Skip to main content
Top
Published in: Current Osteoporosis Reports 4/2017

01-08-2017 | Osteocytes (T Bellido and J Klein-Nulend, Section Editors)

In vivo Visualisation and Quantification of Bone Resorption and Bone Formation from Time-Lapse Imaging

Authors: Patrik Christen, Ralph Müller

Published in: Current Osteoporosis Reports | Issue 4/2017

Login to get access

Abstract

Purpose of Review

Mechanoregulation of bone cells was proposed over a century ago, but only now can we visualise and quantify bone resorption and bone formation and its mechanoregulation. In this review, we show how the newest advances in imaging and computational methods paved the way for this breakthrough.

Recent Findings

Non-invasive in vivo assessment of bone resorption and bone formation was demonstrated by time-lapse micro-computed tomography in animals, and by high-resolution peripheral quantitative computed tomography in humans. Coupled with micro-finite element analysis, the relationships between sites of bone resorption and bone formation and low and high tissue loading, respectively, were shown.

Summary

Time-lapse in vivo imaging and computational methods enabled visualising and quantifying bone resorption and bone formation as well as its mechanoregulation. Future research includes visualising and quantifying mechanoregulation of bone resorption and bone formation from molecular to organ scales, and translating the findings into medicine using personalised bone health prognosis.
Literature
1.
go back to reference Roux W. Der Kampf der Theile im Organismus: Ein Beitrag zur vervollständigung der mechanischen Zweckmässigkeitslehre. Leipzig: W. Engelmann; 1881. Roux W. Der Kampf der Theile im Organismus: Ein Beitrag zur vervollständigung der mechanischen Zweckmässigkeitslehre. Leipzig: W. Engelmann; 1881.
2.
go back to reference Shen V, Liang XG, Birchman R, Wu DD, Healy D, Lindsay R, et al. Short term immobilization-induced cancellous bone loss is limited to regions undergoing high turnover and/or modeling in mature rats. Bone. 1997;21:71–8.CrossRef Shen V, Liang XG, Birchman R, Wu DD, Healy D, Lindsay R, et al. Short term immobilization-induced cancellous bone loss is limited to regions undergoing high turnover and/or modeling in mature rats. Bone. 1997;21:71–8.CrossRef
3.
go back to reference Jämsä T, Koivukangas A, Ryhänen J, Jalovaara P, Tuukkanen J. Femoral neck is a sensitive indicator of bone loss in immobilized hind limb of mouse. Journal of Bone and Mineral Research. John Wiley and Sons and The American Society for Bone and Mineral Research (ASBMR);. 1999;14:1708–13.CrossRef Jämsä T, Koivukangas A, Ryhänen J, Jalovaara P, Tuukkanen J. Femoral neck is a sensitive indicator of bone loss in immobilized hind limb of mouse. Journal of Bone and Mineral Research. John Wiley and Sons and The American Society for Bone and Mineral Research (ASBMR);. 1999;14:1708–13.CrossRef
4.
go back to reference Armbrecht G, Belavý DL, Backström M, Beller G, Alexandre C, Rizzoli R, et al. Trabecular and cortical bone density and architecture in women after 60 days of bed rest using high-resolution pQCT: WISE 2005. Journal of Bone and Mineral Research. Wiley Subscription Services, Inc., A Wiley Company. 2011;26:2399–410.CrossRef Armbrecht G, Belavý DL, Backström M, Beller G, Alexandre C, Rizzoli R, et al. Trabecular and cortical bone density and architecture in women after 60 days of bed rest using high-resolution pQCT: WISE 2005. Journal of Bone and Mineral Research. Wiley Subscription Services, Inc., A Wiley Company. 2011;26:2399–410.CrossRef
5.
go back to reference Vico L, Collet P, Guignandon A, Lafage-Proust M-H, Thomas T, Rehailia M, et al. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. The Lancet. 2000;355:1607–11.CrossRef Vico L, Collet P, Guignandon A, Lafage-Proust M-H, Thomas T, Rehailia M, et al. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. The Lancet. 2000;355:1607–11.CrossRef
