;146(1–2):175–81.PubMed da Silva NS, Ribeiro Cde M, Machado AH, Pacheco-Soares C. Ultrastructural changes in Tritrichomonas foetus after treatments with AlPcS4 and photodynamic therapy. Vet Parasitol. 2007;146(1–2):175–81.PubMed
119.
go back to reference Silva Fonseca TH, Alacoque M, Silva Oliveira FM, Soares BM, Leite HV, Caliari MV, et al. Photodynamic therapy as a new approach to Trichomonas vaginalis inactivation. Photodiagn Photodyn Ther. 2018;22:91–5. Silva Fonseca TH, Alacoque M, Silva Oliveira FM, Soares BM, Leite HV, Caliari MV, et al. Photodynamic therapy as a new approach to Trichomonas vaginalis inactivation. Photodiagn Photodyn Ther. 2018;22:91–5.
120.
go back to reference Dirkx M, Boyer MP, Pradhan P, Brittingham A, Wilson WA. Expression and characterization of a β-fructofuranosidase from the parasitic protist Trichomonas vaginalis. BMC Biochem. 2014;15(1):12.PubMedPubMedCentral Dirkx M, Boyer MP, Pradhan P, Brittingham A, Wilson WA. Expression and characterization of a β-fructofuranosidase from the parasitic protist Trichomonas vaginalis. BMC Biochem. 2014;15(1):12.PubMedPubMedCentral
121.
go back to reference Puente-Rivera J, Villalpando JL, Villalobos-Osnaya A, Vázquez-Carrillo LI, León-Ávila G, Ponce-Regalado MD, et al. The 50kDa metalloproteinase TvMP50 is a zinc-mediated Trichomonas vaginalis virulence factor. Mol Biochem Parasitol. 2017;217:32–41.PubMed Puente-Rivera J, Villalpando JL, Villalobos-Osnaya A, Vázquez-Carrillo LI, León-Ávila G, Ponce-Regalado MD, et al. The 50kDa metalloproteinase TvMP50 is a zinc-mediated Trichomonas vaginalis virulence factor. Mol Biochem Parasitol. 2017;217:32–41.PubMed
122.
go back to reference Arreola R, Villalpando JL, Puente-Rivera J, Morales-Montor J, Rudiño-Piñera E, Alvarez-Sánchez ME. Trichomonas vaginalis metalloproteinase TvMP50 is a monomeric Aminopeptidase P-like enzyme. Mol Biotechnol. 2018;60(8):563–75.PubMed Arreola R, Villalpando JL, Puente-Rivera J, Morales-Montor J, Rudiño-Piñera E, Alvarez-Sánchez ME. Trichomonas vaginalis metalloproteinase TvMP50 is a monomeric Aminopeptidase P-like enzyme. Mol Biotechnol. 2018;60(8):563–75.PubMed
123.
go back to reference Quan J-H, Kang B-H, Yang J-B, Rhee Y-E, Noh H-T, Choi I-W, et al. Trichomonas vaginalis induces SiHa cell apoptosis by NF-κB inactivation via reactive oxygen species. BioMed Res Int. 2017;2017:3904870.PubMedPubMedCentral Quan J-H, Kang B-H, Yang J-B, Rhee Y-E, Noh H-T, Choi I-W, et al. Trichomonas vaginalis induces SiHa cell apoptosis by NF-κB inactivation via reactive oxygen species. BioMed Res Int. 2017;2017:3904870.PubMedPubMedCentral
124.
go back to reference Sharma M, Kumar L, Jain A, Verma V, Sharma V, Kushwaha B, et al. Designed chemical intervention with thiols for prophylactic contraception. Plos One. 2013;8(6):e67365.PubMedPubMedCentral Sharma M, Kumar L, Jain A, Verma V, Sharma V, Kushwaha B, et al. Designed chemical intervention with thiols for prophylactic contraception. Plos One. 2013;8(6):e67365.PubMedPubMedCentral
125.
go back to reference Friedman M, Gumbmann MR, Grosjean OK. Nutritional improvement of soy flour. J Nutr. 1984;114(12):2241–6.PubMed Friedman M, Gumbmann MR, Grosjean OK. Nutritional improvement of soy flour. J Nutr. 1984;114(12):2241–6.PubMed
126.
go back to reference Friedman M. The chemistry and biochemistry of the sulfhydryl Group in Amino Acids, peptides, and proteins. Oxford, England: Pergamon Press; 1973. 499 p. Friedman M. The chemistry and biochemistry of the sulfhydryl Group in Amino Acids, peptides, and proteins. Oxford, England: Pergamon Press; 1973. 499 p.
