Skip to main content
Top
Published in: BMC Nutrition 1/2015

Open Access 01-12-2015 | Research article

Increased body mass index may be associated with greater risk of end-stage renal disease in whites compared to blacks: a nested case–control study

Authors: Elvis A. Akwo, Kerri L. Cavanaugh, Talat Alp Ikizler, William J. Blot, Loren Lipworth

Published in: BMC Nutrition | Issue 1/2015

Login to get access

Abstract

Background

The relationship between body mass index (BMI) and end-stage renal disease (ESRD) may differ between blacks and whites due to underlying metabolic differences.

Methods

We conducted a nested case–control study of 631 incident ESRD cases and 1,897 matched controls within the Southern Community Cohort Study. Current weight, height, and weight at age 21 were reported at enrollment. Occurrence of ESRD was ascertained by linkage with the United States Renal Data System. With normal BMI (18.5–24.9 kg/m2) as reference, conditional logistic regression was used to calculate adjusted odds ratios (OR) and corresponding 95 % confidence intervals (CI) for ESRD across other BMI categories by race. In subsequent analysis, BMI at age 21 was modeled using restricted cubic splines with 5 knots. Predicted probabilities of incident ESRD were computed from the multivariable logistic models and plotted against BMI at age 21.

Results

Among blacks, odds of ESRD were significantly increased among those who were overweight (OR: 1.41; 95 % CI: 1.09, 1.83) or obese (OR: 2.56; 95 % CI: 1.88, 3.47) at age 21. Among whites, the association between ESRD and BMI at age 21 was more pronounced, with corresponding ORs of 2.13 (95 % CI: 0.92, 4.93) and 7.46 (95 % CI: 2.90, 19.21; p-interaction 0.05). Only among whites was high BMI at enrollment associated with ESRD risk; OR for BMI ≥ 40 kg/m2, was 3.31 (95 % CI: 1.08, 10.12). The plot of the predicted probabilities of incident ESRD vs BMI at age 21 showed a monotonic increase in the probability of ESRD after a BMI cutoff ≈ 25Kg/m2 in both whites and blacks but the slope of the curve for whites appeared greater.

