Skip to main content
Top
Published in: Current Osteoporosis Reports 4/2017

01-08-2017 | Osteocytes (T Bellido and J Klein-Nulend, Section Editors)

Osteocyte Mechanobiology

Authors: Yuhei Uda, Ehab Azab, Ningyuan Sun, Chao Shi, Paola Divieti Pajevic

Published in: Current Osteoporosis Reports | Issue 4/2017

Login to get access

Abstract

Purpose of Review

Over the past decades, osteocytes have emerged as mechano-sensors of bone and master regulators of bone homeostasis. This article summarizes latest research and progress made in understanding osteocyte mechanobiology and critically reviews tools currently available to study these cells.

Recent Findings

Whereas increased mechanical forces promote bone formation, decrease loading is always associated with bone loss and skeletal fragility. Recent studies identified cilia, integrins, calcium channels, and G-protein coupled receptors as important sensors of mechanical forces and Ca2+ and cAMP signaling as key effectors. Among transcripts regulated by mechanical forces, sclerostin and RANKL have emerged as potential therapeutic targets for disuse-induced bone loss.

Summary

In this paper, we review the mechanisms by which osteocytes perceive and transduce mechanical cues and the models available to study mechano-transduction. Future directions of the field are also discussed.
Literature
2.
go back to reference •• Tatsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 2007;5(6):464–75. This study provide the fisrt scientific evidence that osteocytes are mechano-sensors. PubMedCrossRef •• Tatsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 2007;5(6):464–75. This study provide the fisrt scientific evidence that osteocytes are mechano-sensors. PubMedCrossRef
3.
go back to reference Bonewald L. Osteocytes as multifunctional cells. J Musculoskelet Neuronal Interact. 2006;6(4):331–3.PubMed Bonewald L. Osteocytes as multifunctional cells. J Musculoskelet Neuronal Interact. 2006;6(4):331–3.PubMed
4.
go back to reference Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med.17(10):1231–4.PubMedCrossRef Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med.17(10):1231–4.PubMedCrossRef
5.
6.
go back to reference Wolff J. Das Gesetz der Transformation der Knochen Kirschwald. 1892. Wolff J. Das Gesetz der Transformation der Knochen Kirschwald. 1892.
7.
8.
go back to reference Fulzele K, Lai F, Dedic C, Saini V, Uda Y, Shi C, et al. Osteocyte-secreted Wnt signaling inhibitor sclerostin contributes to beige adipogenesis in peripheral fat depots. J Bone Miner Res. 2017;32(2):373–84.PubMedCrossRef Fulzele K, Lai F, Dedic C, Saini V, Uda Y, Shi C, et al. Osteocyte-secreted Wnt signaling inhibitor sclerostin contributes to beige adipogenesis in peripheral fat depots. J Bone Miner Res. 2017;32(2):373–84.PubMedCrossRef
9.
go back to reference Ingber DE. Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol. 1997;59:575–99.PubMedCrossRef Ingber DE. Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol. 1997;59:575–99.PubMedCrossRef
10.
go back to reference Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol. 2006;7(4):265–75.PubMedCrossRef Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol. 2006;7(4):265–75.PubMedCrossRef
11.
go back to reference Burger EH, Klein-Nulend J. Mechanotransduction in bone—role of the lacuno-canalicular network. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 1999;13(Suppl):S101–12.CrossRef Burger EH, Klein-Nulend J. Mechanotransduction in bone—role of the lacuno-canalicular network. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 1999;13(Suppl):S101–12.CrossRef