6.
go back to reference Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. Journal of Bone and Mineral Research. John Wiley and Sons and The American Society for Bone and Mineral Research (ASBMR). 2004;19:1006–12.CrossRef Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. Journal of Bone and Mineral Research. John Wiley and Sons and The American Society for Bone and Mineral Research (ASBMR). 2004;19:1006–12.CrossRef
7.
go back to reference Smith SM, Wastney ME, O’Brien KO, Morukov BV, Larina IM, Abrams SA, et al. Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the Mir space station. Journal of Bone and Mineral Research. John Wiley and Sons and The American Society for Bone and Mineral Research (ASBMR). 2004;20:208–18.CrossRef Smith SM, Wastney ME, O’Brien KO, Morukov BV, Larina IM, Abrams SA, et al. Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the Mir space station. Journal of Bone and Mineral Research. John Wiley and Sons and The American Society for Bone and Mineral Research (ASBMR). 2004;20:208–18.CrossRef
8.
go back to reference Rubin CT, Lanyon LE. Osteoregulatory nature of mechanical stimuli: Function as a determinant for adaptive remodeling in bone. Journal of Orthopaedic Research. Wiley Subscription Services, Inc., A Wiley Company. 1987;5:300–10.CrossRef Rubin CT, Lanyon LE. Osteoregulatory nature of mechanical stimuli: Function as a determinant for adaptive remodeling in bone. Journal of Orthopaedic Research. Wiley Subscription Services, Inc., A Wiley Company. 1987;5:300–10.CrossRef
9.
go back to reference Lee K, Maxwell A, Lanyon LE. Validation of a technique for studying functional adaptation of the mouse ulna in response to mechanical loading. Bone. 2002;31:407–12.CrossRef Lee K, Maxwell A, Lanyon LE. Validation of a technique for studying functional adaptation of the mouse ulna in response to mechanical loading. Bone. 2002;31:407–12.CrossRef
10.
go back to reference Sugiyama T, Price JS, Lanyon LE. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones. Bone. 2010;46:314–21.CrossRef Sugiyama T, Price JS, Lanyon LE. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones. Bone. 2010;46:314–21.CrossRef
11.
go back to reference Lambers FM, Schulte FA, Kuhn G, Webster DJ, Müller R. Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry. Bone. 2011;49:1340–50.CrossRef Lambers FM, Schulte FA, Kuhn G, Webster DJ, Müller R. Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry. Bone. 2011;49:1340–50.CrossRef
12.
go back to reference Ducher G, Daly RM, Bass SL. Effects of repetitive loading on bone mass and geometry in young male tennis players: A quantitative study using MRI. Journal of Bone and Mineral Research. John Wiley and Sons and The American Society for Bone and Mineral Research (ASBMR). 2009;24:1686–92.CrossRef Ducher G, Daly RM, Bass SL. Effects of repetitive loading on bone mass and geometry in young male tennis players: A quantitative study using MRI. Journal of Bone and Mineral Research. John Wiley and Sons and The American Society for Bone and Mineral Research (ASBMR). 2009;24:1686–92.CrossRef
13.
go back to reference Ducher G, Tournaire N, Meddahi-Pelle A, Benhamou C-L, Courteix D. Short-term and long-term site-specific effects of tennis playing on trabecular and cortical bone at the distal radius. Journal of Bone and Mineral Metabolism. 2006;24:484–90.CrossRef Ducher G, Tournaire N, Meddahi-Pelle A, Benhamou C-L, Courteix D. Short-term and long-term site-specific effects of tennis playing on trabecular and cortical bone at the distal radius. Journal of Bone and Mineral Metabolism. 2006;24:484–90.CrossRef
14.
go back to reference Warden SJ, Roosa SMM, Kersh ME, Hurd AL, Fleisig GS, Pandy MG, et al. Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proceedings of the National Academy of Sciences of the United States of America. 2014;111:5337–42.CrossRef Warden SJ, Roosa SMM, Kersh ME, Hurd AL, Fleisig GS, Pandy MG, et al. Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proceedings of the National Academy of Sciences of the United States of America. 2014;111:5337–42.CrossRef
15.
go back to reference Pontzer H. Trabecular bone in the bird knee responds with high sensitivity to changes in load orientation. Journal of Experimental Biology. 2006;209:57–65.CrossRef Pontzer H. Trabecular bone in the bird knee responds with high sensitivity to changes in load orientation. Journal of Experimental Biology. 2006;209:57–65.CrossRef
16.
go back to reference Barak MM, Lieberman DE, Hublin J-J. A Wolff in sheep’s clothing: Trabecular bone adaptation in response to changes in joint loading orientation. Bone. 2011;49:1141–51.CrossRef Barak MM, Lieberman DE, Hublin J-J. A Wolff in sheep’s clothing: Trabecular bone adaptation in response to changes in joint loading orientation. Bone. 2011;49:1141–51.CrossRef
17.
go back to reference Klein-Nulend J, van Oers RFM, Bakker AD, Bacabac RG. Nitric oxide signaling in mechanical adaptation of bone. Osteoporosis International. Springer London. 2014;25:1427–37.PubMed Klein-Nulend J, van Oers RFM, Bakker AD, Bacabac RG. Nitric oxide signaling in mechanical adaptation of bone. Osteoporosis International. Springer London. 2014;25:1427–37.PubMed
18.
go back to reference Vatsa A, Mizuno D, Smit TH, Schmidt CF, MacKintosh FC, Klein-Nulend J. Bio imaging of intracellular NO production in single bone cells after mechanical stimulation. Journal of Bone and Mineral Research. 2006;21:1722–8.CrossRef Vatsa A, Mizuno D, Smit TH, Schmidt CF, MacKintosh FC, Klein-Nulend J. Bio imaging of intracellular NO production in single bone cells after mechanical stimulation. Journal of Bone and Mineral Research. 2006;21:1722–8.CrossRef
19.
go back to reference van Oers RFM, Wang H, Bacabac RG. Osteocyte shape and mechanical loading. Current Osteoporosis Reports. Springer US. 2015;13:61–6.CrossRef van Oers RFM, Wang H, Bacabac RG. Osteocyte shape and mechanical loading. Current Osteoporosis Reports. Springer US. 2015;13:61–6.CrossRef
20.
go back to reference •• Christen P, Ito K, Ellouz R, Boutroy S, Sornay-Rendu E, Chapurlat RD, et al. Bone remodelling in humans is load-driven but not lazy. Nature Communications. Nature Publishing Group; 2014;5. This study demonstrates, for the first time, local mechanoregulation of bone resorption and bone formation in humans employing time-lapse in vivo HR-pQCT and micro-FE analysis. •• Christen P, Ito K, Ellouz R, Boutroy S, Sornay-Rendu E, Chapurlat RD, et al. Bone remodelling in humans is load-driven but not lazy. Nature Communications. Nature Publishing Group; 2014;5. This study demonstrates, for the first time, local mechanoregulation of bone resorption and bone formation in humans employing time-lapse in vivo HR-pQCT and micro-FE analysis.
21.
go back to reference •• Schulte FA, Ruffoni D, Lambers FM, Christen D, Webster DJ, Kuhn G, et al. Local Mechanical Stimuli Regulate Bone Formation and Resorption in Mice at the Tissue Level. Kupczik K, editor. Plos One. Public Library of Science; 2013;8. This study demonstrates, for the first time, local mechanoregulation of bone resorption and bone formation in animals employing time-lapse in vivo micro-CT and micro-FE analysis. •• Schulte FA, Ruffoni D, Lambers FM, Christen D, Webster DJ, Kuhn G, et al. Local Mechanical Stimuli Regulate Bone Formation and Resorption in Mice at the Tissue Level. Kupczik K, editor. Plos One. Public Library of Science; 2013;8. This study demonstrates, for the first time, local mechanoregulation of bone resorption and bone formation in animals employing time-lapse in vivo micro-CT and micro-FE analysis.