Conclusions

Our results suggest racial differences in the relationship between BMI, both in early adulthood and middle age, and ESRD. These findings warrant further research into understanding the underlying metabolic differences that may explain these differences.
Appendix
Available only for authorised users
Literature
1.
go back to reference U S Renal Data System, USRDS 2012 Annual Data Report. Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. Bethesda: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2012. Available online at http://www.usrds.org/atlas12.aspx. Accessed March 22, 2013. U S Renal Data System, USRDS 2012 Annual Data Report. Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. Bethesda: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2012. Available online at http://​www.​usrds.​org/​atlas12.​aspx. Accessed March 22, 2013.
2.
go back to reference Spangler JG, Konen JC. Hypertension, hyperlipidemia, and abdominal obesity and the development of microalbuminuria in patients with non-insulin-dependent diabetes mellitus. J Am Board Fam Pract. 1996;9:1–6.PubMed Spangler JG, Konen JC. Hypertension, hyperlipidemia, and abdominal obesity and the development of microalbuminuria in patients with non-insulin-dependent diabetes mellitus. J Am Board Fam Pract. 1996;9:1–6.PubMed
3.
go back to reference Reid M, Bennett F, Wilks R, Forrester T. Microalbuminuria, renal function and waist:hip ratio in black hypertensive Jamaicans. J Hum Hypertens. 1998;12:221–7.CrossRefPubMed Reid M, Bennett F, Wilks R, Forrester T. Microalbuminuria, renal function and waist:hip ratio in black hypertensive Jamaicans. J Hum Hypertens. 1998;12:221–7.CrossRefPubMed
4.
go back to reference Fox CS, Larson MG, Leip EP, Culleton B, Wilson PW, Levy D. Predictors of new-onset kidney disease in a community-based population. JAMA. 2004;291:844–50.CrossRefPubMed Fox CS, Larson MG, Leip EP, Culleton B, Wilson PW, Levy D. Predictors of new-onset kidney disease in a community-based population. JAMA. 2004;291:844–50.CrossRefPubMed
5.
go back to reference Ejerblad E, Fored CM, Lindblad P, Fryzek J, McLaughlin JK, Nyren O. Obesity and risk for chronic renal failure. J Am Soc Nephrol. 2006;17:1695–702.CrossRefPubMed Ejerblad E, Fored CM, Lindblad P, Fryzek J, McLaughlin JK, Nyren O. Obesity and risk for chronic renal failure. J Am Soc Nephrol. 2006;17:1695–702.CrossRefPubMed
6.
go back to reference Iseki K, Ikemiya Y, Kinjo K, Inoue T, Iseki C, Takishita S. Body mass index and the risk of development of end-stage renal disease in a screened cohort. Kidney Int. 2004;65:1870–6.CrossRefPubMed Iseki K, Ikemiya Y, Kinjo K, Inoue T, Iseki C, Takishita S. Body mass index and the risk of development of end-stage renal disease in a screened cohort. Kidney Int. 2004;65:1870–6.CrossRefPubMed
7.
go back to reference Reynolds K, Gu D, Muntner P, Chen J, Chen J, Wu X, et al. Body mass index and risk of ESRD in China. Am J Kidney Dis. 2007;50:754–64.CrossRefPubMed Reynolds K, Gu D, Muntner P, Chen J, Chen J, Wu X, et al. Body mass index and risk of ESRD in China. Am J Kidney Dis. 2007;50:754–64.CrossRefPubMed
8.
go back to reference Hsu CY, McCulloch CE, Iribarren C, Darbinian J, Go AS. Body mass index and risk for end-stage renal disease. Ann Intern Med. 2006;144:21–8.CrossRefPubMed Hsu CY, McCulloch CE, Iribarren C, Darbinian J, Go AS. Body mass index and risk for end-stage renal disease. Ann Intern Med. 2006;144:21–8.CrossRefPubMed
9.
go back to reference Vivante A, Golan E, Tzur D, Leiba A, Tirosh A, Skorecki K, et al. Body mass index in 1.2 million adolescents and risk for end-stage renal disease. Arch Intern Med. 2012;172:1644–50.CrossRefPubMedPubMedCentral Vivante A, Golan E, Tzur D, Leiba A, Tirosh A, Skorecki K, et al. Body mass index in 1.2 million adolescents and risk for end-stage renal disease. Arch Intern Med. 2012;172:1644–50.CrossRefPubMedPubMedCentral
10.
go back to reference Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9:88.CrossRefPubMedPubMedCentral Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9:88.CrossRefPubMedPubMedCentral
11.
go back to reference Lipworth L, Mumma MT, Cavanaugh KL, Edwards TL, Ikizler TA, Tarone RE et al. Incidence and predictors of end stage renal disease among low-income blacks and whites. PLoS One. 2012;7:e48407.CrossRefPubMedPubMedCentral Lipworth L, Mumma MT, Cavanaugh KL, Edwards TL, Ikizler TA, Tarone RE et al. Incidence and predictors of end stage renal disease among low-income blacks and whites. PLoS One. 2012;7:e48407.CrossRefPubMedPubMedCentral
12.
go back to reference McClellan W, Speckman R, McClure L, Howard V, Cushman M, Audhya P, et al. Prevalence and characteristics of a family history of end-stage renal disease among adults in the United States population: Reasons for Geographic and Racial Differences in Stroke (REGARDS) renal cohort study. J Am Soc Nephrol. 2007;18:1344–52.CrossRefPubMed McClellan W, Speckman R, McClure L, Howard V, Cushman M, Audhya P, et al. Prevalence and characteristics of a family history of end-stage renal disease among adults in the United States population: Reasons for Geographic and Racial Differences in Stroke (REGARDS) renal cohort study. J Am Soc Nephrol. 2007;18:1344–52.CrossRefPubMed