127.
go back to reference Rayburn JR, Friedman M. L-cysteine, N-acetyl-L-cysteine, and glutathione protect Xenopus laevis embryos against acrylamide-induced malformations and mortality in the frog embryo Teratogenesis assay. J Agric Food Chem. 2010;58(20):11172–8.PubMed Rayburn JR, Friedman M. L-cysteine, N-acetyl-L-cysteine, and glutathione protect Xenopus laevis embryos against acrylamide-induced malformations and mortality in the frog embryo Teratogenesis assay. J Agric Food Chem. 2010;58(20):11172–8.PubMed
128.
go back to reference Williams JR, Rayburn JR, Cline GR, Sauterer R, Friedman M. The potential protective effect of L-cysteine against the toxicity of acrylamide and furan in exposed Xenopus laevis embryos: an interaction study. J Agric Food Chem. 2014;62(31):7927–38.PubMed Williams JR, Rayburn JR, Cline GR, Sauterer R, Friedman M. The potential protective effect of L-cysteine against the toxicity of acrylamide and furan in exposed Xenopus laevis embryos: an interaction study. J Agric Food Chem. 2014;62(31):7927–38.PubMed
129.
go back to reference Trein MR, Rodrigues e Oliveira L, Rigo GV, Garcia MAR, Petro-Silveira B, da Silva Trentin D, et al. anti-Trichomonas vaginalis activity of chalcone and amino-analogues. Parasitol Res 2019;118(2):607–615. Trein MR, Rodrigues e Oliveira L, Rigo GV, Garcia MAR, Petro-Silveira B, da Silva Trentin D, et al. anti-Trichomonas vaginalis activity of chalcone and amino-analogues. Parasitol Res 2019;118(2):607–615.
131.
go back to reference Westrop GD, Wang L, Blackburn GJ, Zhang T, Zheng L, Watson DG, et al. Metabolomic profiling and stable isotope labelling of Trichomonas vaginalis and Tritrichomonas foetus reveal major differences in amino acid metabolism including the production of 2-hydroxyisocaproic acid, cystathionine and S-methylcysteine. Plos One. 2017;12(12):e0189072.PubMed Westrop GD, Wang L, Blackburn GJ, Zhang T, Zheng L, Watson DG, et al. Metabolomic profiling and stable isotope labelling of Trichomonas vaginalis and Tritrichomonas foetus reveal major differences in amino acid metabolism including the production of 2-hydroxyisocaproic acid, cystathionine and S-methylcysteine. Plos One. 2017;12(12):e0189072.PubMed
132.
go back to reference Rigo GV, Trein MR, da Silva TD, Macedo AJ, de Oliveira BA, de Almeida AM, et al. Diamine derivative anti-Trichomonas vaginalis and anti-Tritrichomonas foetus activities by effect on polyamine metabolism. Biomed Pharmacother. 2017;95:847–55.PubMed Rigo GV, Trein MR, da Silva TD, Macedo AJ, de Oliveira BA, de Almeida AM, et al. Diamine derivative anti-Trichomonas vaginalis and anti-Tritrichomonas foetus activities by effect on polyamine metabolism. Biomed Pharmacother. 2017;95:847–55.PubMed
133.
go back to reference Bradic M, Warring SD, Tooley GE, Scheid P, Secor WE, Land KM, et al. Genetic indicators of drug resistance in the highly repetitive genome of Trichomonas vaginalis. Genome Biol Evol. 2017;9(6):1658–72.PubMedPubMedCentral Bradic M, Warring SD, Tooley GE, Scheid P, Secor WE, Land KM, et al. Genetic indicators of drug resistance in the highly repetitive genome of Trichomonas vaginalis. Genome Biol Evol. 2017;9(6):1658–72.PubMedPubMedCentral
134.
go back to reference Friedman M. Tomato glycoalkaloids: role in the plant and in the diet. J Agric Food Chem. 2002;50(21):5751–80.PubMed Friedman M. Tomato glycoalkaloids: role in the plant and in the diet. J Agric Food Chem. 2002;50(21):5751–80.PubMed
135.
go back to reference Zhao X, Lu L, Qi Y, Li M, Zhou L. Emodin extends lifespan of Caenorhabditis elegans through insulin/IGF-1 signaling pathway depending on DAF-16 and SIR-2.1. Biosci Biotechnol Biochem. 2017;81(10):1908–16.PubMed Zhao X, Lu L, Qi Y, Li M, Zhou L. Emodin extends lifespan of Caenorhabditis elegans through insulin/IGF-1 signaling pathway depending on DAF-16 and SIR-2.1. Biosci Biotechnol Biochem. 2017;81(10):1908–16.PubMed
136.
go back to reference Enioutina EY, Salis ER, Job KM, Gubarev MI, Krepkova LV, Sherwin CM. Herbal medicines: challenges in the modern world. Part 5. Status and current directions of complementary and alternative herbal medicine worldwide. Expert Rev Clin Pharmacol. 2017;10(3):327–38.PubMed Enioutina EY, Salis ER, Job KM, Gubarev MI, Krepkova LV, Sherwin CM. Herbal medicines: challenges in the modern world. Part 5. Status and current directions of complementary and alternative herbal medicine worldwide. Expert Rev Clin Pharmacol. 2017;10(3):327–38.PubMed
Metadata
Title
Anti-trichomonad activities of different compounds from foods, marine products, and medicinal plants: a review
Authors
Mendel Friedman
Christina C. Tam
Luisa W. Cheng
Kirkwood M. Land
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2020
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-020-03061-9

Other articles of this Issue 1/2020

BMC Complementary Medicine and Therapies 1/2020 Go to the issue