22.
go back to reference Boyd SK, Davison P, Müller R, Gasser JA. Monitoring individual morphological changes over time in ovariectomized rats by in vivo micro-computed tomography. Bone. 2006;39:854–62.CrossRef Boyd SK, Davison P, Müller R, Gasser JA. Monitoring individual morphological changes over time in ovariectomized rats by in vivo micro-computed tomography. Bone. 2006;39:854–62.CrossRef
23.
go back to reference Lambers FM, Koch K, Kuhn G, Ruffoni D, Weigt C, Schulte FA, et al. Trabecular bone adapts to long-term cyclic loading by increasing stiffness and normalization of dynamic morphometric rates. Bone. 2013;55:325–34.CrossRef Lambers FM, Koch K, Kuhn G, Ruffoni D, Weigt C, Schulte FA, et al. Trabecular bone adapts to long-term cyclic loading by increasing stiffness and normalization of dynamic morphometric rates. Bone. 2013;55:325–34.CrossRef
24.
go back to reference Schulte FA, Lambers FM, Kuhn G, Müller R. In vivo micro-computed tomography allows direct three-dimensional quantification of both bone formation and bone resorption parameters using time-lapsed imaging. Bone. 2011;48:433–42.CrossRef Schulte FA, Lambers FM, Kuhn G, Müller R. In vivo micro-computed tomography allows direct three-dimensional quantification of both bone formation and bone resorption parameters using time-lapsed imaging. Bone. 2011;48:433–42.CrossRef
25.
go back to reference Birkhold AI, Razi H, Duda GN, Weinkamer R, Checa S, Willie BM. The influence of age on adaptive bone formation and bone resorption. Biomaterials. 2014;35:9290–301.CrossRef Birkhold AI, Razi H, Duda GN, Weinkamer R, Checa S, Willie BM. The influence of age on adaptive bone formation and bone resorption. Biomaterials. 2014;35:9290–301.CrossRef
26.
go back to reference • Birkhold AI, Razi H, Weinkamer R, Duda GN, Checa S, Willie BM. Monitoring in vivo (re)modeling: A computational approach using 4D microCT data to quantify bone surface movements. Bone. 2015;75:210–21. This study proposes a novel method to visualise and quantify bone resorption and bone formation based on time-lapse in vivo micro-CT that allows to track sites of bone resorption and bone formation over time. CrossRef • Birkhold AI, Razi H, Weinkamer R, Duda GN, Checa S, Willie BM. Monitoring in vivo (re)modeling: A computational approach using 4D microCT data to quantify bone surface movements. Bone. 2015;75:210–21. This study proposes a novel method to visualise and quantify bone resorption and bone formation based on time-lapse in vivo micro-CT that allows to track sites of bone resorption and bone formation over time. CrossRef
27.
go back to reference Ellouz R, Chapurlat R, van Rietbergen B, Christen P, Pialat J-B, Boutroy S. Challenges in longitudinal measurements with HR-pQCT: Evaluation of a 3D registration method to improve bone microarchitecture and strength measurement reproducibility. Bone. 2014;63:147–57.CrossRef Ellouz R, Chapurlat R, van Rietbergen B, Christen P, Pialat J-B, Boutroy S. Challenges in longitudinal measurements with HR-pQCT: Evaluation of a 3D registration method to improve bone microarchitecture and strength measurement reproducibility. Bone. 2014;63:147–57.CrossRef
28.
go back to reference Chapurlat R In vivo evaluation of bone microstructure in humans: Clinically useful? BoneKEy Reports. 2016;5. Chapurlat R In vivo evaluation of bone microstructure in humans: Clinically useful? BoneKEy Reports. 2016;5.
29.
go back to reference Nishiyama KK, Shane E. Clinical imaging of bone microarchitecture with HR-pQCT. Current Osteoporosis Reports. Current Science Inc. 2013;11:147–55.CrossRef Nishiyama KK, Shane E. Clinical imaging of bone microarchitecture with HR-pQCT. Current Osteoporosis Reports. Current Science Inc. 2013;11:147–55.CrossRef