13.
go back to reference Tarver-Carr ME, Powe NR, Eberhardt MS, LaVeist TA, Kington RS, Coresh J, et al. Excess risk of chronic kidney disease among African-American versus white subjects in the United States: a population-based study of potential explanatory factors. J Am Soc Nephrol. 2002;13:2363–70.CrossRefPubMed Tarver-Carr ME, Powe NR, Eberhardt MS, LaVeist TA, Kington RS, Coresh J, et al. Excess risk of chronic kidney disease among African-American versus white subjects in the United States: a population-based study of potential explanatory factors. J Am Soc Nephrol. 2002;13:2363–70.CrossRefPubMed
14.
go back to reference Xue JL, Eggers PW, Agodoa LY, Foley RN, Collins AJ. Longitudinal study of racial and ethnic differences in developing end-stage renal disease among aged medicare beneficiaries. J Am Soc Nephrol. 2007;18:1299–306.CrossRefPubMed Xue JL, Eggers PW, Agodoa LY, Foley RN, Collins AJ. Longitudinal study of racial and ethnic differences in developing end-stage renal disease among aged medicare beneficiaries. J Am Soc Nephrol. 2007;18:1299–306.CrossRefPubMed
15.
go back to reference US Renal Data System: USRDS 2011 Annual Data Report. Atlas of Chronic Kidney Disease in the United States. Bethesda: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2011. Available online at http://www.usrds.org/atlas11.aspx. Accessed January 10, 2013. US Renal Data System: USRDS 2011 Annual Data Report. Atlas of Chronic Kidney Disease in the United States. Bethesda: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2011. Available online at http://​www.​usrds.​org/​atlas11.​aspx. Accessed January 10, 2013.
16.
go back to reference Klein JB, Nguyen CT, Saffore L, Modlin 3rd C, Modlin Jr CS. Racial disparities in urologic health care. J Natl Med Assoc. 2010;102:108–17.CrossRefPubMed Klein JB, Nguyen CT, Saffore L, Modlin 3rd C, Modlin Jr CS. Racial disparities in urologic health care. J Natl Med Assoc. 2010;102:108–17.CrossRefPubMed
17.
go back to reference Martins D, Tareen N, Norris KC. The epidemiology of end-stage renal disease among African Americans. Am J Med Sci. 2002;323:65–71.CrossRefPubMed Martins D, Tareen N, Norris KC. The epidemiology of end-stage renal disease among African Americans. Am J Med Sci. 2002;323:65–71.CrossRefPubMed
18.
go back to reference Deurenberg P, Yap M, van Staveren WA. Body mass index and percent body fat: a meta analysis among different ethnic groups. Int J Obes Relat Metab Disord. 1998;22:1164–71.CrossRefPubMed Deurenberg P, Yap M, van Staveren WA. Body mass index and percent body fat: a meta analysis among different ethnic groups. Int J Obes Relat Metab Disord. 1998;22:1164–71.CrossRefPubMed
19.
go back to reference Cohen SS, Fowke JH, Cai Q, Buchowski MS, Signorello LB, Hargreaves MK, et al. Differences in the association between serum leptin levels and body mass index in black and white women: a report from the Southern Community Cohort Study. Ann Nutr Metab. 2012;60:90–7.CrossRefPubMedPubMedCentral Cohen SS, Fowke JH, Cai Q, Buchowski MS, Signorello LB, Hargreaves MK, et al. Differences in the association between serum leptin levels and body mass index in black and white women: a report from the Southern Community Cohort Study. Ann Nutr Metab. 2012;60:90–7.CrossRefPubMedPubMedCentral
20.
go back to reference Cohen SS, Gammon MD, Signorello LB, North KE, Lange EM, Fowke JH, et al. Serum adiponectin in relation to body mass index and other correlates in black and white women. Ann Epidemiol. 2011;21:86–94.CrossRefPubMed Cohen SS, Gammon MD, Signorello LB, North KE, Lange EM, Fowke JH, et al. Serum adiponectin in relation to body mass index and other correlates in black and white women. Ann Epidemiol. 2011;21:86–94.CrossRefPubMed
21.
go back to reference Fowke JH, Matthews CE, Yu H, Cai Q, Cohen S, Buchowski MS, et al. Racial differences in the association between body mass index and serum IGF1, IGF2, and IGFBP3. Endocr Relat Cancer. 2010;17:51–60.CrossRefPubMedPubMedCentral Fowke JH, Matthews CE, Yu H, Cai Q, Cohen S, Buchowski MS, et al. Racial differences in the association between body mass index and serum IGF1, IGF2, and IGFBP3. Endocr Relat Cancer. 2010;17:51–60.CrossRefPubMedPubMedCentral
22.
go back to reference Zhang X, Shu XO, Signorello LB, Hargreaves MK, Cai Q, Linton MF, et al. Correlates of high serum C-reactive protein levels in a socioeconomically disadvantaged population. Dis Markers. 2008;24:351–9.CrossRefPubMedPubMedCentral Zhang X, Shu XO, Signorello LB, Hargreaves MK, Cai Q, Linton MF, et al. Correlates of high serum C-reactive protein levels in a socioeconomically disadvantaged population. Dis Markers. 2008;24:351–9.CrossRefPubMedPubMedCentral