12.
go back to reference Pal S. Mechanical properties of biological materials. 2014;23–40. Pal S. Mechanical properties of biological materials. 2014;23–40.
13.
14.
go back to reference Smith SM, Zwart SR, Heer M, Hudson EK, Shackelford L, Morgan JL. Men and women in space: bone loss and kidney stone risk after long-duration spaceflight. J Bone Miner Res. 2014;29(7):1639–45.PubMedCrossRef Smith SM, Zwart SR, Heer M, Hudson EK, Shackelford L, Morgan JL. Men and women in space: bone loss and kidney stone risk after long-duration spaceflight. J Bone Miner Res. 2014;29(7):1639–45.PubMedCrossRef
15.
go back to reference Ohshima H. Bone loss and bone metabolism in astronauts during long-duration space flight. Clinical calcium. 2006;16(1):81–5.PubMed Ohshima H. Bone loss and bone metabolism in astronauts during long-duration space flight. Clinical calcium. 2006;16(1):81–5.PubMed
16.
go back to reference Takano-Yamamoto T. Osteocyte function under compressive mechanical force. Japanese Dental Science Review. 2014;50(2):29–39.CrossRef Takano-Yamamoto T. Osteocyte function under compressive mechanical force. Japanese Dental Science Review. 2014;50(2):29–39.CrossRef
17.
go back to reference Cowin SC, Moss-Salentijn L, Moss ML. Candidates for the mechanosensory system in bone. J Biomech Eng. 1991;113(2):191–7.PubMedCrossRef Cowin SC, Moss-Salentijn L, Moss ML. Candidates for the mechanosensory system in bone. J Biomech Eng. 1991;113(2):191–7.PubMedCrossRef
18.
go back to reference Weinbaum S, Cowin SC, Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech. 1994;27(3):339–60.PubMedCrossRef Weinbaum S, Cowin SC, Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech. 1994;27(3):339–60.PubMedCrossRef
19.
go back to reference Kwon RY, Meays DR, Meilan AS, Jones J, Miramontes R, Kardos N, et al. Skeletal adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced in mice subjected to targeted osteocyte ablation. PLoS One. 2012;7(3):e33336.PubMedPubMedCentralCrossRef Kwon RY, Meays DR, Meilan AS, Jones J, Miramontes R, Kardos N, et al. Skeletal adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced in mice subjected to targeted osteocyte ablation. PLoS One. 2012;7(3):e33336.PubMedPubMedCentralCrossRef
20.
go back to reference Riehl BD, Lee JS, Ha L, Kwon IK, Lim JY. Flowtaxis of osteoblast migration under fluid shear and the effect of RhoA kinase silencing. PLoS One. 2017;12(2):e0171857.PubMedPubMedCentralCrossRef Riehl BD, Lee JS, Ha L, Kwon IK, Lim JY. Flowtaxis of osteoblast migration under fluid shear and the effect of RhoA kinase silencing. PLoS One. 2017;12(2):e0171857.PubMedPubMedCentralCrossRef
21.
go back to reference Liu CL, Li SN, Ji BH, Huo B. Flow-induced migration of osteoclasts and regulations of calcium signaling pathways. Cell Mol Bioeng. 2015;8(1):213–23.CrossRef Liu CL, Li SN, Ji BH, Huo B. Flow-induced migration of osteoclasts and regulations of calcium signaling pathways. Cell Mol Bioeng. 2015;8(1):213–23.CrossRef
22.
go back to reference Miyauchi A, Gotoh M, Kamioka H, Notoya K, Sekiya H, Takagi Y, et al. AlphaVbeta3 integrin ligands enhance volume-sensitive calcium influx in mechanically stretched osteocytes. J Bone Miner Metab. 2006;24(6):498–504.PubMedCrossRef Miyauchi A, Gotoh M, Kamioka H, Notoya K, Sekiya H, Takagi Y, et al. AlphaVbeta3 integrin ligands enhance volume-sensitive calcium influx in mechanically stretched osteocytes. J Bone Miner Metab. 2006;24(6):498–504.PubMedCrossRef
23.
go back to reference Weyts FA, Li YS, van Leeuwen J, Weinans H, Chien S. ERK activation and alpha v beta 3 integrin signaling through Shc recruitment in response to mechanical stimulation in human osteoblasts. J Cell Biochem. 2002;87(1):85–92.PubMedCrossRef Weyts FA, Li YS, van Leeuwen J, Weinans H, Chien S. ERK activation and alpha v beta 3 integrin signaling through Shc recruitment in response to mechanical stimulation in human osteoblasts. J Cell Biochem. 2002;87(1):85–92.PubMedCrossRef
24.
go back to reference Yavropoulou MP, Yovos JG. The molecular basis of bone mechanotransduction. J Musculoskelet Neuronal Interact. 2016;16(3):221–36.PubMedPubMedCentral Yavropoulou MP, Yovos JG. The molecular basis of bone mechanotransduction. J Musculoskelet Neuronal Interact. 2016;16(3):221–36.PubMedPubMedCentral
25.
go back to reference Weinbaum S, Duan Y, Thi MM, You L. An integrative review of mechanotransduction in endothelial, epithelial (renal) and dendritic cells (osteocytes). Cell Mol Bioeng. 2011;4(4):510–37.PubMedCrossRef Weinbaum S, Duan Y, Thi MM, You L. An integrative review of mechanotransduction in endothelial, epithelial (renal) and dendritic cells (osteocytes). Cell Mol Bioeng. 2011;4(4):510–37.PubMedCrossRef
26.
go back to reference Hoey DA, Chen JC, Jacobs CR. The primary cilium as a novel extracellular sensor in bone. Front Endocrinol. 2012;3:75.CrossRef Hoey DA, Chen JC, Jacobs CR. The primary cilium as a novel extracellular sensor in bone. Front Endocrinol. 2012;3:75.CrossRef
27.
28.
go back to reference Bell A. The pipe and the pinwheel: is pressure an effective stimulus for the 9+0 primary cilium? Cell Biol Int. 2008;32(4):462–8.PubMedCrossRef Bell A. The pipe and the pinwheel: is pressure an effective stimulus for the 9+0 primary cilium? Cell Biol Int. 2008;32(4):462–8.PubMedCrossRef
29.
go back to reference Qiu N, Xiao Z, Cao L, Buechel MM, David V, Roan E, et al. Disruption of Kif3a in osteoblasts results in defective bone formation and osteopenia. J Cell Sci. 2012;125(Pt 8):1945–57.PubMedPubMedCentralCrossRef Qiu N, Xiao Z, Cao L, Buechel MM, David V, Roan E, et al. Disruption of Kif3a in osteoblasts results in defective bone formation and osteopenia. J Cell Sci. 2012;125(Pt 8):1945–57.PubMedPubMedCentralCrossRef
30.
go back to reference Xiao Z, Dallas M, Qiu N, Nicolella D, Cao L, Johnson M, et al. Conditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice. FASEB J. 25(7):2418–32.PubMedPubMedCentralCrossRef Xiao Z, Dallas M, Qiu N, Nicolella D, Cao L, Johnson M, et al. Conditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice. FASEB J. 25(7):2418–32.PubMedPubMedCentralCrossRef
31.
go back to reference Xiao Z, Zhang S, Mahlios J, Zhou G, Magenheimer BS, Guo D, et al. Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression. J Biol Chem. 2006;281(41):30884–95.PubMedCrossRef Xiao Z, Zhang S, Mahlios J, Zhou G, Magenheimer BS, Guo D, et al. Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression. J Biol Chem. 2006;281(41):30884–95.PubMedCrossRef
32.
go back to reference Temiyasathit S, Tang WJ, Leucht P, Anderson CT, Monica SD, Castillo AB, et al. Mechanosensing by the primary cilium: deletion of Kif3A reduces bone formation due to loading. PLoS One. 2012;7(3):e33368.PubMedPubMedCentralCrossRef Temiyasathit S, Tang WJ, Leucht P, Anderson CT, Monica SD, Castillo AB, et al. Mechanosensing by the primary cilium: deletion of Kif3A reduces bone formation due to loading. PLoS One. 2012;7(3):e33368.PubMedPubMedCentralCrossRef
33.
35.
go back to reference Wu XT, Sun LW, Yang X, Ding D, Han D, Fan YB. The potential role of spectrin network in the mechanotransduction of MLO-Y4 osteocytes. Scientific reports. 2017;7:40940.PubMedPubMedCentralCrossRef Wu XT, Sun LW, Yang X, Ding D, Han D, Fan YB. The potential role of spectrin network in the mechanotransduction of MLO-Y4 osteocytes. Scientific reports. 2017;7:40940.PubMedPubMedCentralCrossRef
36.
go back to reference Camirand A, Goltzman D, Gupta A, Kaouass M, Panda D, Karaplis A. The role of parathyroid hormone-related protein (PTHrP) in osteoblast response to microgravity: mechanistic implications for osteoporosis development. PLoS One. 2016;11(7):e0160034.PubMedPubMedCentralCrossRef Camirand A, Goltzman D, Gupta A, Kaouass M, Panda D, Karaplis A. The role of parathyroid hormone-related protein (PTHrP) in osteoblast response to microgravity: mechanistic implications for osteoporosis development. PLoS One. 2016;11(7):e0160034.PubMedPubMedCentralCrossRef
37.
go back to reference Delgado-Calle J, Tu X, Pacheco-Costa R, McAndrews K, Edwards R, Pellegrini GG, et al. Control of bone anabolism in response to mechanical loading and PTH by distinct mechanisms downstream of the PTH receptor. J Bone Miner Res. 2017;32(3):522–35.PubMedCrossRef Delgado-Calle J, Tu X, Pacheco-Costa R, McAndrews K, Edwards R, Pellegrini GG, et al. Control of bone anabolism in response to mechanical loading and PTH by distinct mechanisms downstream of the PTH receptor. J Bone Miner Res. 2017;32(3):522–35.PubMedCrossRef
38.
go back to reference Jacobs CR, Temiyasathit S, Castillo AB. Osteocyte mechanobiology and pericellular mechanics. Annu Rev Biomed Eng. 12:369–400.PubMedCrossRef Jacobs CR, Temiyasathit S, Castillo AB. Osteocyte mechanobiology and pericellular mechanics. Annu Rev Biomed Eng. 12:369–400.PubMedCrossRef
39.
go back to reference •• Thi MM, Suadicani SO, Schaffler MB, Weinbaum S, Spray DC. Mechanosensory responses of osteocytes to physiological forces occur along processes and not cell body and require alphaVbeta3 integrin. Proc Natl Acad Sci U S A. 2013;110(52):21012–7. This study emonstrated the polarity of mechanosensing and mechanotransduction in osteocytes and its dependence on the αvβ3 integrin attachment. PubMedPubMedCentralCrossRef •• Thi MM, Suadicani SO, Schaffler MB, Weinbaum S, Spray DC. Mechanosensory responses of osteocytes to physiological forces occur along processes and not cell body and require alphaVbeta3 integrin. Proc Natl Acad Sci U S A. 2013;110(52):21012–7. This study emonstrated the polarity of mechanosensing and mechanotransduction in osteocytes and its dependence on the αvβ3 integrin attachment. PubMedPubMedCentralCrossRef
40.
go back to reference Na S, Collin O, Chowdhury F, Tay B, Ouyang M, Wang Y, et al. Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc Natl Acad Sci U S A. 2008;105(18):6626–31.PubMedPubMedCentralCrossRef Na S, Collin O, Chowdhury F, Tay B, Ouyang M, Wang Y, et al. Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc Natl Acad Sci U S A. 2008;105(18):6626–31.PubMedPubMedCentralCrossRef
41.
go back to reference Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, et al. Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell. 2005;16(7):3100–6.PubMedPubMedCentralCrossRef Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, et al. Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell. 2005;16(7):3100–6.PubMedPubMedCentralCrossRef
42.
go back to reference Cheng B, Kato Y, Zhao S, Luo J, Sprague E, Bonewald LF, et al. PGE(2) is essential for gap junction-mediated intercellular communication between osteocyte-like MLO-Y4 cells in response to mechanical strain. Endocrinology. 2001;142(8):3464–73.PubMedCrossRef Cheng B, Kato Y, Zhao S, Luo J, Sprague E, Bonewald LF, et al. PGE(2) is essential for gap junction-mediated intercellular communication between osteocyte-like MLO-Y4 cells in response to mechanical strain. Endocrinology. 2001;142(8):3464–73.PubMedCrossRef
43.
go back to reference Cheng B, Zhao S, Luo J, Sprague E, Bonewald LF, Jiang JX. Expression of functional gap junctions and regulation by fluid flow in osteocyte-like MLO-Y4 cells. J Bone Miner Res. 2001;16(2):249–59.PubMedCrossRef Cheng B, Zhao S, Luo J, Sprague E, Bonewald LF, Jiang JX. Expression of functional gap junctions and regulation by fluid flow in osteocyte-like MLO-Y4 cells. J Bone Miner Res. 2001;16(2):249–59.PubMedCrossRef
44.
go back to reference Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, et al. Mechanical strain opens Connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell. 2005; Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, et al. Mechanical strain opens Connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell. 2005;
45.
go back to reference Wang W, Ha CH, Jhun BS, Wong C, Jain MK, Jin ZG. Fluid shear stress stimulates phosphorylation-dependent nuclear export of HDAC5 and mediates expression of KLF2 and eNOS. Blood. 2010;115(14):2971–9.PubMedPubMedCentralCrossRef Wang W, Ha CH, Jhun BS, Wong C, Jain MK, Jin ZG. Fluid shear stress stimulates phosphorylation-dependent nuclear export of HDAC5 and mediates expression of KLF2 and eNOS. Blood. 2010;115(14):2971–9.PubMedPubMedCentralCrossRef
46.
go back to reference Wein MN, Liang Y, Goransson O, Sundberg TB, Wang J, Williams EA, O’Meara MJ, Govea N, Beqo B, and Nishimori S. SIKs control osteocyte responses to parathyroid hormone. Nature communications. 2016;7. Wein MN, Liang Y, Goransson O, Sundberg TB, Wang J, Williams EA, O’Meara MJ, Govea N, Beqo B, and Nishimori S. SIKs control osteocyte responses to parathyroid hormone. Nature communications. 2016;7.
47.
go back to reference Lee K, Jessop H, Suswillo R, Zaman G, Lanyon L. Endocrinology: bone adaptation requires oestrogen receptor-alpha. Nature. 2003;424(6947):389.PubMedCrossRef Lee K, Jessop H, Suswillo R, Zaman G, Lanyon L. Endocrinology: bone adaptation requires oestrogen receptor-alpha. Nature. 2003;424(6947):389.PubMedCrossRef
48.
go back to reference Ciani C, Sharma D, Doty SB, Fritton SP. Ovariectomy enhances mechanical load-induced solute transport around osteocytes in rat cancellous bone. Bone. 2014;59:229–34.PubMedCrossRef Ciani C, Sharma D, Doty SB, Fritton SP. Ovariectomy enhances mechanical load-induced solute transport around osteocytes in rat cancellous bone. Bone. 2014;59:229–34.PubMedCrossRef
49.
go back to reference Sinnesael M, Laurent MR, Jardi F, Dubois V, Deboel L, Delisser P, et al. Androgens inhibit the osteogenic response to mechanical loading in adult male mice. Endocrinology. 2015;156(4):1343–53.PubMedCrossRef Sinnesael M, Laurent MR, Jardi F, Dubois V, Deboel L, Delisser P, et al. Androgens inhibit the osteogenic response to mechanical loading in adult male mice. Endocrinology. 2015;156(4):1343–53.PubMedCrossRef
50.
go back to reference Lau KH, Baylink DJ, Zhou XD, Rodriguez D, Bonewald LF, Li Z, et al. Osteocyte-derived insulin-like growth factor I is essential for determining bone mechanosensitivity. Am J Physiol Endocrinol Metab. 2013;305(2):E271–81.PubMedCrossRef Lau KH, Baylink DJ, Zhou XD, Rodriguez D, Bonewald LF, Li Z, et al. Osteocyte-derived insulin-like growth factor I is essential for determining bone mechanosensitivity. Am J Physiol Endocrinol Metab. 2013;305(2):E271–81.PubMedCrossRef
51.
go back to reference Balemans W, Patel N, Ebeling M, Van Hul E, Wuyts W, Lacza C, et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet. 2002;39(2):91–7.PubMedPubMedCentralCrossRef Balemans W, Patel N, Ebeling M, Van Hul E, Wuyts W, Lacza C, et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet. 2002;39(2):91–7.PubMedPubMedCentralCrossRef
52.
go back to reference Kusu N, Laurikkala J, Imanishi M, Usui H, Konishi M, Miyake A, et al. Sclerostin is a novel secreted osteoclast-derived bone morphogenetic protein antagonist with unique ligand specificity. J Biol Chem. 2003;278(26):24113–7.PubMedCrossRef Kusu N, Laurikkala J, Imanishi M, Usui H, Konishi M, Miyake A, et al. Sclerostin is a novel secreted osteoclast-derived bone morphogenetic protein antagonist with unique ligand specificity. J Biol Chem. 2003;278(26):24113–7.PubMedCrossRef
53.
go back to reference • Gaudio A, Pennisi P, Bratengeier C, Torrisi V, Lindner B, Mangiafico RA, et al. Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocrinol Metab. 95(5):2248–53. This study demosntrated an increase in serum sclerostin in immobilized patients. CrossRef • Gaudio A, Pennisi P, Bratengeier C, Torrisi V, Lindner B, Mangiafico RA, et al. Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocrinol Metab. 95(5):2248–53. This study demosntrated an increase in serum sclerostin in immobilized patients. CrossRef
54.
go back to reference • Spatz JM, Fields EE, Yu EW, Divieti Pajevic P, Bouxsein ML, Sibonga JD, Zwart SR, and Smith SM. Serum sclerostin increases in healthy adult men during bed rest. J Clin Endocrinol Metab.97(9):E1736–40. This study demosntrated an increase in serum sclerostin in helathy volunteer under bed-rest. CrossRef • Spatz JM, Fields EE, Yu EW, Divieti Pajevic P, Bouxsein ML, Sibonga JD, Zwart SR, and Smith SM. Serum sclerostin increases in healthy adult men during bed rest. J Clin Endocrinol Metab.97(9):E1736–40. This study demosntrated an increase in serum sclerostin in helathy volunteer under bed-rest. CrossRef
55.
go back to reference •• Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem. 2008;283(9):5866–75. Fisrt study demosntrating thst sclerostin is regulated by mechanical forces. PubMedCrossRef •• Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem. 2008;283(9):5866–75. Fisrt study demosntrating thst sclerostin is regulated by mechanical forces. PubMedCrossRef
56.
go back to reference Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, et al. Sclerostin mediates bone response to mechanical unloading via antagonizing Wnt/beta-catenin signaling. J Bone Miner Res. 2009;24:1651–61.PubMedCrossRef Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, et al. Sclerostin mediates bone response to mechanical unloading via antagonizing Wnt/beta-catenin signaling. J Bone Miner Res. 2009;24:1651–61.PubMedCrossRef
57.
go back to reference Spatz JM, Ellman R, Cloutier AM, Louis L, van Vliet M, Suva LJ, et al. Sclerostin antibody inhibits skeletal deterioration due to reduced mechanical loading. J Bone Miner Res. 28(4):865–74.PubMedCrossRef Spatz JM, Ellman R, Cloutier AM, Louis L, van Vliet M, Suva LJ, et al. Sclerostin antibody inhibits skeletal deterioration due to reduced mechanical loading. J Bone Miner Res. 28(4):865–74.PubMedCrossRef
58.
go back to reference Spatz JM, Wein MN, Gooi JH, Qu Y, Garr JL, Liu S, et al. The Wnt inhibitor sclerostin is up-regulated by mechanical unloading in osteocytes in vitro. J Biol Chem. 2015;290(27):16744–58.PubMedPubMedCentralCrossRef Spatz JM, Wein MN, Gooi JH, Qu Y, Garr JL, Liu S, et al. The Wnt inhibitor sclerostin is up-regulated by mechanical unloading in osteocytes in vitro. J Biol Chem. 2015;290(27):16744–58.PubMedPubMedCentralCrossRef
59.
go back to reference Kulkarni RN, Bakker AD, Everts V, Klein-Nulend J. Inhibition of osteoclastogenesis by mechanically loaded osteocytes: involvement of MEPE. Calcif Tissue Int. 2010;87(5):461–8.PubMedPubMedCentralCrossRef Kulkarni RN, Bakker AD, Everts V, Klein-Nulend J. Inhibition of osteoclastogenesis by mechanically loaded osteocytes: involvement of MEPE. Calcif Tissue Int. 2010;87(5):461–8.PubMedPubMedCentralCrossRef
60.
go back to reference Hu MC, Shiizaki K, Kuro-o M, Moe OW. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol. 2013;75:503–33.PubMedPubMedCentralCrossRef Hu MC, Shiizaki K, Kuro-o M, Moe OW. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol. 2013;75:503–33.PubMedPubMedCentralCrossRef
61.
go back to reference Bonewald LF. Establishment and characterization of an osteocyte-like cell line, MLO-Y4. J Bone Miner Metab. 1999;17(1):61–5.PubMedCrossRef Bonewald LF. Establishment and characterization of an osteocyte-like cell line, MLO-Y4. J Bone Miner Metab. 1999;17(1):61–5.PubMedCrossRef
62.
go back to reference Divieti P, Inomata N, Chapin K, Singh R, Juppner H, Bringhurst FR. Receptors for the carboxyl-terminal region of pth(1-84) are highly expressed in osteocytic cells. Endocrinology. 2001;142(2):916–25.PubMedCrossRef Divieti P, Inomata N, Chapin K, Singh R, Juppner H, Bringhurst FR. Receptors for the carboxyl-terminal region of pth(1-84) are highly expressed in osteocytic cells. Endocrinology. 2001;142(2):916–25.PubMedCrossRef
63.
go back to reference Woo SM, Rosser J, Dusevich V, Kalajzic I, Bonewald LF. Cell line IDG-SW3 replicates osteoblast-to-late-osteocyte differentiation in vitro and accelerates bone formation in vivo. J Bone Miner Res. 2011;26(11):2634–46.PubMedCrossRef Woo SM, Rosser J, Dusevich V, Kalajzic I, Bonewald LF. Cell line IDG-SW3 replicates osteoblast-to-late-osteocyte differentiation in vitro and accelerates bone formation in vivo. J Bone Miner Res. 2011;26(11):2634–46.PubMedCrossRef
Metadata
Title
Osteocyte Mechanobiology
Authors
Yuhei Uda
Ehab Azab
Ningyuan Sun
Chao Shi
Paola Divieti Pajevic
Publication date
01-08-2017
Publisher
Springer US
Published in
Current Osteoporosis Reports / Issue 4/2017
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-017-0373-0

Other articles of this Issue 4/2017

Current Osteoporosis Reports 4/2017 Go to the issue

Osteoimmunology (MB Humphrey and M Nakamura, Section Editors)

Osteomacs and Bone Regeneration

Pediatrics (L Ward and E Imel, Section Editors)

Denosumab: an Emerging Therapy in Pediatric Bone Disorders

Osteoimmunology (M Humphrey and M. Nakamura, Section Editors)

Gut Microbiome and Bone: to Build, Destroy, or Both?

Cancer-induced Musculoskeletal Diseases (M Reagan and E Keller, Section Editors)

Wnt Signaling in Ewing Sarcoma, Osteosarcoma, and Malignant Peripheral Nerve Sheath Tumors