30.
go back to reference Geusens P, Chapurlat R, Schett G, Ghasem-Zadeh A, Seeman E, de Jong J, et al. High-resolution in vivo imaging of bone and joints: a window to microarchitecture. Nature Reviews Rheumatology. Nature Research. 2014;10:304–13.CrossRef Geusens P, Chapurlat R, Schett G, Ghasem-Zadeh A, Seeman E, de Jong J, et al. High-resolution in vivo imaging of bone and joints: a window to microarchitecture. Nature Reviews Rheumatology. Nature Research. 2014;10:304–13.CrossRef
31.
go back to reference Christen P, Lee WY-W, van Rietbergen B, Chen JC-Y, Müller R. Time-lapse in vivo image analysis to determine local disease and treatment effects on bone remodelling in patients. IBMS BoneKEy. 2015;13:116–7. Christen P, Lee WY-W, van Rietbergen B, Chen JC-Y, Müller R. Time-lapse in vivo image analysis to determine local disease and treatment effects on bone remodelling in patients. IBMS BoneKEy. 2015;13:116–7.
32.
go back to reference Nishiyama KK, Pauchard Y, Nikkel LE, Iyer S, Zhang C, McMahon DJ, et al. Longitudinal HR-pQCT and image registration detects endocortical bone loss in kidney transplantation patients. Journal of Bone and Mineral Research. 2015;30:456–63.CrossRef Nishiyama KK, Pauchard Y, Nikkel LE, Iyer S, Zhang C, McMahon DJ, et al. Longitudinal HR-pQCT and image registration detects endocortical bone loss in kidney transplantation patients. Journal of Bone and Mineral Research. 2015;30:456–63.CrossRef
33.
go back to reference Lu Y, Boudiffa M, Dall’Ara E, Bellantuono I, Viceconti M. Development of a protocol to quantify local bone adaptation over space and time: Quantification of reproducibility. Journal of Biomechanics. 2016;49:2095–9.CrossRef Lu Y, Boudiffa M, Dall’Ara E, Bellantuono I, Viceconti M. Development of a protocol to quantify local bone adaptation over space and time: Quantification of reproducibility. Journal of Biomechanics. 2016;49:2095–9.CrossRef
34.
go back to reference Altman AR, Tseng W-J, de Bakker CMJ, Chandra A, Lan S, Huh BK, et al. Quantification of skeletal growth, modeling, and remodeling by in vivo micro computed tomography. Bone. 2015;81:370–9.CrossRef Altman AR, Tseng W-J, de Bakker CMJ, Chandra A, Lan S, Huh BK, et al. Quantification of skeletal growth, modeling, and remodeling by in vivo micro computed tomography. Bone. 2015;81:370–9.CrossRef
35.
go back to reference de Jong JJA, Willems PC, Arts JJ, Bours SGP, Brink PRG, van Geel TACM, et al. Assessment of the healing process in distal radius fractures by high-resolution peripheral quantitative computed tomography. Bone. 2014;64:65–74.CrossRef de Jong JJA, Willems PC, Arts JJ, Bours SGP, Brink PRG, van Geel TACM, et al. Assessment of the healing process in distal radius fractures by high-resolution peripheral quantitative computed tomography. Bone. 2014;64:65–74.CrossRef
36.
go back to reference de Jong JJA, Christen P, Chapurlat RD, Geusens PP, van den Bergh JPW, Müller R, et al. Feasibility of rigid 3D image registration of images of healing distal radius fractures. Plos One Public Library of Science (accepted). 2017. de Jong JJA, Christen P, Chapurlat RD, Geusens PP, van den Bergh JPW, Müller R, et al. Feasibility of rigid 3D image registration of images of healing distal radius fractures. Plos One Public Library of Science (accepted). 2017.
37.
go back to reference van Rietbergen B, Weinans H, Huiskes R, Odgaard A. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. Journal of Biomechanics. 1995;28:69–81.CrossRef van Rietbergen B, Weinans H, Huiskes R, Odgaard A. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. Journal of Biomechanics. 1995;28:69–81.CrossRef
38.
go back to reference Pahr DH, Zysset PK. Finite element-based mechanical assessment of bone quality on the basis of in vivo images. Current Osteoporosis Reports. Springer US. 2016;14:374–85.CrossRef Pahr DH, Zysset PK. Finite element-based mechanical assessment of bone quality on the basis of in vivo images. Current Osteoporosis Reports. Springer US. 2016;14:374–85.CrossRef
39.
go back to reference Agarwal S, Rosete F, Zhang C, McMahon DJ, Guo XE, Shane E, et al. In vivo assessment of bone structure and estimated bone strength by first- and second-generation HR-pQCT. Osteoporosis International. Springer London. 2016;27:2955–66.CrossRef Agarwal S, Rosete F, Zhang C, McMahon DJ, Guo XE, Shane E, et al. In vivo assessment of bone structure and estimated bone strength by first- and second-generation HR-pQCT. Osteoporosis International. Springer London. 2016;27:2955–66.CrossRef
40.
go back to reference Cresswell EN, Goff MG, Nguyen TM, Lee WX, Hernandez CJ. Spatial relationships between bone formation and mechanical stress within cancellous bone. Journal of Biomechanics. 2016;49:222–8.CrossRef Cresswell EN, Goff MG, Nguyen TM, Lee WX, Hernandez CJ. Spatial relationships between bone formation and mechanical stress within cancellous bone. Journal of Biomechanics. 2016;49:222–8.CrossRef
41.
go back to reference An improved inverse dynamics formulation for estimation of external and internal loads during human sagittal plane movements. Computer Methods in Biomechanics and Biomedical Engineering. 2015; 18:362–75. An improved inverse dynamics formulation for estimation of external and internal loads during human sagittal plane movements. Computer Methods in Biomechanics and Biomedical Engineering. 2015; 18:362–75.
42.
go back to reference Wehner T, Wolfram U, Henzler T, Niemeyer F, Claes L, Simon U. Internal forces and moments in the femur of the rat during gait. Journal of Biomechanics. 2010;43:2473–9.CrossRef Wehner T, Wolfram U, Henzler T, Niemeyer F, Claes L, Simon U. Internal forces and moments in the femur of the rat during gait. Journal of Biomechanics. 2010;43:2473–9.CrossRef
43.
go back to reference Christen P, van Rietbergen B, Lambers FM, Müller R, Ito K. Bone morphology allows estimation of loading history in a murine model of bone adaptation. Biomechanics and Modeling in Mechanobiology. Springer-Verlag. 2012;11:483–92.CrossRef Christen P, van Rietbergen B, Lambers FM, Müller R, Ito K. Bone morphology allows estimation of loading history in a murine model of bone adaptation. Biomechanics and Modeling in Mechanobiology. Springer-Verlag. 2012;11:483–92.CrossRef
44.
go back to reference Christen P, Ito K, Galis F, van Rietbergen B. Determination of hip-joint loading patterns of living and extinct mammals using an inverse Wolff’s law approach. Biomechanics and Modeling in Mechanobiology. Springer Berlin Heidelberg. 2015;14:427–32.CrossRef Christen P, Ito K, Galis F, van Rietbergen B. Determination of hip-joint loading patterns of living and extinct mammals using an inverse Wolff’s law approach. Biomechanics and Modeling in Mechanobiology. Springer Berlin Heidelberg. 2015;14:427–32.CrossRef
45.
go back to reference Christen P, Ito K, Knippels I, Müller R, van Lenthe GH, van Rietbergen B. Subject-specific bone loading estimation in the human distal radius. Journal of Biomechanics. 2013;46:759–66.CrossRef Christen P, Ito K, Knippels I, Müller R, van Lenthe GH, van Rietbergen B. Subject-specific bone loading estimation in the human distal radius. Journal of Biomechanics. 2013;46:759–66.CrossRef
46.
go back to reference Christen P, Schulte FA, Zwahlen A, van Rietbergen B, Boutroy S, Melton LJI, et al. Voxel size dependency, reproducibility and sensitivity of an in vivo bone loading estimation algorithm. Journal of the Royal Society Interface. The Royal Society; 2016;13.CrossRef Christen P, Schulte FA, Zwahlen A, van Rietbergen B, Boutroy S, Melton LJI, et al. Voxel size dependency, reproducibility and sensitivity of an in vivo bone loading estimation algorithm. Journal of the Royal Society Interface. The Royal Society; 2016;13.CrossRef
47.
go back to reference Christen P, Ito K, Santos dos AA, Müller R, van Rietbergen B. Validation of a bone loading estimation algorithm for patient-specific bone remodelling simulations. J Biomech. 2013;46:941–8.CrossRef Christen P, Ito K, Santos dos AA, Müller R, van Rietbergen B. Validation of a bone loading estimation algorithm for patient-specific bone remodelling simulations. J Biomech. 2013;46:941–8.CrossRef
48.
go back to reference Trüssel A, Müller R, Webster D. Toward mechanical systems biology in bone. Annals of Biomedical Engineering. Springer US. 2012;40:2475–87.CrossRef Trüssel A, Müller R, Webster D. Toward mechanical systems biology in bone. Annals of Biomedical Engineering. Springer US. 2012;40:2475–87.CrossRef
49.
go back to reference Taylor C, Scheuren A, Trüssel A, Müller R 3D Local in vivo Environment (LivE) imaging for single cell protein analysis of bone tissue. Current Directions in Biomedical Engineering. 2016;2. Taylor C, Scheuren A, Trüssel A, Müller R 3D Local in vivo Environment (LivE) imaging for single cell protein analysis of bone tissue. Current Directions in Biomedical Engineering. 2016;2.
50.
go back to reference Nioi P, Taylor S, Hu R, Pacheco E, He YD, Hamadeh H, et al. Transcriptional profiling of laser capture microdissected subpopulations of the osteoblast lineage provides insight into the early response to sclerostin antibody in rats. Journal of Bone and Mineral Research. 2015;30:1457–67.CrossRef Nioi P, Taylor S, Hu R, Pacheco E, He YD, Hamadeh H, et al. Transcriptional profiling of laser capture microdissected subpopulations of the osteoblast lineage provides insight into the early response to sclerostin antibody in rats. Journal of Bone and Mineral Research. 2015;30:1457–67.CrossRef
51.
go back to reference Trüssel AJ Spatial mapping and high throughput microfluidic gene expression analysis of osteocytes in mechanically controlled bone remodeling [Internet]. Department of Health Sciences and Technology, Diss Nr. 22716, ETH Zurich; 2015. doi:10.3929/ethz-a-010465264. Trüssel AJ Spatial mapping and high throughput microfluidic gene expression analysis of osteocytes in mechanically controlled bone remodeling [Internet]. Department of Health Sciences and Technology, Diss Nr. 22716, ETH Zurich; 2015. doi:10.​3929/​ethz-a-010465264.
52.
go back to reference Ohs N, Keller F, Blank O, Lee WY-W, Chen JC-Y, Arbenz P, et al. Towards in silico prognosis using big data. Current Directions in Biomedical Engineering. 2016;2:57.CrossRef Ohs N, Keller F, Blank O, Lee WY-W, Chen JC-Y, Arbenz P, et al. Towards in silico prognosis using big data. Current Directions in Biomedical Engineering. 2016;2:57.CrossRef
Metadata
Title
In vivo Visualisation and Quantification of Bone Resorption and Bone Formation from Time-Lapse Imaging
Authors
Patrik Christen
Ralph Müller
Publication date
01-08-2017
Publisher
Springer US
Published in
Current Osteoporosis Reports / Issue 4/2017
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-017-0372-1

Other articles of this Issue 4/2017

Current Osteoporosis Reports 4/2017 Go to the issue

Osteoimmunology (MB Humphrey and M Nakamura, Section Editors)

Osteomacs and Bone Regeneration

Osteocytes (T Bellido and J Klein-Nulend, Section Editors)

Osteocyte Mechanobiology

Osteoimmunology (M Humphrey and M Nakamura, Section Editors)

Osteoimmunology in Bone Fracture Healing

Rare Bone Disease (C Langman and E Shore, Section Editors)

Melorheostosis: a Rare Sclerosing Bone Dysplasia

Osteocytes (T Bellido and J Klein-Nulend, Section Editors)

Connexins and Pannexins in Bone and Skeletal Muscle