23.
go back to reference Signorello LB, Hargreaves MK, Blot WJ. The Southern Community Cohort Study: investigating health disparities. J Health Care Poor Underserved. 2010;21:26–37.CrossRefPubMedPubMedCentral Signorello LB, Hargreaves MK, Blot WJ. The Southern Community Cohort Study: investigating health disparities. J Health Care Poor Underserved. 2010;21:26–37.CrossRefPubMedPubMedCentral
24.
go back to reference James PT, Leach R, Kalamara E, Shayeghi M. The worldwide obesity epidemic. Obes Res. 2001;9 Suppl 4:228S–33S.CrossRefPubMed James PT, Leach R, Kalamara E, Shayeghi M. The worldwide obesity epidemic. Obes Res. 2001;9 Suppl 4:228S–33S.CrossRefPubMed
25.
go back to reference Harrell Jr FE. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. New York: Springer; 2001.CrossRef Harrell Jr FE. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. New York: Springer; 2001.CrossRef
26.
go back to reference Silverwood RJ, Pierce M, Thomas C, Hardy R, Ferro C, Sattar N, et al. Association between younger age when first overweight and increased risk for CKD. J Am Soc Nephrol. 2013;24:813–21.CrossRefPubMedPubMedCentral Silverwood RJ, Pierce M, Thomas C, Hardy R, Ferro C, Sattar N, et al. Association between younger age when first overweight and increased risk for CKD. J Am Soc Nephrol. 2013;24:813–21.CrossRefPubMedPubMedCentral
27.
go back to reference Silverwood RJ, Pierce M, Hardy R, Thomas C, Ferro C, Savage C, et al. Early-Life Overweight Trajectory and CKD in the 1946 British Birth Cohort Study. Am J Kidney Dis. 2013;62:276–84.CrossRefPubMedPubMedCentral Silverwood RJ, Pierce M, Hardy R, Thomas C, Ferro C, Savage C, et al. Early-Life Overweight Trajectory and CKD in the 1946 British Birth Cohort Study. Am J Kidney Dis. 2013;62:276–84.CrossRefPubMedPubMedCentral
28.
go back to reference Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath Jr CW. Body-mass index and mortality in a prospective cohort of U.S. adults. N Engl J Med. 1999;341:1097–105.CrossRefPubMed Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath Jr CW. Body-mass index and mortality in a prospective cohort of U.S. adults. N Engl J Med. 1999;341:1097–105.CrossRefPubMed
29.
go back to reference Cohen SS, Signorello LB, Cope EL, McLaughlin JK, Hargreaves MK, Zheng W, et al. Obesity and all-cause mortality among black adults and white adults. Am J Epidemiol. 2012;176:431–42.CrossRefPubMedPubMedCentral Cohen SS, Signorello LB, Cope EL, McLaughlin JK, Hargreaves MK, Zheng W, et al. Obesity and all-cause mortality among black adults and white adults. Am J Epidemiol. 2012;176:431–42.CrossRefPubMedPubMedCentral
30.
go back to reference Lipworth L, Okafor H, Mumma MT, Edwards TL, Roden DM, Blot WJ, et al. Race-specific impact of atrial fibrillation risk factors in blacks and whites in the southern community cohort study. Am J Cardiol. 2012;110:1637–42.CrossRefPubMedPubMedCentral Lipworth L, Okafor H, Mumma MT, Edwards TL, Roden DM, Blot WJ, et al. Race-specific impact of atrial fibrillation risk factors in blacks and whites in the southern community cohort study. Am J Cardiol. 2012;110:1637–42.CrossRefPubMedPubMedCentral
31.
go back to reference Lovejoy JC, de la Bretonne JA, Klemperer M, Tulley R. Abdominal fat distribution and metabolic risk factors: effects of race. Metab Clin Exp. 1996;45:1119–24.CrossRefPubMed Lovejoy JC, de la Bretonne JA, Klemperer M, Tulley R. Abdominal fat distribution and metabolic risk factors: effects of race. Metab Clin Exp. 1996;45:1119–24.CrossRefPubMed
32.
go back to reference Snijder MB, van Dam RM, Visser M, Seidell JC. What aspects of body fat are particularly hazardous and how do we measure them? Int J Epidemiol. 2006;35:83–92.CrossRefPubMed Snijder MB, van Dam RM, Visser M, Seidell JC. What aspects of body fat are particularly hazardous and how do we measure them? Int J Epidemiol. 2006;35:83–92.CrossRefPubMed
33.
go back to reference Craig BM, Adams AK. Accuracy of body mass index categories based on self-reported height and weight among women in the United States. Matern Child Health J. 2009;13:489–96.CrossRefPubMed Craig BM, Adams AK. Accuracy of body mass index categories based on self-reported height and weight among women in the United States. Matern Child Health J. 2009;13:489–96.CrossRefPubMed
Metadata
Title
Increased body mass index may be associated with greater risk of end-stage renal disease in whites compared to blacks: a nested case–control study
Authors
Elvis A. Akwo
Kerri L. Cavanaugh
Talat Alp Ikizler
William J. Blot
Loren Lipworth
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Nutrition / Issue 1/2015
Electronic ISSN: 2055-0928
DOI
https://doi.org/10.1186/s40795-015-0022-x

Other articles of this Issue 1/2015

BMC Nutrition 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine